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ﬂ Introduction
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The computer is not always right

Sleipner Platform A Failure (1991)
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The computer is not always right

Sleipner Platform A Failure (1991)
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Discretization errors are important

Summary of AIAA DPW results (Ceze 2013)
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Uniform refinement can be misleading
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DPW Il wing-alone case: M., = 0.76, Re = 5 x 108. Same code but
two different initial meshes (Mavriplis, 2007).
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9 Output-Based Methods
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Some definitions

Consider flow over an airfoil:

Outputs
Lift
Drag

(state: U = [p, p¥. pE]; )

( Residual: R, = [ F-7i )
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Output sensitivity to residuals: the adjoint

The lift adjoint W; is the sensitivity of lift to residual sources in cell /.

Lift= L(U)
We have a solution U when R = 0
n
cell i
cell j
U,
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Output sensitivity to residuals: the adjoint

The lift adjoint W; is the sensitivity of lift to residual sources in cell /.

Lift= L(U)
We have a solution U when R = 0
n
cell
3R, cell j
What if we add a residual source, 6R;? U,

K.J. Fidkowski (UM) JRV Symposium 2013 June 22-23, 2013 9/34



Output sensitivity to residuals: the adjoint

The lift adjoint W; is the sensitivity of lift to residual sources in cell /.

Lift= L(U) + oL
We have a solution U when R = 0

—

cell i
cell j
oR; /
. . ‘R.9
What if we add a residual source, IR;? Uj i 5U/

v

resolving for the state ...
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Sample steady adjoint solution

M = 1.5 flow ‘Qﬂut = pressure integral

—

diamond airfoil
— e —
green = zero adjoint

(showing y—mom component)
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Sample unsteady adjoint solution

Two pitching+plunging airfoils in low-Re flow

Qutput = lift on aft airfoil
hear end of simulation
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Where do the residuals come from?

@ A finer mesh or higher order discretization can uncover residuals
in a converged solution

@ Example from DG FEM:

Coarse space state, Uy Coarse space residual, Ry(Ug)
Ay

AVAV S
RYAVAYAY,S
Né‘g‘gﬁ

O
VAV.9|
SO

Zero as expected
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Where do the residuals come from?

@ A finer mesh or higher order discretization can uncover residuals
in a converged solution

@ Example from DG FEM:

Fine space residual, Ry(U})
SO

DERRKK]
IO
SPX

Injected state, U

ST
OO

RARRRE
SRR

SRR
SR
oAV

pr=2 Nonzero: new info
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Meshing and adaptation strategies

€

Metric-based anisotropic mesh regeneration (e.g. BAMG software) Riemannian ellipse

ll .l iz Cut Cell
! ! } Zi
—T 1
Geometry
Boundary
Edge Swap Edge Split Edge Collapse
Local mesh operators, and direct optimization Cut-cell meshes: Cartesian and simplex
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Typical adaptive result

Initial mesh |
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K.J. Fidkowski (UM)

JRV Symposium 2013

June 22-23, 2013



© A Steady State Result
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A steady-state example

DPW Il wing-alone case: M., = 0.76, Re = 5 x 10° )

@ In-house DG FEM code

@ Initial mesh: cubic hex elements
generated by agglomeration of
linear multiblock meshes (first
element y* ~ 1)

@ Artificial viscosity shock
capturing

@ Spalart-Allmaras turbulence
model with negative ©
modification [Oliver & Allmaras]

@ Drag-adaptive simulation using Contours of ¢, and &
hp discrete choice algorithm
(Ceze + Fidkowski, 2013)
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DPW wing: comparison to uniform refinement
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DPW wing: comparison to uniform refinement
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e Unsteady Extension
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Extension to unsteady problems

@ The adjoint becomes more expensive
@ Adaptation is trickier — need to measure space-time anisotropy

v,

A

= . . .
8 fine-space adjoint solution
N
=
o
7]
O
—
=
=
o .
g* current (coarse) forward solution
Q
2
([
Uy

spatial resolution
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Extension to unsteady problems

@ The adjoint becomes more expensive
@ Adaptation is trickier — need to measure space-time anisotropy

v,

¢ = —WIRn(Un)

space-time error

temporal resolution

spatial resolution
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Extension to unsteady problems

@ The adjoint becomes more expensive
@ Adaptation is trickier — need to measure space-time anisotropy
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Extension to unsteady problems

@ The adjoint becomes more expensive
@ Adaptation is trickier — need to measure space-time anisotropy
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Extension to unsteady problems

@ The adjoint becomes more expensive
@ Adaptation is trickier — need to measure space-time anisotropy
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Extension to unsteady problems

@ The adjoint becomes more expensive
@ Adaptation is trickier — need to measure space-time anisotropy

v,
]

projection of Wy, to

coarse temporal resolution

U
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Adaptive process for unsteady problems

t=20 t=T
P
Forward solve
Start ® @ @
__saved
states
@
Adjoint solve
——— L First adaptive iteration
Error estimation
Mesh adaptation
P
Forward solve
>@ @ ® @ @
Adapted solution
P . O oo oo
and error estimate Adjoint solve i
L Second adaptive iteration
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Three-dimensional flapping

We apply the adaptive strategy to a three-dimensional flapping
simulation.

Flow parameters
Re — 500, M/nf — 0-3, Str — 0.4, Astroke — :|:300, Ap,tch — :l:1 O °

Case parameters

@ Farfield at 20+ chords

@ DG1 time scheme

@ The order pis kept
between 0 and 5

° fgrowth = 30%

@ feoarsen = 5% FE10=AoR

y

Output: Lift integrated over final 5% of simulation time.
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Adapted spatial meshes

Orders (0 to 3) plotted on entropy isosurfaces for two snapshots of the
flow. -
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Output convergence versus DOF
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Output convergence versus CPU time
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e A Neat Alternative
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A “free” adjoint

@ An adjoint implementation is not trivial

@ But we often do have a “free” adjoint: the entropy variables
e For U = entropy function, v = U, is the entropy variable vector
e The state v satisfies an adjoint equation!
e The corresponding output is

J = net entropy outflow — net physical entropy generation J
entropy
entropy convecting
convecting =
. out

mn

entropy generation
through viscous
dissipation

@ The adjoint-weighted residual becomes the entropy residual
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Adapting on the entropy residual

h-Refinement on a rectangular wing in subsonic inviscid flow: ]

x10°

3.05-

2951

Drag coefficient

-=-Drag adjoint
291 —e—Lift adjoint

Entropy
- Entropy adjoint
285/ —— Residual
——Uniform refinement

10° 107
Degrees of freedom

Trailing vortex in a mesh adapted on Convergence of drag compared to
the entropy adjoint output adjoints

10

But we lack an error estimate for an engineering output ... or do we? J
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We can predict drag error!

@ Under a few assumptions (e.g. 2D), the approximate Oswatitsch
formula gives drag:

DOSW

" YRMZ,

/ AspV -[idS
Soo

@ Thermodynamically equivalent to near and far-field measures
@ Numerically, values will differ since flow is approximated
@ Example: turbulent flow over an RAE airfoil (Re = 6 x 106)

Initial mesh: 1610 elements Mach number contours
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Adapting on the Oswatitsch formula
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e Summary
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@ Output-based methods can improve efficiency and robustness of
CFD in aerospace applications

@ Adaptation provides tailored meshes for simulations of practical
interest

@ Error estimation and adaptation extend to unsteady systems

@ Our methods allow us to refine space and time meshes separately
by gleaning anisotropy from the error indicator

@ For sufficiently-fine error tolerances, output-based adaptation
saves CPU time

@ “Almost” output-based methods, e.g. entropy adjoint, offer
cheaper alternatives for a variety of situations
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