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Program Description 

•  Development of a simulation framework easily adaptable for 
multidisciplinary applications 

•  High-order finite elements 
•  Share common modules between disciplines 

–  Mesh-related routines 
–  Parallel routines 
–  Linear algebra 

•  Requires primarily residual and left-hand side for discipline 
•  Integration with CAPRI for CAD-based surface representation 
•  Adaptive (both h- and p-adaptation under development) 
•  Managed code base 



New Simulation Framework 

•  Most computational simulation programs have similar structure and 
common components can be isolated into a single framework (code reuse) 

•  Discipline-specific applications (e.g. E&M + fluids) require new code in the 
form of residual routine and linearization (often just residual) 

•  Existing programs refactored to provide workable framework 

Geometry Linear Algebra Parallel 

Discipline Specific 
Residual 

Linearization 
Post Processing 
Input Parameters  

Collaborative Development (PG) 
• CVS Version control 
• CVSTrac bug tracking 
• Continuous testing (future) 
• Common practices  
  (e.g. AIAA 2003-3978) 



Engineering Disciplines 

•  Fluid dynamics 
•  Electromagnetics 
•  Structural Analysis 
•  Lithium-Ion Batteries 
•  Hydrogen Reforming (under development) 



Fluid Dynamics 

•  Implicit time stepping 
•  Full Navier Stokes with Spalart-Allmaras turbulence model 
•  Petrov-Galerkin and discontinuous-Galerkin discretization 



Electromagnetics 

•  Frequency domain and time-domain (implicit time stepping) 
•  Petrov-Galerkin and discontinuous-Galerkin discretization 
•  Frequency-dependent material properties 
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•  Displacement-based structural dynamics 
•  Galerkin finite element 
•  Geometric and/or material nonlinearity 
•  Mechanical and thermal stresses 

Structural Analysis 



Lithium-Ion Batteries 

•  High-order Galerkin discretization 
•  Current collectors, electrodes, and separator all modeled 



CAPRI Interface for CAD Geometry 

•  CAD – Watertight geometry definition is required 
•  Linear mesh – Initial mesh generated using CAD definition 
•  CAPRI – Higher-order points inserted into linear mesh and 

projected onto CAD definition via CAPRI interface 
•  Linear Elasticity – Surface displacements provided by CAPRI 

are propagated into interior 



Petrov-Galerkin 

•  Not widely used for compressible flow: Approximately ten 
times fewer papers in AIAA conferences compared with 
discontinuous Galerkin 

•  Surface integral typically not evaluated because of continuity 
assumptions between elements. However, assumption not 
required (e.g. multiple materials in electromagnetics) 

 
  

    

wiΩk
∫∫∫

∂Q
∂t
∂Ωk − ∇wi ⋅ F Q( )−Fv Q( )( )

Ωk
∫∫∫ ∂Ωk +

∂wi

∂x
A⎡⎣
⎤
⎦ +
∂wi

∂y
B⎡⎣
⎤
⎦ +
∂wi

∂z
C⎡⎣
⎤
⎦

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
τ⎡⎣
⎤
⎦
∂Q
∂t

+∇ ⋅ F Q( )−Fv Q( )( )
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪Ωk

∫∫∫ ∂Ωk +

wk F Q( )−Fv Q( )( ) ⋅ n̂ ∂ΓkΓk
∫∫ = 0



Evaluation of Surface Integral 

•  Typically ignored due to assumed continuity across elements 
•  Not a required assumption, such as multiple materials or port 

boundary conditions in electromagnetic applications 
–  Create duplicate mesh points along interface 
–  Resolve jumps in field parameters using Riemann solver  
–  May also be used to easily create discontinuous-Galerkin 

 



Stabilization Matrix 

•  Eigenvalue-based stabilization is “baseline”  

•  Inviscid contribution may be defined using concepts from flux-
vector splitting 

•           positive eigenvalues:           negative eigenvalues  
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Stabilization Matrix Based on FVS 

•  Any flux-vector splitting formulation can be used 
•  Using van Leer FVS can maintain constant total enthalpy  
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Stabilization Matrix Based on FVS 

FVS-based stabilization not inferior to eigenvalue-based 
stabilization for viscous flows 
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Stabilization Matrix 

•  Scaling necessary to maintain order property 
•   Varies as         for inviscid flows,          for viscous flow 

 
  
•  Cotangent scaling based on Peclet number for systems in 

multiple dimensions found to be unreliable 
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Discontinuous Galerkin 
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•  Solution assumed discontinuous across element interfaces 
•  Surface integral evaluation using Riemann solver 
•  Viscous terms handled using symmetric interior penalty method 



Example Applications 

•  Three-dimensional cylinder 
•  Multielement airfoil 
•  Onera M6 
•  Trap Wing 
•  Transonic airfoil 



Three-Dimensional Cylinder 

68,629 Elements 

   M∞ = 0.2   Re = 2580



Three-Dimensional Cylinder 

   M∞ = 0.2   Re = 2580

Discontinuous Galerkin P3 Petrov Galerkin P2 



Three-Dimensional Cylinder 
Time-Averaged U-Velocity Component 

   M∞ = 0.2   Re = 2580
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Multielement Airfoil 

Mach Number Contours Streamlines 

Douglas 30P-30N  

   M∞ = 0.2     α = 16o   Re = 9,000,000



Multielement Airfoil 

Discontinuous Galerkin Petrov Galerkin 

Pressure Distribution  



Multielement Airfoil 

x/c=0.45 (Main) 

Velocity Profiles Linear Elements  

x/c=0.8982 (Flap) x/c=1.1125 (Flap) 



Multielement Airfoil 

x/c=0.45 (Main) 

Velocity Profiles Quadratic and Cubic Elements  

x/c=0.8982 (Flap) x/c=1.1125 (Flap) 



Multielement Airfoil 

Discontinuous Galerkin 

Turbulence Working Variable Fourth Order DG and PG 

Petrov Galerkin 



ONERA M6 Comparisons with CFL3D 
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   M∞ = 0.2     α = 3.02o   Re = 11,270,000



Trap Wing (Petrov-Galerkin Scheme) 

   M∞ = 0.2     α = 12.99o   Re = 4,300,000

1,126,835 Elements 
194,370 DOF P1 

1,126,835 DOF P2 

Turbulence Working 
Variable 



Trap Wing (Petrov Galerkin) 

   M∞ = 0.2     α = 12.99o
  Re = 4,300,000
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Trap Wing (Petrov Galerkin) 

   M∞ = 0.2     α = 12.99o
  Re = 4,300,000

Slat 
Main Element Flap 
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Trap Wing (Petrov Galerkin) 

   M∞ = 0.2     α = 12.99o
  Re = 4,300,000

Slat 
Main Element Flap 

x/c=85% 
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Transonic NACA 0012 

   M∞ = 0.8     α = 1.25o

Finite Volume Petrov Galerkin P1 Petrov Galerkin P2 



Transonic NACA 0012 

   M∞ = 0.8     α = 1.25o

Linear Elements Cubic Elements 
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•  Preliminary results adding switched viscous-like term 
•  Discontinuous Galerkin and Petrov-Galerkin terms not the same 
•  Don’t make a general conclusion as to shock capturing!  



Which Scheme to Use? 

•  Intuition would indicate that there is an accuracy advantage 
on a given mesh for discontinuous Galerkin 

•  However, new degrees of freedom are created with 
discontinuities between elements 

•  Do the benefits outweigh the cost? 

Petrov Galerkin Discontinuous 
Galerkin 



2D Time-Domain Scattering from 
Dielectric Cylinder 

Exact T=0 Exact T=Pi/2 Exact T = Pi Exact T = 3Pi/4

Petrov-GalerkinPetrov-GalerkinPetrov-GalerkinPetrov-Galerkin



2D Time-Domain Scattering from 
Dielectric Cylinder (P1 Elements) 

DOF L1 Error L1 Slope L2 Error L2 Slope 
369 2.52E-01 2.37E-01 

1348 6.00E-02 2.22 5.60E-02 2.23 
5153 1.49E-2 2.08 1.39E-02 2.07 

DOF L1 Error L1 Slope L2 Error L2 Slope 
1824 2.52E-01 1.42E-01 
7314 6.00E-02 2.22 3.35E-02 2.08 

29,376 1.49E-2 2.08 8.30E-03 2.01 

Petrov Galerkin 

Discontinuous Galerkin 



2D Time-Domain Scattering from 
Dielectric Cylinder (P2 Elements) 

DOF L1 Error L1 Slope L2 Error L2 Slope 
1345 1.03E-02 1.05E-02 
5133 1.23E-03 3.28 1.21E-03 3.34 

20,097 1.50E-4 3.13 1.51E-04 3.10 

DOF L1 Error L1 Slope L2 Error L2 Slope 
3648 1.00E-02 5.83E-03 

14,628 1.20E-03 3.06 6.69E-04 3.12 
58,752 1.48E-4 3.01 8.42E-05 2.98 

Petrov Galerkin 

Discontinuous Galerkin 



Which Scheme to Use? 
Error in Manufactured Solution Per DOF 

Petrov Galerkin exhibits lower error per degree of freedom 

(Glasby et al. AIAA 2013-0692) 



Which Scheme to Use? 
Error in Manufactured Solution Per Element 

•  Discontinuous Galerkin exhibits lower error per element 
•  Results are for low Reynolds number MMS but typical for 

Euler, Navier Stokes, and Electromagnetic application 

(Glasby et al. AIAA 2013-0692) 



Which Scheme to Use? 

Petrov Galerkin Discontinuous Galerkin 

Estimating DOF and Number of Non Zero Entries in Matrix 



Which Scheme to Use? 

Two Dimensions 
(Triangles) 

Three Dimensions 
(Tetrahedrons) 

Estimating Ratio of DOF and Number of Non Zero Entries in 
Matrix Between PG and DG 
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Which Scheme to Use? 

•  Discontinuous Galerkin compares more favorably for hexahedrons, worst 
case is for tetrahedrons 

•  Higher DOF and NNZ translates into more memory, more work per iteration, 
and generally more iterations (search directions for GMRES) 

•  At low-to-moderate orders, Petrov Galerkin appears to have advantages over 
discontinuous Galerkin 

•  Higher orders may favor discontinuous Galerkin 

DOF and Number of Non Zero Entries in Matrix 
Cubic Volume Subdivided into Elements 

Tetrahedron Hexahedron Prismatic 
DOF NNZ DOF NNZ DOF NNZ 

P1 22.16 19.8 7.53 5.74 11.35 9.42 
P2 7.19 6.20 2.92 2.14 4.02 3.15 



Which Scheme to Use? 
Resonant Cavity: 1.85 GHz 

Magnetic Field Intensity 

Ratio of time for fixed number of time steps 
 DOF Ratio Actual Time Ratio 

Linear  22.16 27 
Quadratic 7.19 12 

•  Advancing fixed number of time 
steps to compare efficiencies 

•  Independent of equation set 

(DG required more search directions) 



Which Scheme to Use? 

•  Many factors effect the accuracy of a given scheme so it is 
difficult, if not impossible, to make a broad conclusion 
–  Boundary condition type / order / weak v. strong 
–  Basis functions and quadrature rules 
–  Solution and comparison variables  
–  Flux function / stabilization matrix 

•  While number of stabilization matrices for PG is approximately 
the same as the number of flux evaluations for DG, 
stabilization matrix approximately twice as expensive 

•  Higher DOF translates to more search directions 
•  Very high order is unclear but work advantages for PG at 

low-to-moderate orders are difficult for DG to overcome  



Curved Elements 

•  Isoparametric mapping requires more 
terms in (r,s) to obtain full polynomial 
representation in (x,y) 

•  Deficiency in higher-order terms 
•  Ciarlet’s theory provides guidance as 

to how much an element can deviate 
from linear and still maintain order 

•  Edges for cubic elements must be 
order h**3 but geometry varies as h**2 

•  Verifiable with either discontinuous-
Galerkin or Petrov-Galerkin method 

•  Also verifiable using downscaling 
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Curved Elements 

Polynomial for Curving Edges 
Mesh 

Reduction 
Quartic (4) Cubic (3) Quad. (2) 

P4 h**2 3 4 5 
h**3 4 5 5 
h**4 5 5 5 

P3 h**2 3 4 
h**3 4 4 

P2 h**2 3 

Order of Accuracy for Polynomial Curving of Elements  
Using Downscaling 



Curved Elements 

•  Ciarlet’s theorems assume element shape remains the 
same as the mesh is refined 

•  Uniform refinement changes shapes of elements. 
Experiments indicate that uniform refinement yields correct 
order property 

•  Mesh movement can, however, create problems 
•  For manufactured solution on parabolic domain, algebraic 

mesh movement failed to recover proper order while linear 
elasticity was successful 

surface edges

interior edge



•  Modifications to time-stepping scheme 
–  Linear ramp of CFL number not robust or efficient 
–  Switched Evolution Relaxation (SER) type schemes 

appear favorable 

•  Continue development of shock sensors 
•  DES / LES 
•  Tight integration between disciplines 

Ongoing Work 
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•  Developing framework for high-order finite element solutions 
to multidisciplinary problems 

•  Discontinuous-Galerkin and Petrov-Galerkin methods work 
well for inviscid, laminar, and turbulent flows 

•  Petrov-Galerkin method appears to be a much overlooked 
method for low-to-moderate orders of accuracy 

•  Curved elements need consideration but order property can 
be maintained as long as higher-order curves are not created 
during mesh movement  

Summary 


