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Early CFD (as recollected by O. Pironneau)

1972 Unstructured meshes introduced at Dassault by Pierre Perrier

1973 First FEM code runs in 3D (J. Periaux et al)

1976 Transonic flow as an abstract least square and use conjugate gradient

1977 Meeting with Antony Jameson at the von Karman Institute

1978 Full potential flow computation around a flacon jet

1983 Van Leer & Phil Roe visits INRIA-Sophia and work with Alain Dervieux

1987 Hermes Program

M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P. Perrier, On the numerical solution of nonlinear

problems in fluid dynamics by least squares and FEM. Comput. Methods Appl. Mech. Engrg., Vol. 17/18(part 3),

pp. 619-657, 1979
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Automated Unstructured Tetrahedra Mesh Generation Methods:

Octree-like [Yerry and Shephard, IJNME 1984], ...

Advancing front [Lohner and Parikh, IJNMF 1988], [Peraire et al., IJNME

1988], [Jin and Tanner, IJNME 1991], ...

Delaunay [Hermeline, RAIRO AN 1982], [Baker, AIAA 1987], [George, Hecht

and Saltel, ICSE 1990], [Weatherhill, CMA 1992], ...

Minimal volume [Coupez, REEF 2000], ...

Coupled Delaunay-frontal [Marcum and Weatherhill, AIAA 1995], ...

At the end of 90’s

3D powerful and mature mesh generation methods become available

Address ever increasing geometrical complexity

Address ever increasing physical complexity

Address convergence studies in 3D
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Address ever increasing geometrical complexity
=⇒ take into account geometric features inside the mesh

1990 2000
hsurf = 10 cm hsurf = 1 mm and hBL = 1 µm

Address ever increasing physical complexity

Address convergence studies in 3D
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Address ever increasing geometrical complexity

Address ever increasing physical complexity
=⇒ take into account flow characteristics inside the mesh

Address convergence studies in 3D
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Address ever increasing geometrical complexity

Address ever increasing physical complexity

Address convergence studies in 3D

h ; N and dt ∼ h =⇒ CPU× 1

h

2
; 8N and dt ∼ h ;

dt

2
=⇒ CPU× 16

h

4
; 64N and dt ∼ h ;

dt

4
=⇒ CPU× 256
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Address ever increasing geometrical complexity

Address ever increasing physical complexity

Address convergence studies in 3D

Require tailored meshes to address and certify numerical results

↓
Modify discretization of Ω to control solution accuracy
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Structured boundary layer mesh generation:

Open advancing-layer method
[Lohner and Parikh, IJNMF1988], [Kallinderis and Ward, AIAA 1993], [Pirzadeh,

AIAA 1994], [Marcum, AIAA 1995], [Sharov and Nakahashi, AIAAJ 1998],

[Garimella and Shephard, IJNMF 2000], ...

Closed advancing-layer method by pushing
[Hassan et al, IJNME 1996], [Ito and Nakahashin, IMR 2002], [Bottasso and

Detomi, 2002], ...

Closed advancing layer method with iterative point insertion
[Marcum, AIAA 1995], [Loseille and Lohner, AIAA 2011], ...
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Anisotropic Mesh Adaptation:

Error measures with directions in 2D. Use local mapping
[Peraire et al., JCP 1987], [Lohner, CMAME 1989], [Selmin and Formaggia,

IJNME 1992], ...

In 1994, O. Zienkiewicz and J. Wu. gave a status.
Even if they had great success with such approach, they said:

”Unfortunately the amount of elongation which can be used in a typical mesh
generation by such mapping is small...”
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Scientific Context

Numerical Simulation Pipeline

CAD −→ MESH −→ SOLVER −→ VISU / ANALYSIS

1 no mesh = no simulation

2 a ”bad” mesh implies a wrong or inaccurate solution

Anisotropic Mesh Adaptation:

Error measures with directions in 2D. Use local mapping
[Peraire et al., JCP 1987], [Lohner, CMAME 1989], [Selmin and Formaggia,

IJNME 1992], ...

=⇒ But, mesh anisotropy was small

Stretched elements with a Delaunay approach in 2D [Mavriplis, JCP 1990]

Introduce the use of metrics in a 2D Delaunay mesh generator
[George, Hecht and Vallet, AES 1991]

What’s a metric and metric-based mesh generation ?
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Generation of Adapted Meshes

1 How to communicate with an automatic mesh generator ?

Main idea: change mesh generator distance and volume computation
[George, Hecht and Vallet., Adv. Eng. Software 1991]

Fundamental concept: The notion of metric and Riemannian metric space

Computing geometric quantities in Riemannian metric space M = (M(x))x∈Ω

m
Computing geometric quantities on S
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Generation of Adapted Meshes

1 How to communicate with an automatic mesh generator ?

Main idea: change mesh generator distance and volume computation
[George, Hecht and Vallet., Adv. Eng. Software 1991]

Fundamental concept: Generate a unit mesh w.r.t (M(x))x∈Ω

∀e, `M(e) ≈ 1 and ∀K , |K |M ≈
{√

3/4 in 2D√
2/12 in 3D

Inputs (H0,Mi )i∈H Output H
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Generation of Adapted Meshes

1 How to communicate with an automatic mesh generator ?

2 How to measure or quantify mesh size and anisotropy ?

Use appropriate error estimates

Anisotropic Mesh Adaptation State-of-the-art:

The fruitful idea of metric was widely exploited in 2D:

[Fortin et al., ECCOMAS 1996], [Castro-Diaz et al, IJNMF 1997], [Dompierre et al.,

AIAA 1997], [Buscaglia and Dari, IJNME 1997], [Formaggia and Perotto, NM 2001],

[Picasso, SIAMJSC 2003], ...

At the end of 90’s

2D anisotropic mesh adaptation proves to be efficient in CFD
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Generation of Adapted Meshes

1 How to communicate with an automatic mesh generator ?

2 How to measure or quantify mesh size and anisotropy ?

Use appropriate error estimates

Anisotropic Mesh Adaptation State-of-the-art:

The fruitful idea of metric was widely exploited in 2D:

[Fortin et al., ECCOMAS 1996], [Castro-Diaz et al, IJNMF 1997], [Dompierre et al.,

AIAA 1997], [Buscaglia and Dari, IJNME 1997], [Formaggia and Perotto, NM 2001],

[Picasso, SIAMJSC 2003], ...

In 1997, T. Baker wrote:

”Mesh generation in three dimensions is difficult enough task in the absence of mesh

adaptation and it is only recently that satisfactory three-dimensionnal mesh generators

have become available. [...] . Mesh alteration in three dimensions is therefore a rather

perilous procedure that should be undertaken with care”
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Anisotropic Mesh Adaptation for Steady Problems

Interpolation error based mesh adaptation

Deriving the best mesh to observe a given solution field W

Generic: does not depend on the PDE and numerical scheme

Anisotropy is easily deduced

[Tam et al., CMAME 2000], [Pain et al., CMAME 2001], [Formaggia and Perotto, NM 2001], [Picasso, SIAMJSC

2003], [Formaggia et al., ANM 2004], [Bottasso, IJNME 2004], [Li et al., CMAME 2005], [Frey and Alauzet,

CMAME 2005], [Gruau and Coupez, CMAME 2005], [Huang, JCP 2005], [Compere et al., 2007], . . .

Issues with feature-based anisotropic mesh adaptation for CFD

Robustness of 3D anisotropic mesher

Loss of anisotropy for non smooth solutions: hmin size in singularities

Cannot capture small scales of the flow

Order one convergence for non-smooth solutions with 2nd-order
scheme
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Anisotropic Mesh Adaptation for Steady Problems

Mesh adaptation is a non-linear problem

=⇒ an iterative process is required to converge the couple
mesh-solution

(Hi,Si)

(Hi,Mi)

(Hi,S0
i )

(H0,S0
0 )

(Hi+1,Si,Hi)

Si

Mi

Hi+1

S0
i+1

Compute Solution

Compute Metric

Generate Mesh

Interpolate Solution
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Anisotropic Mesh Adaptation for Steady Problems

Issue

no mesh =⇒ no computation

↓
Remedy

Local adaptive remesher =⇒ always valid

EPIC [Michal and Krakos, AIAA 2012]

Feflo.a [Loseille and Lohner, AIAA 2010]

Forge3d [Coupez, REEF 2000]

Fun3d [Jones et al., AIAA 2006]

MAdLib [Compere et al., IJNME 2010]

MeshAdap [Li et al., IJNME 2005]

Mmg3d [Dobrzynski and Frey, IMR 2008]

Mom3d [Tam et al., CMAME 2000]

Tango [Bottasso, IJNME 2004]

Libadaptivity [Pain et al., CMAME 2001]
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Continuous Mesh Theory

We proposed a continuous mesh framework to theorize mesh adaptation
[Alauzet et al., IMR 2006], [Alauzet, IJNMF 2008], [Loseille and Alauzet, SINUM 2010]

Discrete Continuous

Element K Metric tensor M

Volume |K | Volume α (detM)−
1
2

Mesh H of Ωh Riemannian metric space M = (M(x))x∈Ω

Number of vertices Nv Complexity C(M) =

∫
Ω

√
det(M(x)) dx

Linear interpolate Πhu Continuous linear interpolate πMu

Local interpolation error duality

For all K unit for M and for all u quadratic positive form (u(x) = 1
2
txHu x):

‖u − Πhu‖L1(K) =

√
2

240
det(M−

1
2 )︸ ︷︷ ︸

mapping

trace(M−
1
2 HuM−

1
2 )︸ ︷︷ ︸

anisotropic term

= ‖u − πMu‖L1(K)

Working in this framework enables us to use powerful mathematical tool
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Continuous Mesh Theory

Application: Minimizing the Interpolation Error in Lp-norm

An ill-posed discrete problem

Find Hopt having N vertices such that

Hopt(u) = Arg minH ‖u − Πhu‖H,Lp(Ωh)

A well-posed continuous problem

Find MLp = (MLp (x))x∈Ω of complexity N such that

ELp (MLp ) = min
M

ELp (M) = min
M
‖u − πMu‖Lp(Ω)

= min
M

(∫
Ω

|u(x)− πMu(x)|p dx

) 1
p

=⇒ Solved by a calculus of variations
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Continuous Mesh Theory

Optimal metric [Alauzet et al., IMR 2006], [Loseille and Alauzet, SINUM 2010]

MLp (x) = N
2
3

(∫
Ω

(det |Hu|)
p

2p+3

)− 2
3

(det |Hu(x)|)
−1

2p+3 |Hu(x)|
1 2 3

MLp is unique

MLp has for optimal directions and ratios the Hessian ones

MLp (u) provides an optimal explicit bound of the interpolation error
in Lp norm:

‖u − πMLp
u‖Lp(Ω) = 3N−

2
3

(∫
Ω

(det |Hu|)
p

2p+3

) 2p+3
3p

Global second order of convergence for a sequence of embedded
continuous meshes (MN

Lp (u))N=1...∞
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Continuous Mesh Theory

Multi-scale function Asymptotic 2nd order cv

L1-adaptation L2-adaptation L4-adaptation
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Feature-based Anisotropic Mesh Adaptation

We propose a multiscale anisotropic mesh adaptation
[Loseille et al., AIAA 2007], [Alauzet, IJNMF 2008], [Loseille and Alauzet, IMR 2009]

Optimal control of the interpolation error in Lp norm : ‖W − ΠhW ‖Lp(Ωh)

Highly anisotropic meshes

Capture all scales of the flow

Global 2nd of mesh convergence for the mesh adaptation process

Early capturing property: asymptotic convergence is reached faster
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Goal-Oriented Anisotropic Mesh Adaptation

Functional approximation error based mesh adaptation

Deriving the best mesh to observe a given functional:

J(W ) = (g ,W ) with ∇ · F(W ) = 0

Depends explicitely on the PDE and numerical scheme

The goal is to derive the best solution of a PDE

[Venditti and Darmofal, JCP 2003], [Jones et al., AIAA 2006], [Power et al., CMA 2006], [Wintzer et al., AIAA

2008], [Leicht and Hartmann, JCP 2010], ...

Issues with goal-oriented anisotropic mesh adaptation

Anisotropy is hard to prescribe

Error estimate are difficult to obtain and are not generic:

Explicit use of the PDE
Strong dependency on the numerical scheme

There is an over cost as it requires to compute the adjoint state
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Goal-Oriented Anisotropic Mesh Adaptation

We propose a goal-oriented anisotropic mesh adaptation
[Loseille et al., AIAA 2010], [Loseille et al., JCP 2010]

Optimal control of the approximation error in L1 norm

‖J(W )− J(Wh)‖L1(Ωh) ≈ ‖∇W
∗ · (F(W )− ΠhF(W )) ‖L1(Ωh)

Highly anisotropic meshes and capture all scales of the flow

Global 2nd of mesh convergence for the output functional

76K vertices

CPU time 23m02s

Mean ratio 47

Mean quotient 1410
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Wing Tip Vortices Accurate Computation

Computation of wing tip vortices of a Dassault Falcon Jet:

Adjoint functional :

J(W ) =

∫
γ

‖∇ ∧ (u− u∞)‖2
2 dγ

Adaptation variable : Mach number
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Comparison between adjoint (top) and feature (bottom) based adapted

meshes
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Comparison between adjoint (top) and feature (bottom) based wing tip

vortices

100 m 200 m 400 m
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Vorticity iso-surfaces :
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Sensitivity of Functionals of Euler Equations with Shocks

Let time-dependent function

J =
1

2

∫
S×(0,T )

|B ·W − b|2 with ∂tW +∇ · F (W ) = 0

The extended calculus of variation on J gives [Alauzet and Pironneau, IJNMF 2012]

δJ =

∫
S×(0,T )

(B ·W − b)B · δW with W =
1

2
(W+ + W−)

Turning to δW in state equation:

∂tδW +∇ · (F ′(W )δW ) = 0 and δW (0) = 0

The adjoint equation:

∂tW
∗+F ′(W )∇W ∗ = 0 , W ∗(T ) = 0 ⇒

∫
∂Ω×(0,T )

W ∗·(n·(F ′(W )δW )) = 0

Thus, this gives a method to evaluate continuous W ∗ and δJ

W ∗·(n·(F ′(W ))|Ω = (BW−b)BT ⇒ δJ = −
∫
∂Ω\S×(0,T )

W ∗ · (n · (F ′(W )δW ))
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Sensitivity of Functionals of Euler Equations with Shocks

Validation on a NACA0012 airfoil that for non-smooth flow discrete
adjoint converge to continuous one

Adapted mesh Density ρ Adjoint density ρ∗

The theory on the continuous systems tells that the adjoint is continuous
across the shocks but maybe discontinuous elsewhere, including where W
has slip-discontinuities
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Sensitivity of Functionals of Euler Equations with Shocks

Validation on a NACA0012 airfoil that for non-smooth flow discrete
adjoint converge to continuous one

Comparison between (ρv)∗ and (ρhvh)∗ on the observation surface S

Conclusion: discrete and continuous calculus of variation agree
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Anisotropic Mesh Adaptation for Unsteady Problems

Time-accurate anisotropic mesh adaptation

Deriving the best space-time mesh to observe a given functional

J(W (x, t)) with ∂tW (x, t) +∇ · F(W (x, t)) = 0

[Lohner and Baum, IJNMF 1992], [De Sampaio et al., CMAME 1993], [Speares and Berzins, IJNMF 1997], [Pain

et al., CMAME 2001], [Remacle et al., IJNME 2005], ...

Issues with time-accurate anisotropic mesh adaptation

Solution evolves in time

Temporal error occurs
The mesh is always lagging behind the solution

Steady case is applied frequently in time: each nth iterations

A lot of solution interpolation =⇒ spoil solution accuracy
A lot of remeshing =⇒ CPU cost increase
Require a flow solver with dynamic data

4D space-time anisotropic mesh adaptation
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Anisotropic Mesh Adaptation for Unsteady Problems

Time-accurate anisotropic mesh adaptation

Deriving the best space-time mesh to observe a given functional

J(W (x, t)) with ∂tW (x, t) +∇ · F(W (x, t)) = 0

[Lohner and Baum, IJNMF 1992], [De Sampaio et al., CMAME 1993], [Speares and Berzins, IJNMF 1997], [Pain

et al., CMAME 2001], [Remacle et al., IJNME 2005], ...

We propose a fixed-point anisotropic mesh adaptation strategy based on
[Alauzet et al., IMR 2011], [Belme et al., JCP 2012]

Optimal control of the space-time approximation error on J in L1 norm

‖J(W )−J(Wh)‖L1([0,T ]×Ωh) ≈ ‖W
∗
t (W − ΠhW )+∇W ∗·(F(W )− ΠhF(W )) ‖L1([0,T ]×Ωh)

Global fixed-point mesh adaptation algorithm

Conservative solution transfer

14 Anisotropic Mesh Adaptation for CFD



G-O EE for Unsteady Compressible Euler Equations

Solve this problem in the continuous mesh framework

From [Loseille and Alauzet, SINUM 2010], after discarding BT:

E(M) =

∫ T

0

∫
Ω

|W ∗t | |W − πMW | dΩ dt +

∫ T

0

∫
Ω

|∇W ∗| . |F(W )− πMF(W )| dΩ dt

=

∫ T

0

∫
Ω

trace
(
M−

1
2 HM−

1
2

)
dΩ dt

with H =
∑5

i=1

(
|W ∗i,t | |H(Wi )| +

∑3
j=1 |∇xjW

∗
i | |H(Fxj (Wi ))|)

)
Mesh Optimization Problem

Find Mgo = (Mgo(x))x∈Ω of complexity Nst such that

Ego(Mgo) = min
M

∫ T

0

∫
Ω

trace
(
M− 1

2 HM− 1
2

)
dΩ dt

under constraint Cst(M) = Nst =

∫ T

0

τ(t)−1

(∫
Ω

dM(x, t)dx

)
dt
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G-O EE for Unsteady Compressible Euler Equations

Solve this problem in the continuous mesh framework

Two steps resolution:

1. Spatial minimization for fixed t

2. Temporal minimization

Spatial minimization for fixed t

Mgo(x, t) = N(t)
2
3 K(t)−

2
3 (det H(x, t))−

1
5 H(x, t)

Temporal minimization for specified τ [Belme et al., JCP 2012]

Mgo(x, t) = N
2
3
st

(∫ T

0

τ(t)−
2
5K(t)dt

)− 2
3

τ(t)
2
5 (det H(x, t))−

1
5 H(x, t)

with K(t) =

(∫
Ω

(det H(x̄, t))
1
5 dx̄

)
Remark: A temporal minimization for time sub-intervals has also been
achieved
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Discrete Unsteady Adjoint Resolution

Forward in time state equation:

W n
h = W n−1

h + δtn Φh(W n−1
h )

Consider a time-dependent functional:

J(W ) =

∫ T

0

∫
Γ

jΓ(W (x, t))dxdt

Backward in time adjoint equation:

W ∗,n−1
h = W ∗,nh + δtn

∂Jn−1
h

∂W n−1
h

(W n−1
h ) − δtn(W ∗,nh )T

∂Φ

∂W n−1
h

(W n−1
h )

Solve adjoint state backward: Ψ∗(W, W ∗) = 0

Solve state foreward: Ψ(W ) = 0
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Discrete Unsteady Adjoint Resolution

Problematics

Computing W ∗,n−1 at time tn−1 requires the knowledge of state W n−1

and adjoint state W ∗,n

=⇒ The knowledge of all states {W n}n=1,N is needed
=⇒ Large memory storage effort in 3D
(106 vertices & 103 iterations request 37.25 Gb)

Reduce the memory storage effort by:

out-of-core storage of checkpoints
=⇒ recomputing effort of the state W

state interpolation between two memory storage
=⇒ slight loss of accuracy

Solve state once to get checkpoints Ψ(W ) = 0

Ψ∗(W, W ∗) = 0

Ψ(W ) = 0

Solve state and backward adjoint state from checkpoints16 Anisotropic Mesh Adaptation for CFD



A Movie to Illustrate the Approach
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High-Fidelity Blast Computation

Application: High-Resolution Blast Wave Prediction

Goal-oriented time-accurate aniso. mesh adaptation on pressure impulse

From 40K to 1million vertices

From 200K to 6 million tets

The observation Γ is this building

Mean aniso ratio ≈ 100

Mean aniso quotient ≈ 3 000

The observation Γ are these 2 buildings
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High-Fidelity Blast Computation

Application: High-Resolution Blast Wave Prediction

Goal-oriented time-accurate aniso. mesh adaptation on pressure impulse

From 40K to 1million vertices

From 200K to 6 million tets

Mean aniso ratio ≈ 100

Mean aniso quotient ≈ 3 000
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Conclusion

Last Decades:

1990’s Automated 3D unstructured mesh generation
=⇒ inviscid computation on complex geometries

2000’s Automated 3D BL mesh generation
=⇒ viscous computation on complex geometries

2010’s Automated highly anisotropic mesh adaptation
=⇒ High-fidelity inviscid computation on complex geometries

Current and Next Decades:

Highly anisotropic mesh adaptation for viscous flows
=⇒ Coupling structured and unstructured mesh adaptation

Highly anisotropic mesh adaptation for very-high order solvers
=⇒ Curved meshes, very-high order error estimates

Highly anisotropic mesh adaptation for moving geometries problem
=⇒ Adaptive moving mesh methods, dynamic error estimates
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Thank you for your attention
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