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Introduction

For the scalar conservation laws

ut + ▽ · F(u) = 0, u(x, 0) = u0(x). (1)

An important property of the entropy solution (which may be

discontinuous) is that it satisfies a strict maximum principle: If

M = max
x

u0(x), m = min
x

u0(x), (2)

then u(x, t) ∈ [m,M ] for any x and t.
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First order monotone schemes can maintain the maximum principle. For

the one-dimensional conservation law

ut + f(u)x = 0,

the first order monotone scheme

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1)

= un
j − λ[h(un

j , un
j+1) − h(un

j−1, u
n
j )]

where λ = ∆t
∆x

and h(u−, u+) is a monotone flux (h(↑, ↓)), satisfies

Hλ(↑, ↑, ↑)

under a suitable CFL condition

λ ≤ λ0.
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Therefore, if

m ≤ un
j−1, u

n
j , un

j+1 ≤ M

then

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1) ≥ Hλ(m,m,m) = m,

and

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1) ≤ Hλ(M,M,M) = M.
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However, for higher order linear schemes, i.e. schemes which are linear

for a linear PDE

ut + aux = 0 (3)

for example the second order accurate Lax-Wendroff scheme

un+1
j =

aλ

2
(1 + aλ)un

j−1 + (1 − a2λ2)un
j −

aλ

2
(1 − aλ)un

j+1

where λ = ∆t
∆x

and |a|λ ≤ 1, the maximum principle is not satisfied. In

fact, no linear schemes with order of accuracy higher than one can satisfy

the maximum principle (Godunov Theorem).
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Therefore, nonlinear schemes, namely schemes which are nonlinear even

for linear PDEs, have been designed to overcome this difficulty. These

include roughly two classes of schemes:

• TVD schemes. Most TVD (total variation diminishing) schemes also

satisfy strict maximum principle, even in multi-dimensions. TVD

schemes can be designed for any formal order of accuracy for

solutions in smooth, monotone regions. However, all TVD schemes

will degenerate to first order accuracy at smooth extrema.

• TVB schemes, ENO schemes, WENO schemes. These schemes do

not insist on strict TVD properties, therefore they do not satisfy strict

maximum principles, although they can be designed to be arbitrarily

high order accurate for smooth solutions.
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Remark: If we insist on the maximum principle interpreted as

m ≤ un+1
j ≤ M, ∀j

if

m ≤ un
j ≤ M, ∀j,

where un
j is either the approximation to the point value u(xj, t

n) for a

finite difference scheme, or to the cell average 1

∆x

∫ xj+1/2

xj−1/2
u(x, tn)dx for

a finite volume or DG scheme, then the scheme can be at most second

order accurate (proof due to Harten, see Zhang and Shu, Proceedings of

the Royal Society A, 2011).
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Therefore, the correct procedure to follow in designing high order schemes

that satisfy a strict maximum principle is to change the definition of

maximum principle. Note that a high order finite volume scheme has the

following algorithm flowchart:

(1) Given {ūn
j }

(2) reconstruct un(x) (piecewise polynomial with cell average ūn
j )

(3) evolve by, e.g. Runge-Kutta time discretization to get {ūn+1
j }

(4) return to (1)
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Therefore, instead of requiring

m ≤ ūn+1
j ≤ M, ∀j

if

m ≤ ūn
j ≤ M, ∀j,

we will require

m ≤ un+1(x) ≤ M, ∀x

if

m ≤ un(x) ≤ M, ∀x.

Similar definition and procedure can be used for discontinuous Galerkin

schemes.
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Maximum-principle-preserving for scalar conservation laws

The flowchart for designing a high order scheme which obeys a strict

maximum principle is as follows:

1. Start with un(x) which is high order accurate

|u(x, tn) − un(x)| ≤ C∆xp

and satisfy

m ≤ un(x) ≤ M, ∀x

therefore of course we also have

m ≤ ūn
j ≤ M, ∀j.
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2. Evolve for one time step to get

m ≤ ūn+1
j ≤ M, ∀j. (4)

3. Given (4) above, obtain the reconstruction un+1(x) which

• satisfies the maximum principle

m ≤ un+1(x) ≤ M, ∀x;

• is high order accurate

|u(x, tn+1) − un+1(x)| ≤ C∆xp.
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Three major difficulties

1. The first difficulty is how to evolve in time for one time step to

guarantee

m ≤ ūn+1
j ≤ M, ∀j. (5)

This is very difficult to achieve. Previous works use one of the

following two approaches:
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• Use exact time evolution. This can guarantee

m ≤ ūn+1
j ≤ M, ∀j.

However, it can only be implemented with reasonable cost for linear

PDEs, or for nonlinear PDEs in one dimension. This approach was

used in, e.g., Jiang and Tadmor, SISC 1998; Liu and Osher,

SINUM 1996; Sanders, Math Comp 1988; Qiu and Shu, SINUM

2008; Zhang and Shu, SINUM 2010; to obtain TVD schemes or

maximum-principle-preserving schemes for linear and nonlinear

PDEs in one dimension or for linear PDEs in multi-dimensions, for

second or third order accurate schemes.
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• Use simple time evolution such as SSP Runge-Kutta or multi-step

methods. However, additional limiting will be needed on un(x)

which will destroy accuracy near smooth extrema.

We have figured out a way to obtain

m ≤ ūn+1
j ≤ M, ∀j

with simple Euler forward or SSP Runge-Kutta or multi-step methods

without losing accuracy on the limited un(x):
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The evolution of the cell average for a higher order finite volume or DG

scheme satisfies

ūn+1
j = G(ūn

j , u
−

j− 1
2

, u+

j− 1
2

, u−

j+ 1
2

,u+

j+ 1
2

)

= ūn
j − λ[h(u−

j+ 1
2

, u+

j+ 1
2

) − h(u−

j− 1
2

, u+

j− 1
2

)],

where

G(↑, ↑, ↓, ↓, ↑)

therefore there is no maximum principle. The problem is with the two

arguments u+

j− 1
2

and u−

j+ 1
2

which are values at points inside the cell

Ij .
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The polynomial pj(x) (either reconstructed in a finite volume method

or evolved in a DG method) is of degree k, defined on Ij such that ūn
j

is its cell average on Ij , u+

j− 1
2

= pj(xj− 1

2
) and u−

j+ 1
2

= pj(xj+ 1

2
).

We take a Legendre Gauss-Lobatto quadrature rule which is exact for

polynomials of degree k, then

ūn
j =

m
∑

ℓ=0

ωℓpj(yℓ)

with y0 = xj− 1
2
, ym = xj+ 1

2
. The scheme for the cell average is then

rewritten as
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ūn+1
j = ωm

[

u−

j+ 1

2

−
λ

ωm

(

h(u−

j+ 1

2

, u+

j+ 1

2

) − h(u+

j− 1

2

, u−

j+ 1

2

)
)

]

+ω0

[

u+

j− 1
2

−
λ

ω0

(

h(u+

j− 1
2

, u−

j+ 1
2

) − h(u−

j− 1
2

, u+

j− 1
2

)
)

]

+

m−1
∑

ℓ=1

ωℓpj(yℓ)

= ωmHλ/ωm(u+

j− 1
2

, u−

j+ 1
2

, u+

j+ 1
2

) + ω0Hλ/ω0
(u−

j− 1
2

, u+

j− 1
2

, u−

j+ 1
2

)

+
m−1
∑

ℓ=1

ωℓpj(yℓ).
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Therefore, if

m ≤ pj(yℓ) ≤ M

at all Legendre Gauss-Lobatto quadrature points and a reduced CFL

condition

λ/ωm = λ/ω0 ≤ λ0

is satisfied, then

m ≤ ūn+1
j ≤ M.
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2. The second difficulty is: given

m ≤ ūn+1
j ≤ M, ∀j

how to obtain an accurate reconstruction un+1(x) which satisfy

m ≤ un+1(x) ≤ M, ∀x.

Previous work was mainly for relatively lower order schemes (second

or third order accurate), and would typically require an evaluation of

the extrema of un+1(x), which, for a piecewise polynomial of higher

degree, is quite costly.

We have figured out a way to obtain such reconstruction with a very

simple scaling limiter, which only requires the evaluation of un+1(x)

at certain pre-determined quadrature points and does not destroy

accuracy:
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We replace pj(x) by the limited polynomial p̃j(x) defined by

p̃j(x) = θj(pj(x) − ūn
j ) + ūn

j

where

θj = min

{∣

∣

∣

∣

M − ūn
j

Mj − ūn
j

∣

∣

∣

∣

,

∣

∣

∣

∣

m − ūn
j

mj − ūn
j

∣

∣

∣

∣

, 1

}

,

with

Mj = max
x∈Sj

pj(x), mj = min
x∈Sj

pj(x)

where Sj is the set of Legendre Gauss-Lobatto quadrature points of

cell Ij .

Clearly, this limiter is just a simple scaling of the original polynomial

around its average.
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The following lemma, guaranteeing the maintenance of accuracy of

this simple limiter, is proved in Zhang and Shu, JCP 2010a:

Lemma: Assume ūn
j ∈ [m,M ] and pj(x) is an O(∆xp)

approximation, then p̃j(x) is also an O(∆xp) approximation.
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3. The third difficulty is how to generalize the algorithm and result to 2D

(or higher dimensions). Algorithms which would require an evaluation

of the extrema of the reconstructed polynomials un+1(x, y) would not

be easy to generalize at all.

Our algorithm uses only explicit Euler forward or SSP (also called

TVD) Runge-Kutta or multi-step time discretizations, and a simple

scaling limiter involving just evaluation of the polynomial at certain

quadrature points, hence easily generalizes to 2D or higher

dimensions on structured or unstructured meshes, with strict

maximum-principle-satisfying property and provable high order

accuracy.
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The technique has been generalized to the following situations maintaining

uniformly high order accuracy:

• 2D scalar conservation laws on rectangular or triangular meshes with

strict maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and

Shu, JSC 2012).

• 2D incompressible equations in the vorticity-streamfunction

formulation (with strict maximum principle for the vorticity), and 2D

passive convections in a divergence-free velocity field, i.e.

ωt + (uω)x + (vω)x = 0,

with a given divergence-free velocity field (u, v), again with strict

maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and Shu,

JSC 2012).
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Convection-diffusion equations

Generalization to convection-diffusion equations

ut + f(u)x = (a(u)ux)x, a(u) ≥ 0

is possible but not straightforward.

Currently there are mainly two results.
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• Maximum-principle-satisfying high order finite volume WENO

schemes for convection-diffusion equations using a non-standard finite

volume framework (Zhang, Liu and Shu, SISC 2012).

This approach is based on evolving the double cell averages

¯̄ui =
1

∆x2

∫ x
i+1

2

x
i− 1

2

(

∫ x+∆x
2

x−∆x
2

u(ξ)dξ

)

dx.

The approach introduced before for conservation laws can then be

directly generalized. This approach works in multi-dimensions as well,

but only on structured meshes.
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• Piecewise linear DG methods on arbitrary triangular meshes (Zhang,

Zhang and Shu, JCP 2013). This method is uniformly second order

accurate, works on any triangular meshes without minimum or

maximum angle restrictions, and satisfies strict maximum principle.

This appears to be the first successful result in obtaining uniform

second order accurate finite element method on unrestricted

triangulations for parabolic equations.

There are attempts to generalize this result to higher order DG

methods (Jue Yan).
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Positivity-preserving for systems

The framework of establishing maximum-principle-satisfying schemes for

scalar equations can be generalized to hyperbolic systems to preserve the

positivity of certain physical quantities, such as density and pressure of

compressible gas dynamics.
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Compressible Euler equations:

ut + f(u)x = 0

with

u =









ρ

ρv

E









, f(u) =









ρv

ρv2 + p

v(E + p)









,

where E = e + 1

2
ρv2. The internal energy e is related to density and

pressure through the equation of states (EOS). For the ideal gas, we have

e = p
γ−1

with γ = 1.4 for air.
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The main ingredients for designing positivity-preserving schemes for

systems are:

• A first order explicit scheme which can keep the positivity of the

desired quantities (e.g. density and pressure) under a suitable CFL

condition.

Examples include the Godunov scheme, Lax-Friedrichs scheme,

kinetic scheme, HLLC scheme, etc.

• The quantity for which positivity is desired is one of the components of

the conserved variable u (for example the density ρ), or is a concave

function of the conserved variable u (for example the pressure p or the

internal energy e). Under this assumption, the region of positivity of

the desired quantities is a convex region in the u space.
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With these ingredients, the technique to enforce maximum-principle for

scalar equations can be directly generalized to enforce positivity of the

desired quantities without affecting the high order accuracy of the finite

volume or DG schemes.

Positivity-preserving finite volume or DG schemes have been designed for:

• One and multi-dimensional compressible Euler equations maintaining

positivity of density and pressure (Zhang and Shu, JCP 2010b; Zhang,

Xia and Shu, JSC 2012).

• One and two-dimensional shallow water equations maintaining

non-negativity of water height and well-balancedness for problems

with dry areas (Xing, Zhang and Shu, Advances in Water Resources

2010; Xing and Shu, Advances in Water Resources 2011).
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• One and multi-dimensional compressible Euler equations with source

terms (geometric, gravity, chemical reaction, radiative cooling)

maintaining positivity of density and pressure (Zhang and Shu, JCP

2011).

• One and multi-dimensional compressible Euler equations with

gaseous detonations maintaining positivity of density, pressure and

reactant mass fraction, with a new and simplified implementation of

the pressure limiter. DG computations are stable without using the

TVB limiter (Wang, Zhang, Shu and Ning, JCP 2012).

• A minimum entropy principle satisfying high order scheme for gas

dynamics equations (Zhang and Shu, Num Math 2012).
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Other generalizations

• Positivity-preserving high order finite difference WENO schemes for

compressible Euler equations (Zhang and Shu, JCP 2012).

• Simplified version for WENO finite volume schemes without the need

to evaluate solutions at quadrature points inside the cell (Zhang and

Shu, Proceedings of the Royal Society A, 2011).
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• Positivity-preserving for PDEs involving global integral terms including

a hierarchical size-structured population model (Zhang, Zhang and

Shu, JCAM 2011) and Vlasov-Boltzmann transport equations (Cheng,

Gamba and Proft, Math Comp, 2012).

• Positivity-preserving semi-Lagrangian schemes (Qiu and Shu, JCP

2011; Rossmanith and Seal, JCP 2011).

• Positivity-preserving first order and higher order Lagrangian schemes

for multi-material flows (Cheng and Shu, JCP submitted).
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Numerical results

Example 1. Accuracy check. For the incompressible Euler equation in the

vorticity-streamfunction formulation, with periodic boundary condition and

initial data ω(x, y, 0) = −2 sin (x) sin (y) on the domain

[0, 2π] × [0, 2π], the exact solution is ω(x, y, t) = −2 sin (x) sin (y).

We clearly observe the designed order of accuracy for this solution.
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Table 1: Incompressible Euler equations. P 2 for vorticity, t = 0.5.

N×N L1 error order L∞ error order

16×16 5.12E-4 – 1.40E-3 –

32×32 3.75E-5 3.77 1.99E-4 2.81

64×64 3.16E-6 3.57 2.74E-5 2.86

128×128 2.76E-7 3.51 3.56E-6 2.94
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Example 2. The vortex patch problem. We solve the incompressible Euler

equations in [0, 2π] × [0, 2π] with the initial condition

ω(x, y, 0) =















−1, π
2
≤ x ≤ 3π

2
, π

4
≤ y ≤ 3π

4
;

1, π
2
≤ x ≤ 3π

2
, 5π

4
≤ y ≤ 7π

4
;

0, otherwise

and periodic boundary conditions. The contour plots of the vorticity ω are

given for t = 10. Again, we cannot observe any significant difference

between the two results in the contour plots. The cut along the diagonal

gives us a clearer view of the advantage in using the limiter.
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Figure 1: Vorticity at t = 10, P 2. 30 equally spaced contours from −1.1

to 1.1. 1282 mesh. Left: with limiter; Right: without limiter.
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Figure 2: Vorticity at t = 10, P 2. Cut along the diagonal. 1282 mesh. Left:

with limiter; Right: without limiter.
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Example 3. The Sedov point-blast wave in one dimension. For the initial

condition, the density is 1, velocity is zero, total energy is 10−12

everywhere except that the energy in the center cell is the constant E0

∆x

with E0 = 3200000 (emulating a δ-function at the center). γ = 1.4. The

computational results are shown in Figure 3. We can see the shock is

captured very well.
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Figure 3: 1D Sedov blast. The solid line is the exact solution. Symbols

are numerical solutions. T = 0.001. N = 800. ∆x = 4

N
. TVB limiter

parameters (M1,M2,M3) = (15000, 20000, 15000). Pressure (left)

and velocity (right).
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Figure 4: 1D Sedov blast. The solid line is the exact solution. Symbols

are numerical solutions. T = 0.001. N = 800. ∆x = 4

N
. TVB limiter

parameters (M1,M2,M3) = (15000, 20000, 15000). Density.
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Example 4. The Sedov point-blast wave in two dimensions. The

computational domain is a square. For the initial condition, the density is

1, velocity is zero, total energy is 10−12 everywhere except that the

energy in the lower left corner cell is the constant 0.244816
∆x∆y

. γ = 1.4. See

Figure 5. The computational result is comparable to those in the literature,

e.g. those computed by Lagrangian methods.
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Figure 5: 2D Sedov blast, plot of density. T = 1. N = 160.

∆x = ∆y = 1.1
N

. TVB limiter parameters (M1,M2,M3,M4) =

(8000, 16000, 16000, 8000).
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Figure 6: 2D Sedov blast, plot of density. T = 1. N = 160.

∆x = ∆y = 1.1
N

. TVB limiter parameters (M1,M2,M3,M4) =

(8000, 16000, 16000, 8000).
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Example 5. We consider two Riemann problems. The first one is a double

rarefaction. We did two tests, one is a one-dimensional double rarefaction,

for which the initial condition is ρL = ρR = 7, uL = −1, uR = 1,

pL = pR = 0.2 and γ = 1.4. The other one is a two-dimensional double

rarefaction with the initial condition ρL = ρR = 7, uL = −1, uR = 1,

vL = vR = 0, pL = pR = 0.2. The exact solution contains vacuum.
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Figure 7: Double rarefaction problem. T=0.6. Left: 1D problem. Right: Cut

at y = 0 for the 2D problem. Every fourth cell is plotted. The solid line is

the exact solution. Symbols are numerical solutions. ∆x = 2

N
, N = 800

with the positivity limiter. Density.
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Figure 8: Double rarefaction problem. T=0.6. Left: 1D problem. Right: Cut

at y = 0 for the 2D problem. Every fourth cell is plotted. The solid line is

the exact solution. Symbols are numerical solutions. ∆x = 2

N
, N = 800

with the positivity limiter. Pressure.
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Figure 9: Double rarefaction problem. T=0.6. Left: 1D problem. Right: Cut

at y = 0 for the 2D problem. Every fourth cell is plotted. The solid line is

the exact solution. Symbols are numerical solutions. ∆x = 2

N
, N = 800

with the positivity limiter. Velocity.
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The second one is a 1D Leblanc shock tube problem. The initial condition

is ρL = 2, ρR = 0.001, uL = uR = 0, pL = 109, pR = 1, and

γ = 1.4. See the next figure for the results of 800 cells and 6400 cells.
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Figure 10: Leblanc problem. T = 0.0001. Left: N = 800. Right:

N = 6400. The solid line is the exact solution. Symbols are numerical

solutions. ∆x = 20

N
with the positivity limiter. log-scale of density.
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Figure 11: Leblanc problem. T = 0.0001. Left: N = 800. Right:

N = 6400. The solid line is the exact solution. Symbols are numerical

solutions. ∆x = 20

N
with the positivity limiter. log-scale of pressure.
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Figure 12: Leblanc problem. T = 0.0001. Left: N = 800. Right:

N = 6400. The solid line is the exact solution. Symbols are numerical

solutions. ∆x = 20

N
with the positivity limiter. Velocity.
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Example 6. To simulate the gas flows and shock wave patterns which are

revealed by the Hubble Space Telescope images, one can implement

theoretical models in a gas dynamics simulator. The two-dimensional

model without radiative cooling is governed by the compressible Euler

equations. The velocity of the gas flow is extremely high, and the Mach

number could be hundreds or thousands. A big challenge for computation

is, even for a state-of-the-art high order scheme, negative pressure could

appear since the internal energy is very small compared to the huge

kinetic energy (Ha, Gardner, Gelb and Shu, JSC 2005).

First, we compute a Mach 80 (i.e. the Mach number of the jet inflow is 80

with respect to the soundspeed in the jet gas) problem without the

radiative cooling.
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Figure 13: Simulation of Mach 80 jet without radiative cooling. Scales are

logarithmic. Density.
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Second, to demonstrate the robustness of our method, we compute a

Mach 2000 problem. The domain is [0, 1] × [0, 0.5]. The width of the jet

is 0.1. The terminal time is 0.001. The speed of the jet is 800, which is

around Mach 2100 with respect to the soundspeed in the jet gas. The

computation is performed on a 640 × 320 mesh. TVB limiter parameters

are M1 = M2 = M3 = M4 = 10000000.
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Figure 14: Simulation of Mach 2000 jet without radiative cooling. Scales

are logarithmic. Density.
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Lastly, we compute a Mach 80 (i.e. the Mach number of the jet inflow is 80

with respect to the soundspeed in the jet gas) problem with the radiative

cooling to test the positivity-preserving property with the radiative cooling

source term.
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Figure 15: Simulation of Mach 80 jet with radiative cooling. The third or-

der positivity-preserving RKDG scheme with the TVB limiter. Scales are

logarithmic. Density.
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Example 7. Shock diffraction problem. Shock passing a backward facing

corner of 135◦. It is easy to get negative density and/or pressure below

the corner. This problem also involves mixed triangular / rectangular

meshes for the DG method. The initial conditions are, if x < 1.5 and

y ≥ 2, (ρ, u, v, E, Y ) = (11, 6.18, 0, 970, 1); otherwise,

(ρ, u, v, E, Y ) = (1, 0, 0, 55, 1). The boundary conditions are

reflective. The terminal time is t = 0.68.

Division of Applied Mathematics, Brown University



POSITIVITY-PRESERVING HIGH ORDER SCHEMES

X
Y

0 2 4 60

2

4

6

Figure 16: Density. Detonation diffraction at a 135◦ corner.
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Conclusions and future work

• We have obtained uniformly high order bound-preserving schemes for

multi-dimensional nonlinear conservation laws and

convection-diffusion equations.

• In the future we will design higher order bound-preserving DG

schemes for convection-diffusion equations on general triangulations,

and for other types of PDEs.
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The End

THANK YOU!
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