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Why Higher Order ?!

•  Locally-refined grids, mapped-multiblock grids – smooth except at 
boundaries between different refinement levels / blocks. Leads to 
loss of one order of accuracy at boundaries: 2nd    1st, 4th    3rd.!

•  Over the next decade, bytes / flop expected to go down by 10x. 
Similar relative increases in imbalance between communication 
and computation (higher latencies, lower bandwidth). Want to do 
more computation per unit of data access, use less data overall.!



Finite-Volume Methods on Structured Grids!

 !We use the divergence theorem for computing the average of div(F) 
over a control volume.!

•  This is an exact relationship – the approximations are introduced by the 
choice of quadrature for the face integrals. !
•  For smooth grids, the truncation error of the approximation to the 
average of div(F) is the same as the truncation the error in the flux 
(standard centered-difference error cancellation applies here as well).!



Design Issues for High-Order Finite-Volume Methods!

•  High-order quadratures for fluxes.!
•  Time-dependent problems: time discretizations, limiters for hyperbolic 
problems, semi-implicit methods.!
•  Adaptive mesh refinement.!
•  Extension to mapped grids, multiblock grids.!



High-Order Quadratures for Fluxes!
At second-order accuracy, can approximate averages by the midpoint rule.  For 
higher-order accuracy, must distinguish between cell averages, face averages, 
and point values.!

These can be used to compute more general nonlinear functions:!

“Convolution / deconvolution”! Ref: Barad and Colella, 2005!



Semi-Discrete Formulation of Finite-Volume Methods for 
Time-Dependent Problems!

 We can integrate conservation laws!

We use a method of lines approach, separating spatial and temporal 
discretization. !

 over rectangular control volumes!

 to obtain a system of ordinary differential equations!



High-Order Finite-Volume Methods on Mapped Grids!
!We assume that we have a smooth mapping from an abstract coordinate space 
to physical space: !

Finite-volume discretization: if Vi is a rectangular cell in the mapping space,!

Fourth-order accurate approximation to face integrals:!

Guarantee freestream preservation by using the Poincare lemma:!

Ref: Colella, Dorr, Hittinger and Martin, 2010!

Can use any  
high-order 
quadrature to 
compute edge 
integrals!



Gyrokinetic Plasma Models in 4D!

Advection in 4D phase space, coupled to the solution to an elliptic equation in 
physical space.!

Ref: Dorr, et al., 2010!



Mapped Multiblock Grids!
Use polynomial interpolation and least-
squares to obtain ghost-cell values:!

Ref: Johansen, McCorquodale, Ullrich, and Colella, in preparation!



Adaptive Mesh Refinement for Hyperbolic Problems!
 A straightforward generalization of the 
second-order accurate finite-volume AMR 
methods. Most of the changes are for 
interpolation at refinement boundaries.!

•   Derive fourth-order accurate time 
interpolation from dense output of Runge-
Kutta method on next coarser level. In the 
presence of limiters, it is essential that the 
time interpolation include a representation 
of the truncation error for the substages of 
Runge-Kutta.!

•  Fourth-order spatial interpolation 
coefficients derived from least-squares 
method similar to that for multiblock.!

•  For mapped grids we use a generalization 
to higher order of the methods developed 
for the second-order case to maintain 
conservation and freestream preservation 
across levels.!

Ref: McCorquodale and Colella, 2011; Guzik, 
McCorquodale, and Colella, 2012.!



Extremum-Preserving  Limiters!
Approach used above: centered differences, geometric limiting applied at 
each stage of RK. At extrema, compare different estimates of second 
derivatives to determine degree of limiting.!

Issues:!

•  Geometric limiting at each stage -> time step limited by donor cell, scales 
like 1/(Dimension).!

•  Centered differencing is dissipation-free, interaction with RK + stage-wise 
limiters is brittle. !

•  Alternative approach:!

  Use upstream-centered differencing for high-order method.!

 Apply 1979 Zalesak extremum-preserving FCT to the sum of the 
fluxes at the end of the time step; leaves us free to choose low-order 
method (e.g. corner-coupled upwind methods).!

  Compute bounds on extrema using local quadratic interpolation. !



Upstream-Centered Differencing!

Both are sixth-order accurate approximations to !

Von Neumann analysis of upstream-
centered operator. !
Red - imaginary part of the error.!
Blue - real part of the error.!
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Example: Square Wave, CFL=.1!

Centered! Upstream-centered!

No limiter!
(T = 1,N=256)!

 Limiter!
(T = 10, N=128)!



Convergence for Gaussian initial Data  
(Upstream-Centered, with Limiter)!

T=1, CFL = .8! T=1, CFL = .1!



Example: Semicircle, CFL=.1!
Centered! Upstream-centered!

No limiter!

 limiter!



Conclusions and Future Work!
Ongoing work:!

•  Extend upstream-centered method to multiple dimensions.!

•  Positivity preservation using redistribution.!

•  Ongoing applications development: incompressible Navier-Stokes, kinetic 
problems in plasmas, atmospheric modeling for climate, Maxwell’s 
equations. !

•  Use of ARK methods for semi-implicit treatment of stiff terms.!

•  Extension of cut-cell methods to higher order.!

 Final comments:!

•  Classical methods (von Neumann analysis) still provide insight (e.g. Paul 
Ullrich’s paper on comparison of methods for the wave equation).!

•  Basic framework for designing methods for discontinuous solutions to 
hyperbolic conservation laws developed in the late 1970’s - early 1980’s 
remains applicable to new settings, new requirements. !


