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I. Code Description

The solver relies a standard Discontinuous Galerkin discretization to achieve high-orders of accuracy.
The spatial �uxes are approximated using the Roe approximate Riemann solver.1 All integrals are evaluated
analytically during a pre-processing stage using a symbolic manipulation package. The �uxes are computed
from the conservative variables using a modal representation of the polynomials rather than a traditional
nodal method. A more detailed description of the discretization and solver can be found in Refs. 2 and 3.
The code is currently capable of up to 4th-order polynomial approximations of the solution, which yields
a 5th-order accurate scheme. There is no inherent limitation that prevents polynomial approximations of
higher order.

A linearized form of Euler equations is solved using an implicit Newtons method. The implicit system of
equations of the Newtons method is solved using a �exible version of the GMRES iterative matrix solution
algorithm, FGMRES.4 A block ILU14 preconditioner is used for the FGMRES algorithm. The FGMRES
algorithm was limited to 100 inner iterations. The FGMRES solver was converged to a residual below 10−14

on each Newton iteration. All calculations are in double precision.
Parallel capabilities are forthcoming.

II. Case Summary

The residual for the mean coe�cient of the continuity equation, i.e. the density residual, from the �rst
iteration was multiplied with 1 × 10−10 to yield the tolerance for a converged solution. The solution was
initialized to a uniform �ow, and the solution was converge to a solution to steady state without a temporal
term in the Euler equations. This is equivalent to CFL = ∞. A total in�ow boundary condition was
imposed on the inlet, and free-stream pressure was imposed on the outlet. Slip wall boundary conditions
were imposed on the upper and lower boundaries.

A summary of the exucation times and the average execution time of TauBench is shown in Table 1. The
code was executed on an a machine with two 6 cores Intel i7 Xeon X5660 2.8 GHz processors. Only one core
was used for all calculations.

∗PhD Candidate, School of Aerospace Systems, AIAA Student Member.
†Professor of Aerospace Engineering & Engineering Mechanics, School of Aerospace Systems, AIAA Associate Fellow.
‡Director, Computational Sciences Center, Air Vehicles Directorate, Air Force Research Laboratory, AIAA Fellow.

1 of 7

American Institute of Aeronautics and Astronautics



Run Execution Time (s)

1 7.815

2 7.674

3 7.698

4 7.962

5 7.669

6 7.712

7 7.691

8 7.953

9 7.676

10 7.668

Avg: 7.752

Table 1: Taubench Results

Timing of 100 right hand side (RHS) evaluations with 250,000 degrees of freedom (DOF) are summarized
in Table 2. The RHS was evaluated on a uniform rectangular mesh. The solution was initialized to a free-
stream �ow with slip walls on the lower and upper surfaces. As the order of the polynomial approximation
increased, the cell size of the mesh was reduced in order to maintain constant DOF. The 100 RHS evaluations
were achieved by marching with a 4th-order Runge-Kutta scheme 25 iterations.

Polynomial Order Mesh Size DOF Work

0 500x500 250,000 6.24

1 250x250 250,000 2.70

2 167x167 251,001 2.58

3 125x125 250,000 3.32

4 100x100 250,000 4.92

Table 2: RHS Timing

III. Meshes

The DG solver is formulated for structured meshes. These meshes can be generated using any traditional
mesh generator. After reading the mesh coordinates, the solver generates cell local polynomial representa-
tions, (x (ξ, η) , y (ξ, η)), of the cell coordinates. The geometric polynomial mapping of the cell coordinates is
formulated as a sum involving the same test functions, ψ, as used in the DG discretization of the governing
equations. Hence,

x (ξ, η) =

Ng∑
i

Ng∑
j

xijψij (ξ, η)

y (ξ, η) =

Ng∑
i

Ng∑
j

yijψij (ξ, η) (1)

where xij and yij are the coe�cients of the expansion, and ψij (ξ, η) = Pi (ξ)Pj (η), where Pi (ξ) are the
Legendre polynomials. The coe�cients are found by equating the expansion with the associated cell nodal
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values. The process is repeated for the y coordinate to obtain the �nal polynomial mapping of the cell.
Additional points are required to establish the polynomial representation as shown for a quadratic cell in
Fig. 1b. This implies that the grid must consist of Ngn+1 points along a coordinate line to generate n cells
with a geometric mapping of order Ng along that line.

(a) Linear cell (b) Quadratic cell

Figure 1: Nodal and modal representation of cells.

The meshes were generated with a uniform grid spacing in both the x and y coordinates with the algorithm
of Table 3.

node_imax = cel l_imax ∗Ng + 1
node_jmax = cel l_jmax ∗Ng + 1

y1 = 0 .8

DO j = 0 to j = node_jmax−1
DO i = 0 to i = node_imax−1

x ( i , j ) = −1.5 + (3∗ i ) / ( node_imax−1)

y0 = 0.0625∗ exp(−25∗x ( i , j )∗x ( i , j ) )

y ( i , j ) = y0 + (y1−y0 )∗ j /(node_jmax−1)
END DO

END DO

Table 3: Mesh Generation Algorithm

where Ng is the order of the geometric polynomial mapping, cell_imax is the number of cells in the x-
coordinate direction, and cell_jmax is the number of cells in the y-coordinate direction. The mesh sizes used
for the calculations are summarized in Table 4. The uniform grids spacing of the mesh generation algorithm
automatically achieves a uniform grid re�nement.

6x2 12x4 24x8 48x16 96x32

Table 4: Mesh Sizes Used for the Calculations
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IV. Results

The convergence rate of three types of the L2-error options are shown in Fig. 2. Except for the polynomial
approximation P = 0, the convergence rate of the solution achieves the expect O

(
hP+1

)
. L2-errors vs. Work

are shown in Fig. 3. With few exceptions, a higher degree polynomial achieves lower L2-errors with less
work. The convergence history of the Newton solver for the di�erent meshes is shown in Fig. 4. For each
mesh, the total number of iterations reach a converged solution remains relatively unchanged with increased
orders of P. The number of iterations to reach convergence does tend to increase with the increase in mesh
size.

(a) Option 1

(b) Option 3a (c) Option 3b

Figure 2: H-Convergence for Ng = 4
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(a) Option 1

(b) Option 3a (c) Option 3b

Figure 3: Work for Ng = 4
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(a) 6x2 (b) 12x4

(c) 24x8 (d) 48x16

(e) 96x32

Figure 4: Newton Iteration Convergence History for Ng = 4
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