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fig.2.2: Neutral stability curves Runge-Kutta schemes
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Towards the Ultimate Conservative Difference Scheme
V. A Second-Order Sequel to Godunov’s Method
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A method of second-order accuracy is described for integrating
the equations of ideal compressible flow. The method is based on
the integral conservation laws and is dissipative, so that it can be
used across shocks. The heart of the method is a one-dimensional
Lagrangean scheme that may be regarded as a second-order sequel
to Godunov’'s method. The second-order accuracy is achieved by
taking the distributions of the state quantities inside a gas slab
to be linear, rather than uniform as in Godunov’s method. The
Lagrangean results are remapped with least-squares accuracy onto
the desired Euler grid in a separate step. Several monotonicity algo-
rithms are applied to ensure positivity, monotonicity, and nonlinear
stability. Higher dimensions are covered through time splitting. Nu-
merical results for one-dimensional and two-dimensional flows are
presented, demonstrating the efficiency of the method. The paper
concludes with a summary of the results of the whole series “To-
wards the Ultimate Conservative Difference Scheme.” © 1979 Aca-
demic Press

1. INTRODUCTION

This paper describes a method of second-order accuracy

tions, with due care taken to account for the discontinuities
in the interaction flow. The convective difference scheme,
hidden in the Lagrangean scheme, for integrating the char-
acteristic equations is a so-called up-stream-centered (up-
wind) scheme and has been discussed as “‘scheme II”” in
the previous paper [2] of this series. Remapping the La-
grangean results onto an Euler grid is done according to
the upstream-centered “scheme 111" from the same paper.
A substantial improvement will still result if, in the La-
grangean step, scheme II is replaced by the more accurate
scheme III.

An accessory technique for preserving monotonicity
during convection, also discussed in [2], is easily incorpo-
rated in the method. It is applied in its crudest form [2,
Eq. (66)] at the beginning of the Lagrangean step; a more
sophisticated form [2, Eq. (74)] is applied in the remap step.
Further refinement of the technique has been projected.

Numerical experiments indicate that for solving two-
dimensional flow problems, even on a coarse grid, the
present second-order method is at least an order of magni-
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FLUX-VECTOR SPLITTING FOR THE EULER EQUATIONS

Bram van Leer
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Introduction

When approximating a hyperbolic system of conservation laws wg + {f(w)ly =0
with so-called upwind differences, we must, in the first place, establish which way
the wind blows. More precisely, we must determine in which direction each of a
variety of signals moves through the computational grid. For this purpose, a physical
model of the interaction between computational cells is needed; at present two such
models are in use.

In one model, neighboring cells interact through discrete, finite-amplitude
waves. The nature, propagation speed and amplitude of these waves are found by
solving, exactly or approximately, Riemann's initial-value problem for the discontin-
uity at the cell interface. We may call this the Riemann approach (Fig. la). The
numerical technique of distinguishiéng between the influence of the forward- and the
backward-moving waves is called flux-difference splitting; examples are the methods
of Roe [1] and of Osher [2].

In the other model, the interaction of neighboring cells is accomplished through
mixing of pseudo-particles that move in and out of each cell according to a given
velocity distribution. We may call this the Boltzmann approach (Fig. 1b). The numer-
ical technique of distinguishing between the influence of the forward- and the back-
ward-moving particles is called flux-vector splitting or simply flux-splitting; an
example is the "beam scheme" of Prendergast |3], rediscovered by Steger and Warming

[4].-

Both kinds of splitting are discussed by Harten, Lax and Van Leer Eﬂ.
The present paper is restricted to flux-vector splitting for the Euler equations
of compressible flow, with the ideal-gas law used as equation of state.



Van Leer FVS, 1990

Flux Vector Splitting for the 1990's
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UITGENODIGDE SPREKERS

Thema 1.  J.J. Chattot, Matra Industries, Velizy
B. van Leer, Technische Hogeschool Delft
H. Viviand, ONERA, Parijs

Thema 2. R. Beauwens, Vrije Universiteit Brussel
J. Periaux, Avions Marcel Dassault, Parijs
D.M. Young,. University of Texas, Austin
G. Golub, Stanford University (onder voorbehoud)

De Heer Chattot komt in de plaats van Temam. Op het gebied van de Euler-

vergelijkingen werkt hij samen met de groep van Prof. Temam.

Tijdens de laatste fase van de voorbereidingen is gebleken dat Prof. Golub
rond half oktober zal deelnemen aan een conferentie in Leuven. Dit was voor
de organisatiecommissie aanleiding hem uit te nodigen ook een voordracht in

Zeist te verzorgen (binnen thema 2).

A.O.H. Axelsson en H. Schippers hebben zich aangemeld voor een korte
bijdrage.
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