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CFD Past, Present and Future
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History of CFD in Van Leer’s view
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Emergence of CFD

In 1960 the underlying principles of fluid dynamics and the formulation of the governing
equations (potential flow, Euler, RANS) were well established.

The new element was the emergence of powerful enough computers to make numerical
solution possible – to carry this out required new algorithms.

The emergence of CFD in the 1965 – 2005 period depended on a combination of advances
in computer power and algorithms.

Some significant developments in the 60s:

Birth of commercial jet transport – B707 & DC-8

Intense interest in transonic drag rise phenomena

Lack of analytical treatment of transonic aerodynamics

Birth of supercomputers – CDC6600

DC 8 Transonic Flow CDC 6600
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Multi-Disciplinary Nature of CFD
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Hierarchy of Governing Equations
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Reflections on the JST Scheme
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Origins of the JST Scheme

The original JST scheme was developed in 1980-81 starting from a code that had
been developed at Dornier by Rizzi and Schmidt to solve the Euler equations

This code implemented the MacCormack scheme in finite volume form with additional
artificial dissipation to limit oscillations near shocks. It could not converge to a steady
state and it appeared from the Stockholm Workshop in 1979 that none of the existing
Euler solvers could reach a steady state.

The primary objective of the JST scheme was to solve the steady state problem. This
objective was achieved through the use of blended low and high order artificial
dissipation and modified Runge-Kutta time stepping with variable local time steps at a
fixed CFL number.

Note: The author had been experimenting with Euler solvers since 1976 and had achieved steady state

solutions for some simple geometries with the Z scheme. The code EUL1 still exists.
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Original JST Scheme (1980)

The Dornier code (Rizzi-Schmidt) solved for w vol with MacCormack scheme + added
diffusion

∼ δxεδxw vol, ε ∼
˛̨̨̨
p+1 − 2p + p−1

p+1 + 2p + p−1

˛̨̨̨
It did not preserve uniform flow on a curvilinear grid.

In order to fix this, move vol outside δx.

Then
wn+1 = wn − ∆t

vol
(Q−D), Q = convective terms

For dimensional consistency,

D ∼ δx
vol

∆t∗
δxw

where ∆t∗ is nominal time step

∆t∗ =
vol

(Q+ cS)ı + (Q+ cS)
, Q = ~q · ~S

Higher order background diffusion was needed for convergence to a steady state.
This had to be switched off in the vicinity of a shock to prevent oscillations.
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Design Principles for the JST Scheme

Conservation: integral form
=⇒finite volume scheme

Exact for uniform flow on a curvilinear grid
=⇒constrains discretization, form of diffusion

Steady state independent of ∆t
Eliminates Lax-Wendroff, MacCormack schemes

Concurrent computation
Eliminates LU-SGS schemes =⇒ RK schemes

Non-oscillatory shock capturing
=⇒switched artificial diffusion: upwind biasing

At least second order accurate
=⇒first order diffusion coefficient ∼ ∆xp

Constant total enthalpy in steady flow
Eliminates Steger-Warming and other splittings

=⇒diffusion for energy equation ∼ ∂

∂x
ε
∂

∂x
ρH

Simplicity
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Mathematical Foundations for the JST Scheme: LED Scheme

A semi-discrete scheme is LOCAL EXTREMUM DIMINISHING (LED) if local maxima
cannot increase and local minima cannot decrease.
A scheme in the form

dvı
dt

=
X
6=ı

aı(v − vı)

is LED if

aı ≥ 0, aı = 0 if ı and  are not neighbors.
(compact stencil)

In one dimension an LED scheme is total variation diminishing (TVD). With the right
switching strategy the JST scheme is LED for scalar conservation laws.
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JST Results
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JST Results for NACA 0012

VIS2=1 VIS2=0
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The Quest for a Fast Solver
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The Quest for a Fast Solver

Major aspects of aircraft design such as wing design require solutions of steady state
problems.

A fast steady state solver may also be an important ingredient of an implicit scheme
for unsteady flow.
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Steady state Solutions and Implicit Schemes

Consider the semi-discrete system

dw

dt
+R(w) = 0

where R(w) is the space residual which results from spatial discretization of the flow
equations.

Any implicit scheme, for example the backward Euler scheme

wn+1 = wn −∆tR
`
wn+1´

requires the solution of a very large number of coupled nonlinear equations which
have the same complexity as the steady state problem

R(w) = 0.

Accordingly a fast steady state solver is an essential building block for an implicit
scheme.
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Paradox
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RANS Example

In current practice a steady flow over a wing is typically simulated with the
Reynolds Averaged Navier-Stokes (RANS) equations on a grid with 10 million
cells.

Using a two-equation turbulence model, this requires the solution of a system of
nonlinear equations with N = 70 million unknowns.

Even a linear problem of this size would require iterative solution, considering that
direct inversion by Gaussian elimination would require order (N3) operations.

By taking advantage of sparsity this might be reduced to order (N2) with a
sophisticated direct solver, but a Newton iteration requiring the solution of a
sequence of linear problems of this size would still be very expensive.

No lower bound for the cost solving steady state problems has been established,
but the author believes we should not be satisfied until they can be solved with no
more than 100 iterations, each with a cost of order N operations.
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Multigrid Time Stepping Scheme

Towards this goal the author has focused on multigrid time stepping in a full
approximation scheme (Jameson 1983)

For the Euler equations this approach has proved successful using
1 Additive Runge-Kutta schemes designed to act as low pass filters (Jameson

1983, 1985)
2 Variations of LU-SGS schemes (Yoon and Jameson 1988, Rieger and Jameson

1988, Jameson and Caughey 2001)

Euler solutions with engineering accuracy can be obtained in about 25 steps with RK
schemes, and as few as 5 steps with SGS schemes.
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Additive Runge Kutta schemes with enhanced stability region

To achieve large stability intervals along both axes it pays to treat the convective and dissipative
terms in a distinct fashion (Jameson 1985, 1986, Martinelli 1987).

Accordingly the residual is split as
R(w) = Q(w) + D(w),

where Q(w) is the convective part and D(w) the dissipative part. Denote the time level n∆t by a
superscript n. Then the multistage time stepping scheme is formulated as

w
(0)

= w
n

w
(1)

= w
0 − α1∆t

“
Q

(0)
+ D

(0)
”

w
(2)

= w
0 − α2∆t

“
Q

(1)
+ D

(1)
”

. . .

w
(k)

= w
0 − αk∆t

“
Q

(k−1)
+ D

(k−1)
”

. . .

w
n+1

= w
(m)

,

where the superscript k denotes the k-th stage, αm = 1, and

Q
(0)

= Q
“
w

0
”
, D

(0)
= β1D

“
w

0
”

. . .

Q
(k)

= Q
“
w

(k)
”

D
(k)

= βk+1D
“
w

(k)
”

+ (1− βk+1)D
(k−1)

.
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Additive Runge Kutta schemes with enhanced stability region

The coefficients αk are chosen to maximize the stability interval along the imaginary axis,
and the coefficients βk are chosen to increase the stability interval along the negative real
axis.
These schemes do not fall within the standard framework of Runge-Kutta schemes, and
they have much larger stability regions.
Two particularly effective schemes are:

4-2 scheme

α1 = 1
3

β1 = 1.00

α2 = 4
15

β2 = 0.50

α3 = 5
9

β3 = 0.00
α4 = 1 β4 = 0.00

(1)

5-3 scheme
α1 = 1

4
β1 = 1.00

α2 = 1
6

β2 = 0.00

α3 = 3
8

β3 = 0.56

α4 = 1
2

β4 = 0.00
α5 = 1 β5 = 0.44

(2)

The figures on the next slide display the stability regions for the standard fourth order RK4
scheme and the 4-2 and 5-3 schemes. The expansion of the stability region is apparent.
The modified schemes have proved to be particularly effective in conjunction with multigrid.

Antony Jameson Stanford University 24 / 74



Introduction JST Scheme Fast Solver Moving Meshes Aerodynamic Design Future Directions Conclusions Acknowledgments Appendix

Additive Runge Kutta schemes with enhanced stability region
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RK-SGS Scheme

RK multigrid schemes are typically augmented by residual averaging (Jameson and
Baker 1983) where at each stage the correction ∆w is smoothed implicitly.

In 1-D
−ε∆wi+1 + (1 + 2ε)∆wi − ε∆wi−1 = ∆wi

and ∆w is used for the stage update.

Rossow (2006) proposed substituting LU-SGS preconditioning sweeps to modify the
correction. This concept was further developed by Rossow, Swanson and Turkel
(2007). They presented results obtained with 3 and 5 stage RK schemes using 3
LU-SGS sweeps at each stage.

Accordingly the cost of each time step is much greater than that of a standard RK
scheme.
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RK-SGS Scheme

During the last year the present author has systematically investigated RK-SGS
schemes using an alternate formulation of the LU-SGS preconditioner while
exchanging results with Swanson. Two schemes have emerged as best.

1 2-Stage Additive RK-SGS Scheme

α1 = 0.24 β1 = 1.00
α2 = 1.0 β2 = 2

3

(3)

2 3-Stage Additive RK-SGS Scheme

α1 = 0.15 β1 = 1.00
α2 = 0.4 β2 = 0.5
α3 = 1.0 β3 = 0.5

(4)

Both schemes have proved robust with a single LU-SGS sweep at each stage,
provided that the absolute eigenvalues used in the preconditioner are appropriately
bounded away from zero. Hence the computational cost of each time step is quite low.
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Results of RK-SGS Scheme Combined with JST Scheme

ONERA M6 Wing
M = 0.84, α = 3.06, Re = 6× 106

5 Digit accuracy of CL and CD in 20 steps (Convergence Rate = 0.56)

15 Orders of magnitude reduction of residuals to machine zero in 130 steps (Convergence Rate = 0.77)
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Results of RK-SGS Scheme Combined with JST Scheme

ONERA M6 Wing
M = 8.0, α = 10.0, Re = 6× 106

Solution in 150 steps (Convergence Rate = 0.92)

Needs extra dissipation during the first 80 steps to avoid negative pressure near the wing tip.
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Upwinding with Moving Meshes
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Upwinding with Moving Meshes

With mesh velocity s
∂w

∂t
+

∂

∂x
(f(w)− sw) = 0

Scheme (1)
Upwind based on sign of eigenvalues based on relative velocity

u− s

u− s+ c

u− s− c

Scheme (2)
Upwinding of flux f(w) with absolute eigenvalues

u

u+ c

u− c
separate upwinding of mesh term sw based on sign of s
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Shock Tube Problem
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Aerodynamic Design
&

Shape Optimization
via

Control Theory
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Aerodynamic Design Process

The Aerodynamic Design Process
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Aerodynamic Design Based on Control Theory

Regard the wing as a device to generate lift (with minimum drag) by controlling
the flow

Apply theory of optimal control of systems governed by PDEs (Lions) with
boundary control (the wing shape)

Merge control theory and CFD

Find the Frechet derivative (infinite dimensional gradient) of a cost function
(performance measure) with respect to the shape by solving the adjoint equation
in addition to the flow equation

Modify the shape in the sense defined by the smoothed gradient

Repeat until the performance value approaches an optimum
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Aerodynamic Shape Optimization: Gradient Calculation

For the class of aerodynamic optimization problems under consideration, the design
space is essentially infinitely dimensional. Suppose that the performance of a system
design can be measured by a cost function I which depends on a function F(x) that
describes the shape,where under a variation of the design δF(x), the variation of the
cost is δI. Now suppose that δI can be expressed to first order as

δI =

Z
G(x)δF(x)dx

where G(x) is the gradient. Then by setting

δF(x) = −λG(x)

one obtains an improvement

δI = −λ
Z
G2(x)dx

unless G(x) = 0. Thus the vanishing of the gradient is a necessary condition for a
local minimum.
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Aerodynamic Shape Optimization: Gradient Calculation

Computing the gradient of a cost function for a complex system can be a numerically
intensive task, especially if the number of design parameters is large and the cost
function is an expensive evaluation. The simplest approach to optimization is to define
the geometry through a set of design parameters, which may, for example, be the
weights αi applied to a set of shape functions Bi(x) so that the shape is represented
as

F(x) =
X

αiBi(x).

Then a cost function I is selected which might be the drag coefficient or the lift to drag
ratio; I is regarded as a function of the parameters αi. The sensitivities ∂I

∂αi
may now

be estimated by making a small variation δαi in each design parameter in turn and
recalculating the flow to obtain the change in I. Then

∂I

∂αi
≈ I(αi + δαi)− I(αi)

δαi
.

Antony Jameson Stanford University 37 / 74



Introduction JST Scheme Fast Solver Moving Meshes Aerodynamic Design Future Directions Conclusions Acknowledgments Appendix

Symbolic Development of the Adjoint Method

Let I be the cost (or objective) function

I = I(w,F)

where

w = flow field variables

F = grid variables

The first variation of the cost function is

δI =
∂I

∂w

T

δw +
∂I

∂F

T

δF

The flow field equation and its first variation are

R(w,F) = 0

δR = 0 =

»
∂R

∂w

–
δw +

»
∂R

∂F

–
δF
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Symbolic Development of the Adjoint Method (cont.)

Introducing a Lagrange Multiplier, ψ, and using the flow field equation as a
constraint

δI =
∂I

∂w

T

δw +
∂I

∂F

T

δF − ψT
»

∂R

∂w

–
δw +

»
∂R

∂F

–
δF
ff

=


∂I

∂w

T

− ψT
»
∂R

∂w

–ff
δw +


∂I

∂F

T

− ψT
»
∂R

∂F

–ff
δF

By choosing ψ such that it satisfies the adjoint equation»
∂R

∂w

–T
ψ =

∂I

∂w
,

we have

δI =


∂I

∂F

T

− ψT
»
∂R

∂F

–ff
δF

This reduces the gradient calculation for an arbitrarily large number of design
variables at a single design point to
=⇒ One Flow Solution + One Adjoint Solution
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Gradient Smoothing
Consider a shape change f(x) =⇒ f + δf

Set δf = −λg to obtain

δI =

Z
g δf dx = −λ

Z
g
2
dx

A smoothed gradient g is defined by

g −
∂

∂x
ε
∂g

∂x
= g

and g = 0 at the end points.

Now set
δf = −λg

Then

δI = −λ
Z „

g −
∂

∂x
ε
∂g

∂x

«
gdx

= −λ
Z „

g
2

+ ε

„
∂g

∂x

«2«
gdx

Note:
1 If g = 0 then g = 0.

2 The smoothed gradient is the gradient with respect to a Sovolev inner product.

< u, v >=

Z `
uv + εu

′
v
′´
dx
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Constraints

Fixed CL.

Fixed span load distribution to present too large CL on the outboard wing which
can lower the buffet margin.

Fixed wing thickness to prevent an increase in structure weight.

- Design changes can be limited to a specific spanwise range of the wing.
- Section changes can be limited to a specific chordwise range.

Smooth curvature variations via the use of Sobolev gradient.
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Shock free airfoil design

The search for profiles which give shock free transonic flows was the subject of
intensive study in the 1965-70 period.

Morawetz’ theorem (1954) states that a shock free transonic flow is an isolated
point. Any small perturbation in Mach number, angle of attack, or shape causes a
shock to appear in the flow.

Nieuwland generated shock free profiles by developing solutions in the
hodograph plane. The most successful method was that developed by
Garabedian and his co-workers. This used complex characteristics to develop
solution in the hodograph plane, which was then mapped to the physical plane. It
was hard to find hodograph solutions which mapped to physical realizable closed
profiles. It generally took one or two months to produce an acceptable solution.

By using shape optimization to minimize the drag coefficient at a fixed lift, shock
free solutions can be found in less than one minute.
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Two dimensional studies of transonic airfoil design(cont’d)

Pressure distribution and Mach contours for the GAW airfoil

Before the redesign After the redesign
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Two dimensional studies of transonic airfoil design

Attainable shock-free solutions for various shape optimized airfoils
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C
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Viscous Korn Airfoil Design

Initial Final
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Viscous Korn Airfoil Design

Unsmoothed Smoothed
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3D Redesign of a Deswept Wing Using the New Fast Solver

Initial Final

Antony Jameson Stanford University 47 / 74



Introduction JST Scheme Fast Solver Moving Meshes Aerodynamic Design Future Directions Conclusions Acknowledgments Appendix

Future Directions
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The Current Status of CFD

Worldwide commercial and government codes are based on algorithms
developed in the 80s and 90s.

These codes can handle complex geometry but are generally limited to 2nd order
accuracy.

They cannot handle turbulence without modeling.

Unsteady simulations are very expensive, and questions over accuracy remain.
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CFD Contributions to B787
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CFD Contributions to A380
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The Future of CFD

CFD has been on a plateau for the past 15 years.

Representations of current state of the art:
Formula 1 cars
Complete aircrafts

The majority of current CFD methods are not adequate for vortex dominated and
transitional flows:

Rotorcraft
High-lift systems
Formation flying

In order to address these currently intractable problems we need to move
towards higher fidelity simulations with large eddy simulation (LES), or ultimately
direct numerical simulation (DNS).
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Large Eddy Simulation

The number of DoF for an LES of turbulent flow over an airfoil scales as Re1.8c (resp.
Re0.4c ) if the inner layer is resolved (resp. modeled)

Rapid advances in computer hardware should make LES feasible within the
foreseeable future for industrial problems at high Reynolds numbers. To realize
this goal requires

High-order algorithms for unstructured meshes (complex geometries)

Sub-Grid Scale models applicable to wall bounded flows

Massively parallel implementation
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High Order Methods

At the Stanford Aerospace Computing Laboratory we have been focusing on the flux
reconstruction mehtod first proposed by H. T. Huynh (2007), which provides a unifying

framework for a variety of methods.

Antony Jameson Stanford University 54 / 74



Introduction JST Scheme Fast Solver Moving Meshes Aerodynamic Design Future Directions Conclusions Acknowledgments Appendix

Recent Publications from the Stanford Aerospace Computing
Laboratory on High Order Methods
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3 Jameson, A. (2011). Advances in bringing high-order methods to practical applications in computational
fluid dynamics. AIAA P., vol. 2011-3226
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The Flux Reconstruction Scheme

The solution is locally represented by Lagrange polynomial of degree n− 1 on the
solution points:

uh =
nP
j=1

uj lj(x) fDh =
nP
j=1

fDj lj(x)

The flux is discontinuous and needs to be corrected in a suitable way.

∆L = f̃L − fDh (−1) ∆R = f̃R − fDh (1)
gL(−1) = 1, gL(1) = 0 gR(1) = 1, gR(−1) = 0

The continuous flux is obtained from the discontinuous counterpart by adding the
correction functions of degree n weighted by the flux corrections.

fCh =

nX
j=1

fDj lj(x) + gL(x)∆L + gR(x)∆R

The continuous flux is finally differentiated at the solution points and the solution is
advanced in time.

∂ui
∂t

+

"
nX
j=1

fDj
dlj
dx

(xi) + ∆L
dgL
dx

(xi) + ∆R
dgR
dx

(xi)

#
= 0

Huynh (2007), AIAA Paper 2007-4079; Huynh (2009), AIAA Paper 2009-403
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Energy Stability of the FR Scheme

The FR method defines a family of energy stable schemes in the norm.

‚‚‚UδD‚‚‚
p,2

=

"
NX
n=1

Z xn+1

xn

“
UδDn

”2

+
c

2
(Jn)2p

„
∂pUδDn
∂xp

«2

dx

# 1
2

The schemes have the form

∂ui
∂t

+

"
nX
j=1

fDj
dlj
dx

(xi) + ∆L
dhL
dx

(xi) + ∆R
dhR
dx

(xi)

#
= 0

where the correction functions in terms of Legendre polynomials are

hL =
(−1)p

2

»
Lp −

„
ηp(c)Lp−1 + Lp+1

1 + ηp(c)

«–

hR =
(+1)p

2

»
Lp +

„
ηp(c)Lp−1 + Lp+1

1 + ηp(c)

«–
with a single parameter c

ηp(c) =
c(2p+ 1)(app!)

2

2
Vincent, et al. (2010), J. Sci. Comput., 47(1); Vincent, et al. (2011), J. Comput. Phys., 230(22)
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A Family of Energy Stable Schemes

Nodal DG:

c = 0 ⇒ ηp = 0

gL =
(−1)p

2
[Lp − Lp−1], gR =

(+1)p

2
[Lp + Lp+1]

Spectral Difference:

c =
2p

(2p+ 1)(p+ 1)(app!)2
⇒ ηp =

p

p+ 1

gL =
(−1)p

2
(1− x)Lp, gR =

(+1)p

2
(1 + x)Lp

G2 Scheme by Huynh [2007]:

c =
2(p+ 1)

(2p+ 1)p(app!)2
⇒ ηp =

p+ 1

p

gL =
(−1)p

2

»
Lp −

(p+ 1)Lp−1 + pLp+1

2p+ 1

–
,

gR =
(+1)p

2

»
Lp +

(p+ 1)Lp−1 + pLp+1

2p+ 1

–
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Study of Flapping Wing Sections

SD, 2D, N=5 on deforming grid

Experiment
Jones, et al. (1998), AIAA J., 36(7)

NACA0012
Re = 1850,Ma = 0.2, St = 1.5,

ω = 2.46, h = 0.12c
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Flapping Wing Aerodynamics

Iso-Entropy colored by Ma
Flapping NACA 0012

Re = 2000, SD, N = 5, 4.7× 106 DoF

Iso-Entropy colored by Ma
Wing-Body

Re = 5000, SD, N = 4, 2.1× 107 DoF

Ou, et al. (2011), AIAA Paper 2011-1316; Ou and Jameson (2011), AIAA Paper 2011-3068
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Transitional Flow over SD7003 Airfoil

Iso-Entropy colored by Ma
Wing-Body

Re = 5000, SD, N = 4, 2.1× 107 DoF

Castonguay, et al. (2010), AIAA Paper 2010-4626; Radespiel, et al. (2007), AIAA J., 45(6); Ol, et al. (2005), AIAA Paper 2005-5149; Galbraith,

Visbal (2008), AIAA Paper 2008-225; Uranga, et al. (2009), AIAA Paper 2009-4131;
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Flow Over Spheres

Mach Contours + Streamlines
Flow over a spinning sphere,

Re = 300, Ma = 0.2

Iso-Entropy colored by Ma
Flow over a sphere

Re = 10000, Ma = 0.2

Ou, et al. (2011), AIAA Paper 2011-3668
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Flow Past Counter-Rotating Cylinder Pair: ReD = 150, ω = 3.1Ω

SD, 4th Order, Ma = 0.2 Experiment (Princeton)

Chan et al. (2011), J. Fluid Mech., Vol. 679, pp. 343-382
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Large Eddy Simulation of Flow Past Square Cylinder: ReD = 21400

Time integration: RK3

No. of elements: 35760 (2.3× 106DoF )

Grid dimensions: 21D× 12D× 3.2D

Reynolds: 21400

Mach: 0.3

Statistics: 16T0
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Large Eddy Simulation of Flow Past Square Cylinder: ReD = 21400
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Summary and Conclusions

Predicting the future is generally ill advised.
However, the following are the author’s opinions:

The early development of CFD in the Aerospace Industry was primarily driven by
the need to calculate steady transonic flows: this problem is quite well solved.

CFD has been on a plateau for the last 15 years with 2nd-order accurate FV
methods for the RANS equations almost universally used in both commercial and
government codes which can treat complex configurations.

These methods cannot reliably predict complex separated, unsteady and vortex
dominated flows.

Ongoing advances in both numerical algorithms and computer hardware and
software should enable an advance to LES for industrial applications within the
foreseeable future.

Research should focus on high-order methods with minimal numerical dissipation
for unstructured meshes to enable the treatment of complex configurations.

Eventually DNS may become feasible for high Reynolds number flows...

hopefully with a smaller power requirement than a wind tunnel.
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Artificial Diffusion and LED Schemes

Suppose that the scalar conservation law

∂v

∂t
+

∂

∂x
f(v) = 0

is approximated by the semi-discrete scheme

∆x
dv
dt

+ h+ 1
2
− h− 1

2
= 0 j j+1

h
j−1/2

h
j+1/2

j−1

where the numerical flux is

h+ 1
2

=
1

2
(f+1 + f)− α+ 1

2
(v+1 − v)

Define a numerical estimate of the wave speed a(v) = ∂f
∂v

as

a+ 1
2

=

8><>:
f+1−f

v+1−v
, v+1 6= v

∂f
∂v
|v , v+1 = v
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Artificial Diffusion and LED Schemes (continued)

then the numerical flux

h+ 1
2

= f +
1

2
(f+1 − f)− α+ 1

2
(v+1 − v)

= f −
„
α+ 1

2
− 1

2
a+ 1

2

«
(v+1 − v)

and

h− 1
2

= f −
1

2
(f − f−1)− α− 1

2
(v − v−1)

= f −
„
α− 1

2
+

1

2
a− 1

2

«
(v − v−1)

The semi-discrete scheme then reduces to
∆x

dv
dt

= (α+ 1
2
− 1

2
a+ 1

2
)(v+1 − v)− (α− 1

2
+ 1

2
a− 1

2
)(v − v−1)

This is LED if α+ 1
2
≥ 1

2
|a+ 1

2
| ∀.
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Jameson-Schmidt-Turkel (JST) Scheme

This scheme blends low and high order diffusion.
Suppose that the scalar conservation law

∂v

∂t
+

∂

∂x
f(v) = 0

is approximated by the semi-discrete scheme

∆x
dv
dt

+ h+ 1
2
− h− 1

2
= 0 j j+1

h
j−1/2

h
j+1/2

j−1

In the JST scheme, the numerical flux is

h+ 1
2

=
1

2
(f+1 + f)− d+ 1

2

where the diffusive flux has the form

d+ 1
2

= ε
(2)

+ 1
2
∆v+ 1

2
− ε(4)

+ 1
2
(∆v+ 3

2
− 2∆v+ 1

2
+ ∆v− 1

2
)

with
∆v+ 1

2
= v+1 − v
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JST Scheme

Let a+ 1
2

be an estimate of the wave speed ∂f
∂v

a+ 1
2

=
f+1 − f
v+1 − v

or
∂f

∂v
|v=v if v+1 = v

Theorem: The JST scheme is LED if whenever v or v+1 is an extremum

ε
(2)

+ 1
2
≥ 1

2
|a+ 1

2
|, ε

(4)

+ 1
2

= 0

Proof: At an extremum the scheme reduces to

∆x
dv
dt

=

„
ε
(2)

+ 1
2
− 1

2
a+ 1

2

«
∆v+ 1

2
−
„
ε
(2)

− 1
2

+
1

2
a− 1

2

«
∆v− 1

2

where each term in parenthesis ≥ 0.
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JST Scheme at a Maximum

The condition that ε(4)
+ 1

2
= 0 if v or v+1 is an extremum

=⇒ ε
(4)

+ 1
2

= ε
(4)

− 1
2

= 0.

(4)εj+1/2 =0=0

j+2j+1jj−1j−2

j−1/2
(4)ε

Hence the scheme reduces to a 3-point scheme and

dv
dt
≤ 0

if
ε
(2)

+ 1
2
≥ 1

2
|a+ 1

2
|, ε

(2)

− 1
2
≥ 1

2
|a− 1

2
|,

since then the coefficients multiplying (v+1 − v) and (v−1 − v) are both ≥ 0.
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Switch for JST Scheme

Define

R(u, v) =

˛̨̨̨
u− v
|u|+ |v|

˛̨̨̨q
, q ≥ 1

Set
Q+ 1

2
= R(∆v+ 3

2
,∆v− 1

2
)

ε
(2)

+ 1
2

= α+ 1
2
Q+ 1

2

ε
(4)

+ 1
2

= β+ 1
2
(1−Q+ 1

2
)

Then the scheme is LED if
α+ 1

2
≥ 1

2
|a+ 1

2
|.

If
β+ 1

2
=

1

2
α+ 1

2
,

the JST scheme reduces to the SLIP scheme.
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