High-Order Finite-Volume Methods

Phillip Colella
Computational Research Division
Lawrence Berkeley National Laboratory

”/’—:>'| A BERKELEY LAB U.S, DEPARTMENT OF Office of
EEEEEEEEEEEEEEEEEEEE ONAL LAB ORATORY ENERGY Science



Why Higher Order ?

+ Locally-refined grids, mapped-multiblock grids — smooth except at
boundaries between different refinement levels / blocks. Leads to
loss of one order of accuracy at boundaries: 2" 1st, 4th—>3rd,

- Over the next decade, bytes / flop expected to go down by 10x.
Similar relative increases in imbalance between communication
and computation (higher latencies, lower bandwidth). Want to do
more computation per unit of data access, use less data overall.
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Finite-Volume Methods on Structured Grids

We use the divergence theorem for computing the average of div(F)
over a control volume.
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- This is an exact relationship — the approximations are introduced by the
choice of quadrature for the face integrals.

* For smooth grids, the truncation error of the approximation to the
average of div(F) is the same as the truncation the error in the flux
(standard centered-difference error cancellation applies here as well).
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Design Issues for High-Order Finite-Volume Methods

« High-order quadratures for fluxes.

« Time-dependent problems: time discretizations, limiters for hyperbolic
problems, semi-implicit methods.

» Adaptive mesh refinement.
» Extension to mapped grids, multiblock grids.
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High-Order Quadratures for Fluxes

At second-order accuracy, can approximate averages by the midpoint rule. For
higher-order accuracy, must distinguish between cell averages, face averages,
and point values.
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These can be used to compute more general nonlinear functions:
(W(U)) = W(U)) + O(h?)
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“Convolution / deconvolution” Ref: Barad and Colella. 2005
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Semi-Discrete Formulation of Finite-Volume Methods for
Time-Dependent Problems

We can integrate conservation laws
oU -
Y
over rectangular control volumes
Vi =[ih,(i +u)h] , i € Z” , w=(1,1,...,1)

to obtain a system of ordinary differential equations
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We use a method of lines approach, separating spatial and temporal
discretization.

”/’—:>'| A BERKELEY LAB U.S. DEPARTMENT OF Office of
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ENERGY Science



High-Order Finite-Volume Methods on Mapped Grids

We assume that we have a smooth mapping from an abstract coordinate space
to physical space:
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Finite-volume discretization: if V,is a rectangular cell in the mapping space,
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Fourth-order accurate approximation to face integrals:

<(NTF'~)d>z.+%ed = (<NT>i+%ed<ﬁ>i+%ed)d + ﬁ (c*)?d/ (NT) -

Guarantee freestream preservation by using the Poincare lemma: Can use any

high-order
Ve-N*=0 —> /Nc?dAe = Z Z + / Ng ¢#dE¢ quadrature to
A, t=+,— d’'#£d it compute edge

- , d,d’ integrals
Ref: Colella, Dorr, Hittinger and Martin, 2010
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Gyrokinetic Plasma Models in 4D

Advection in 4D phase space, coupled to the solution to an elliptic equation in
physical space.

| Grid Grid (r x 6 x v x p) | Estimated Richardson
refinement density error | extrapolated
level N conv. rate py | density error ey

1 8x32x32x8

2 16 x 64 x 64 x 16

3 32 x 128 x 128 x 32 | 3.8 (L1) 3.37 x 1077 (L1)
3.8 (L2) 6.03 x 1077 (L2)
4.1 (Max) 1.95 x 10~* (Max)

4 64 x 256 x 256 x 64 | 4.2 (L1) 1.40 x 1078 (L1)
4.1 (L2) 2.95 x 1077 (L2)
3.6 (Max) 1.69 x 10~ (Max)

- damping rate vs. safety factor . real frequency vs safety factor

COGENT RESULTS (circles)
vs Gao Eq. 8a (curves)
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Ref: Dorr, et al., 2010
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Mapped Multiblock Grids

Use polynomial interpolation and least- S
squares to obtain ghost-cell values: [ KO
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Ref: Johansen, McCorquodale, Ullrich, and Colella, in preparation
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Adaptive Mesh Refinement for Hyperbolic Problems

A straightforward generalization of the
second-order accurate finite-volume AMR
methods. Most of the changes are for
interpolation at refinement boundaries.

» Derive fourth-order accurate time
interpolation from dense output of Runge-
Kutta method on next coarser level. In the
presence of limiters, it is essential that the
time interpolation include a representation
of the truncation error for the substages of
Runge-Kutta.

05 —

 Fourth-order spatial interpolation
coefficients derived from least-squares
method similar to that for multiblock.

» For mapped grids we use a generalization

to higher order of the methods developed

for the second-order case to maintain

conservation and freestream preservation 1/64: 1/128: 1/256: 1/512:
limiter 1/128 rate 1/256 rate 1/512 rate 1/1024

Ref: McCorguodale and Colella, 2011: Guzik,
McCorquodale, and Colella, 2012.

across levels. 720006 3.07 4.660.07 3.95 3.01c08 3.00 1.90e-00

on 7.2

off 7.29e-06 3.97 4.66e-07 3.95 3.01e-08 3.99 1.90e-09
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Extremum-Preserving Limiters

Approach used above: centered differences, geometric limiting applied at

each stage of RK. At extrema, compare different estimates of second
derivatives to determine degree of limiting.

Issues:

» Geometric limiting at each stage -> time step limited by donor cell, scales
like 1/(Dimension).

 Centered differencing is dissipation-free, interaction with RK + stage-wise
limiters is brittle.

* Alternative approach:
- Use upstream-centered differencing for high-order method.

-Apply 1979 Zalesak extremum-preserving FCT to the sum of the
fluxes at the end of the time step; leaves us free to choose low-order
method (e.g. corner-coupled upwind methods).

— Compute bounds on extrema using local quadratic interpolation.
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Upstream-Centered Differencing

0 0
P 4 P _ 0
ot Oz
1
Piyi = @(,Oj_z —8pj—1+37p;+37pit1 — 8pjt2 + pjt+3) (Centered)
1
= @(_pj—3 +Tpj_2 — 23p;—1+57pj+22pj41 — 2pj12) (Upstream-Centered)
X
Both are sixth-order accurate approximations to ﬁ / p(a’, t)dx’
ox (j+3)Az
3 ' ' : ' fun1
fun2
N Von Neumann analysis of upstream-
centered operator.
e ey Red - imaginary part of the error.
A S AN Blue - real part of the error.
b
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Example: Square Wave, CFL=.1

Centered Upstream-centered
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Convergence for Gaussian initial Data
(Upstream-Centered, with Limiter)
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Example: Semicircle,

Centered

CFL=.1

Upstream-centered
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Conclusions and Future Work

Ongoing work:

» Extend upstream-centered method to multiple dimensions.
* Positivity preservation using redistribution.

» Ongoing applications development: incompressible Navier-Stokes, kinetic
problems in plasmas, atmospheric modeling for climate, Maxwell’s
equations.

» Use of ARK methods for semi-implicit treatment of stiff terms.
 Extension of cut-cell methods to higher order.

Final comments:

» Classical methods (von Neumann analysis) still provide insight (e.g. Paul
Ullrich’s paper on comparison of methods for the wave equation).

* Basic framework for designing methods for discontinuous solutions to
hyperbolic conservation laws developed in the late 1970’s - early 1980’s
remains applicable to new settings, new requirements.
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