Output-based Adaptive Methods for Large-Scale Aerodynamics Simulations

Krzysztof Fidkowski University of Michigan, USA

Jameson, Roe, van-Leer Symosium San Diego, CA

June 22-23, 2013

Introduction

- Output-Based Methods
- A Steady State Result
- Unsteady Extension
- 6 A Neat Alternative

Introduction

- 2 Output-Based Methods
- 3 A Steady State Result
- 4 Unsteady Extension
- 5 A Neat Alternative

6 Summary

The computer is not always right

The computer is not always right

Sleipner Platform A Failure (1991)

4 / 34

June 22-23, 2013

The computer is not always right

Sleipner Platform A Failure (1991)

June 22-23, 2013 4 / 3

Discretization errors are important

Summary of AIAA DPW results (Ceze 2013)

K.J. Fidkowski (UM)

Uniform refinement can be misleading

DPW III wing-alone case: $M_{\infty} = 0.76$, $Re = 5 \times 10^6$. Same code but two different initial meshes (Mavriplis, 2007).

JRV Symposium 2013

Introduction

- 3 A Steady State Result
- 4 Unsteady Extension
- 5 A Neat Alternative

6 Summary

Some definitions

Consider flow over an airfoil:

The lift adjoint Ψ_i is the sensitivity of lift to residual sources in cell *i*.

We have a solution \mathbf{U} when $\mathbf{R} = \mathbf{0}$

The lift adjoint Ψ_i is the sensitivity of lift to residual sources in cell *i*.

What if we add a residual source, $\delta \mathbf{R}_i$?

The lift adjoint Ψ_i is the sensitivity of lift to residual sources in cell *i*.

The lift adjoint Ψ_i is the sensitivity of lift to residual sources in cell *i*.

Sample steady adjoint solution

K.J. Fidkowski (UM)

JRV Symposium 2013

June 22-23, 2013 10 / 3

Sample unsteady adjoint solution

Two pitching+plunging airfoils in low-Re flow

Output = lift on aft airfoil near end of simulation

Where do the residuals come from?

- A finer mesh or higher order discretization can uncover residuals in a converged solution
- Example from DG FEM:

Zero as expected

 $p_{H} = 1$

Where do the residuals come from?

- A finer mesh or higher order discretization can uncover residuals in a converged solution
- Example from DG FEM:

Nonzero: new info

 $p_h = 2$

The adjoint-weighted residual

Fine space residual, $\mathbf{R}_h(\mathbf{U}_h^H)$

Fine space adjoint, Ψ_h

Error indicator, $\epsilon_i = |\mathbf{\Psi}_{h,i}^T \mathbf{R}_{h,i} (\mathbf{U}_h^H)|$

Output error: $\delta J \approx -\Psi_h^T \mathbf{R}_h$

Idea: adapt where ϵ_i is high, to reduce residual there.

Meshing and adaptation strategies

Metric-based anisotropic mesh regeneration (e.g. BAMG software)

Riemannian ellipse

Edge Swap Edge Split Edge Collapse
Local mesh operators, and direct optimization

Cut-cell meshes: Cartesian and simplex

Typical adaptive result

JRV Symposium 2013

Introduction

- 2 Output-Based Methods
- 3 A Steady State Result
- 4 Unsteady Extension
- 5 A Neat Alternative

6 Summary

A steady-state example

DPW III wing-alone case: $M_{\infty} = 0.76, Re = 5 \times 10^6$

- In-house DG FEM code
- Initial mesh: cubic hex elements generated by agglomeration of linear multiblock meshes (first element $y^+ \approx 1$)
- Artificial viscosity shock capturing
- Spalart-Allmaras turbulence model with negative ν̃ modification [Oliver & Allmaras]
- Drag-adaptive simulation using hp discrete choice algorithm (Ceze + Fidkowski, 2013)

Contours of $\mathit{c_p}$ and $\widetilde{\nu}$

DPW wing: adapted meshes

Mach/mesh using non-zero entries cost

K.J. Fidkowski (UM)

DPW wing: comparison to uniform refinement

K.J. Fidkowski (UM)

DPW wing: comparison to uniform refinement

K.J. Fidkowski (UM)

JRV Symposium 2013

June 22-23, 2013 19 / 34

Introduction

- 2 Output-Based Methods
- 3 A Steady State Result
- Unsteady Extension
- 5 A Neat Alternative

Summary

- The adjoint becomes more expensive
- Adaptation is trickier need to measure space-time anisotropy

- The adjoint becomes more expensive
- Adaptation is trickier need to measure space-time anisotropy

- The adjoint becomes more expensive
- Adaptation is trickier need to measure space-time anisotropy

- The adjoint becomes more expensive
- Adaptation is trickier need to measure space-time anisotropy

- The adjoint becomes more expensive
- Adaptation is trickier need to measure space-time anisotropy

- The adjoint becomes more expensive
- Adaptation is trickier need to measure space-time anisotropy

Adaptive process for unsteady problems

Three-dimensional flapping

We apply the adaptive strategy to a three-dimensional flapping simulation.

Flow parameters

 $\textit{Re} = 500, ~~\textit{M}_{\textit{inf}} = 0.3, ~~\textit{Str} = 0.4, ~~\textit{A}_{\textit{stroke}} = \pm 30\,^{\circ}, ~~\textit{A}_{\textit{pitch}} = \pm 10\,^{\circ}$

Case parameters

- Farfield at 20+ chords
- DG1 time scheme
- The order *p* is kept between 0 and 5

• *f*_{growth} = 30%

•
$$f_{coarsen} = 5\%$$

Output: Lift integrated over final 5% of simulation time.

Adapted spatial meshes

Orders (0 to 3) plotted on entropy isosurfaces for two snapshots of the flow.

Output convergence versus DOF

K.J. Fidkowski (UM)

Output convergence versus CPU time

K.J. Fidkowski (UM)

Introduction

- 2 Output-Based Methods
- 3 A Steady State Result
- 4 Unsteady Extension
- 5 A Neat Alternative

Summary

A "free" adjoint

- An adjoint implementation is not trivial
- But we often do have a "free" adjoint: the entropy variables
 - For U = entropy function, $\mathbf{v} = U_{\mathbf{u}}$ is the entropy variable vector
 - The state v satisfies an adjoint equation!
 - The corresponding output is

• The adjoint-weighted residual becomes the entropy residual

Adapting on the entropy residual

h-Refinement on a rectangular wing in subsonic inviscid flow:

Trailing vortex in a mesh adapted on the entropy adjoint

Convergence of drag compared to output adjoints

But we lack an error estimate for an engineering output ... or do we?

We can predict drag error!

• Under a few assumptions (e.g. 2D), the approximate Oswatitsch formula gives drag:

$$D_{\rm osw} \approx \frac{u_{\infty}}{\gamma R M_{\infty}^2} \left| \int_{\mathcal{S}_{\infty}} \Delta s \, \rho \, \vec{V} \cdot \vec{n} \, dS \right|$$

- Thermodynamically equivalent to near and far-field measures
- Numerically, values will differ since flow is approximated
- Example: turbulent flow over an RAE airfoil ($Re = 6 \times 10^6$)

Initial mesh: 1610 elements

Mach number contours

K.J. Fidkowski (UM)

JRV Symposium 2013

June 22-23, 2013 30 / 34

Adapting on the Oswatitsch formula

K.J. Fidkowski (UM)

JRV Symposium 2013

Introduction

- 2 Output-Based Methods
- 3 A Steady State Result
- 4 Unsteady Extension
- 5 A Neat Alternative

Summary

- Output-based methods can improve efficiency and robustness of CFD in aerospace applications
- Adaptation provides tailored meshes for simulations of practical interest
- Error estimation and adaptation extend to unsteady systems
- Our methods allow us to refine space and time meshes separately by gleaning anisotropy from the error indicator
- For sufficiently-fine error tolerances, output-based adaptation saves CPU time
- "Almost" output-based methods, e.g. entropy adjoint, offer cheaper alternatives for a variety of situations

Acknowledgments

- Students and post-docs
 - Steve Kast
 - Marco Ceze
- Funding: Air Force, Department of Defense, Department of Energy, University of Michigan

— Thank you —