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Abstract

In this work we present a discontinuous Galerkin based framework for the solution of compressible �ow.
The code is based on a multi-domain decomposition strategy, where the domain is subdivided into (un-
structured) hexahedral grid cells. Each grid cell is mapped from physical space to a unit reference element,
where for each grid cell a nodal tensor product trial function is used to approximate the �ow solution.
The nodal points are chosen equal to the quadrature points used to evaluate the inner products in the
�nite element like variational formulation. This and the fact that the tensor product structure of the
ansatz maps itself to the structure of the resulting DG operator yields an highly e�cient framework. To
classify the e�ciency of this framework, we compare the speci�c CPU time needed to evaluate one spatial
degree of freedom for the three-dimensional compressible Navier-Stokes equations with a state of the art
�nite di�erence based DNS solver. Whereas the 6th order accurate �nite di�erence code needs 4µs on
one Nehalem core (Taubench needed about 7.6sec in average on this architecture), the DG framework
with polynomial degree N = 5 needs 2µs (Gauss-Legendre points) or 1.6µs (Gauss-Lobatto Legendre
points), respectively.

Additionally to this high serial e�ciency, a major concern of the presented implementation was the high
performance computing aspect. As we are interested in massive parallel simulations of unsteady �ow, an
explicit global time stepping 5 stage 4th order accurate Runge-Kutta time integrator was implemented.
The MPI parallelization of the code was introduced without additional computational overhead (no
�double-computing� of values at MPI boundaries!) with a special emphasis on communication latency
hiding: the DG operator is naturally split in two parts, the volume integral part which depends only on
local processor local data and the surface integral part which needs neighbor processor data to compute
the numerical �ux functions. This can be used to hide MPI communication latency by using non-
blocking communication and performing processor local data computations �rst (volume integral) during
the communication. The goal of this implementation is to demonstrate the excellent scaling capabilities
of an explicit DG based software with an absolute limit of only one grid cell on a processor. Figure 1
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Figure 1: Weak (left) and strong (right) scaling result on an IBM Blue Gene P system (Jülich, Germany).

shows selected results of such an MPI scaling. The left part of the plot demonstrates the weak scaling of
the code for di�erent combinations of polynomial degree N and number of grid cells, whereas the right
plot shows the strong scaling of the code from 1 up to 4096 processors for di�erent polynomial degrees



N . What makes those strong scaling results unique is the fact that the total grid cell number used for
this test is 4096. Thus for the largest computation with 4096 processors, only one grid cell was left on
the processor while still reaching 88% scaling with N = 7 (only 512 DOF per equation on a processor).

In this work, the presented framework is used to simulate the test case Radial Expansion Wave (C1.5);
an unsteady three dimensional �ow problem governed by the non-linear Euler equations with a de�ned
adiabatic coe�cient g = 1.4. As speci�ed in the problem description, the domain size is [−4; 4]3 discretized
with a (structured) Cartesian hexahedral grid. The analytic initial solution is propagated in time with
supersonic out�ow applied at all the domain boundaries. The global L2 entropy error is computed over
time to assess the accuracy of the method. In contrast to the one-dimensional version of the problem,
the three-dimensional version of the problem is not smooth in the time period 0 < t < 3 anymore. The
exact solution starts to develop a 'kink-type' structure and thus only 1st order for high resolutions can be
observed at time t = 3. Investigations seem to point towards a smooth solution for the two-dimensional
case up to t = 2, but convergence results for the three dimensional version are unclear and up to now,
no speci�c time interval with guaranteed smooth solution has been found for the three dimensional test
case in our investigations. Table 1 shows the convergence results for an approximation with polynomial
degree N = 4 for di�erent end times t = 0, 1, 2, 3. No clear convergence order can be observed with a
general trend that the convergence order is sub-optimal. This e�ect seems to be magni�ed for higher
order approximations which can be observed in Tbl. 2, where the errors for a calculation with polynomial
degree N = 5 are plotted. In this test suite, the experimental order of convergence (EOC) has a tendency
towards 1 at end time t = 3. All computations where performed on a Nehalem cluster using 64 processors.
The Taubench on a single core needs about 7.6 seconds in average. The computation for N = 4 and 323

grid cells needs about 8 minutes wall clock time and the case N = 5 with 323 cells needs 14 minutes on
64 processors.

t = 0 t = 1 t = 2 t = 3
cells L2 EOC L2 EOC L2 EOC L2 EOC

83 2.10E-3 - 8.30E-3 - 4.22E-2 - 6.11E-2 -
163 1.68E-5 7.0 1.41E-3 2.6 2.09E-3 4.3 2.35E-3 4.7
323 3.13E-7 5.7 1.88E-5 6.2 1.50E-4 3.8 7.43E-4 1.7

Table 1: Experimental order of convergence for di�erent end times t with polynomial degree N = 4.

t = 0 t = 1 t = 2 t = 3
cells L2 EOC L2 EOC L2 EOC L2 EOC

83 6.18E-4 - 4.20E-3 - 9.81E-3 - 1.37E-2
163 2.71E-6 7.8 7.50E-4 2.5 1.93E-3 2.3 1.63E-3 3.1
323 2.42E-8 6.8 7.25E-6 6.7 3.28E-5 5.9 5.46E-4 1.6

Table 2: Experimental order of convergence for di�erent end times t with polynomial degree N = 5.

The remaining task for this test case is to �nd a suitable time interval for the three-dimensional version
where the solution remains smooth or to increase the adiabatic coe�cient g from 1.4 up to the value 3.0
for �nal data submission. Those results and an investigation of the breakdown of the order of convergence
in the three dimensional test case will be presented at the conference.


