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Abstract
In this report, we present the results of the simulation of the vortex transport problem (C-1.6 in the

workshop) using a high-order space-time solver based on our discontinuous Galerkin Cell Vertex Scheme
(DG-CVS).

1 Code Description
The code used in this study is a high-order space-time solver based on the discontinuous Galerkin Cell-
Vertex Scheme (DG-CVS) [1, 2]. The solver is under continuous development since March 2008, under the
support from AFOSR Computational Mathematics Program (Grant No. FA9550-08-1-0122 and Grant No.
FA9550-10-1-0045).

DG-CVS was inspired by the space-time Conservation Element/Solution Element (CE/SE) [3] method
and the discontinuous Galerkin (DG) [4] method. DG-CVS integrates the best features of the two methods.
The core idea is to construct a staggered space-time mesh through alternate cell-centered CEs and vertex-
centered CEs within each time step. The difference between SEs and CEs is that the SE includes the
volumeless vertical spike. Inside each SE, the solution is approximated using high-order space-time DG
basis polynomials. The space-time flux conservation is enforced inside each CE using the DG discretization.
The unknowns are stored at both vertices and cell centroids of the spatial mesh. However, the solutions at
vertices and cell centroids are updated at different time levels within each time step successively.

A summary of the main features of DG-CVS is given as follows:

• based on space-time formulation. The space-time formulation is advantageous in handling moving
boundary problems since it automatically satisfies the Geometric Conservation Law on moving meshes.

• high-order accuracy in both space and time. Space and time are handled in a unified way with spacetime
flux conservation and high-order spacetime discontinuous basis functions.

• Riemann solver free. The Riemann-solver-free feature offers two-fold advantages. First, this Riemann-
solver-free approach eliminates some pathological behaviors associated with some Riemann solvers.
Second, it is suitable for any hyperbolic PDE systems whose eigenstructures are not explicitly known.

• reconstruction free. DG-CVS solves for the solution and its all spatial and temporal derivatives simul-
taneously at each space-time node, thus eliminating the need of reconstruction.

• suitable for arbitrary spatial meshes. The CE and SE definitions in DG-CVS are independent of the
underlying spatial mesh and the same definitions can be easily extended from 1-D to higher-dimensions
without any ambiguity. The same CE and SE definitions also apply to meshes with hanging nodes [5].
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• highly compact regardless of order of accuracy. Only information at the immediate neighboring nodes
will be needed to update the solution at the new time level. Compactness eases the parallelization of
the flow solver.

• also accurately solves time-dependent diffusion equations. In DG-CVS, the inclusion of diffusion terms
is straightforward and simple in exactly the same way as how advection terms are handled by simply
incorporating the diffusive flux into the space-time flux [2]. No extra reconstruction or recovery or
ad hoc penalty and coupling terms are needed to ensure the consistency of the variational form for
diffusive terms. For this reason, DG-CVS is conceptually simper than other existing DG methods for
diffusion equations.

• easy nonreflective boundary condition (NRBC) treatment. The simple NRBC treatment [6] in DG-CVS
allows waves to exit the boundary smoothly with little reflection.

DG-CVS offers benefits for both the space-time DG method and the space-time CE/SE method. The benefits
for the space-time CE/SE method is two fold. First, DG-CVS increases the CE/SE method’s temporal and
spatial accuracies by employing high-degree polynomial basis functions inside the SE. Second, DG-CVS
presents universal definitions of CEs and SEs for arbitrary meshes. The benefits for the space-time DG
method are also two-fold. First, DG-CVS provides a Riemann-solver-free approach for the DG methods.
Second, DG-CVS does not need special treatment for the diffusion terms and thus is conceptually simpler
than existing traditional DG methods.

2 Case Summary
This study is to test the performance of our DG-CVS solver on the following case

• C1.6: Vortex Transport by Uniform Flow

2.1 Case Description
The domain is rectangular on [0, Lx] × [0, Ly] = [0, 0.1] × [0, 0.1] in meters. The domain is first initialized
with a uniform flow of pressure P∞ = 105N/m2, temperature T∞ = 300K and Mach number M∞ = 0.05,
and a vortex of characteristic radius R = 0.005 and strength β = 0.02, is superposed around the center of
the domain (Xc, Yc) = (0.05, 0.05). The vortex is provided via

u0 = U∞(1− β y − Yc
R

e−r
2/2)

v0 = U∞β
x−Xc

R
e−r

2/2

where

r =
√

(x−Xc)2 + (y − Yc)2/R

U∞ = M∞

√
γRgasT∞

The temperature and density in the vortex region is prescribed as

T0 = T∞ − 0.5(βU∞e−r
2/2)2/Cp

ρ0 = ρ∞(T0/T∞)1/(γ−1)

where ρ∞ = P∞/(RgasT∞) and Cp = γRgas/(γ − 1). The pressure inside the vortex P0 = ρ0RgasT0.
The prescribed temperature and density ensure that the vortex is a steady solution of the stagnant flow.
Therefore, under uniform background flow, the vortex should be transported horizontally without distortion.

In this case, the ratio of specific heats γ = 1.4 and the gas constant Rgas = 287.15J/kg K. Periodic
boundary conditions are assumed on left/right and top/bottom boundaries, respectively.
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Figure 1: Coarsest meshes used in the case of vortex transport. Left: 24 × 24 rectangular mesh. Right:
randomly perturbed rectangular mesh of the same resolution.

2.2 Residual Tolerances
The L2 norm of the solution error is evaluated according to

||error||2 =

√√√√∑N
i=1

´
Ωi

(qh − qexact)2dA∑N
i=1

´
Ωi

dA

where qh is the numerical solution and qexact is the exact solution. N is the number of vertices. Appropriate
quadrature rule is used to compute the integral.

2.3 Machines Used
All simulations are run on a 64-core Linux cluster. The cluster consists of 16 AMD 2.4 GHz quad-core
processors, 128 GB memory, 8TB hard drive storage and infiniband interconnect. Note that the simulation
is run in the sequential mode.

3 Meshes Used in the Simulation
The simulations are performed on rectangular meshes and perturbed rectangular meshes with three levels
of resolution. The meshes are designated as qua-24, qua-32, qua-48, qua-24-p, qua-32-p and qua-48-p
where the numbers are the number of cells in each direction and ’p’ stands for “perturb”. The coarsest mesh
contains 24× 24 cells as shown in Fig. 1.

4 Results
In the simulation, all quantities are nondimensionalized using the following reference values:

Lref = R, Uref = U∞, ρref = ρ∞, Tref = T∞ and Pref = ρ∞U
2
∞

Define the time-period T = Lx/U∞. The nondimensional period is therefore 20 time units. All the
simulations are performed up to 50 periods (i.e. t = 1000 time units).
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Figure 2: The p3 Mach number field at the 50th period on the 48× 48 rectangular mesh. Left: entire field.
Right: close-up view with grid lines superimposed.

As indicated in the original case guide, the vortex strength β is set to be 0.02. With this β, the density
variations is vanishingly small around the vortex.

The fourth order (p3) DG-CVS is used in all simulations. The nondimensional time step δt = 0.01 for
the 24× 24 rectangular mesh and δt = 0.0075 for the corresponding perturbed mesh.

4.1 Mach number fields at the 50th period
We first present the field solutions at the end of the 50th period. Figures 2 and 3 shows the Mach number
field at the 50th period on the finest meshes (i.e. qua-48 and qua-48p), respectively. As can be seen, the
Mach number ranges between 0.0494 and 0.0506. Note that the background uniform flow has the Mach
number 0.05.

4.2 Velocity profiles at the 50th period
We first show the velocity profiles along the center lines of the vortex at the 50th period on various meshes.
Figure 4 compares the u-component of the velocity along the vertical line x/R = 10 for various meshes.
Figure 5 compares the v-component of the velocity along the horizontal line y/R = 10 for various meshes.
As can be seen, the coarse meshes qua-24 and qua-24-p are not able to preserve the velocity profile. By
contrast, the fine meshes qua-48 and qua-48-p preserve the profile very well over the long simulation. It
can also been observed that the solutions on the regular rectangular meshes are noticeably better than those
on the corresponding perturbed meshes.

4.3 L2 error norms vs. characteristic size
The case guideline requires the L2 error norms be evaluated on the two components of the velocity vector.
The current DG-CVS code outputs error norms on conservative variables instead of primitive variables. In
this test case, the density field is nearly constant (ρ ≈ 1), we expect the error norms based on ρu and ρv
reflect the errors norms based on u and v. Table 1 lists the L2 error norms of x- and y-momentum. In
addition, the numerical convergence orders are also determined.
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Figure 3: The p3 Mach number field at the 50th period on the 48 × 48 perturbed rectangular mesh. Left:
entire field. Right: close-up view with grid lines superimposed.

Table 1: L2 error norms and the numerical convergence order.

mesh type mesh x-momentum y-momentum
||e||2 order ||e||2 order

rectangular
qua-24 3.36E-04 - 3.35E-04 -
qua-32 1.19E-04 3.61 1.19E-04 3.60
qua-48 1.40E-05 5.28 1.36E-05 5.35

perturbed
quadrilateral

qua-24-p 4.91E-04 - 4.86E-04 -
qua-32-p 2.14E-04 2.89 2.16E-04 2.82
qua-48-p 3.67E-05 4.35 3.52E-05 4.47
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Figure 4: Comparison of the profiles of the u-component of the velocity along the vertical line x/R = 10 on
various meshes. Left column: rectangular meshes. Right column: corresponding perturbed meshes.
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Figure 5: Comparison of the profiles of the v-component of the velocity along the horizontal line y/R = 10
on various meshes. Left column: rectangular meshes. Right column: corresponding perturbed meshes.
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5 Conclusions
The simulation shows that the p3 solutions from the DG-CVS based flow solver are able to preserve the
velocity profiles at the 50th period on 48×48 meshes. Besides, the solutions on rectangular meshes are more
accurate than those on perturbed meshes. This test demonstrates the accuracy of the high order DG-CVS
based solver in preserving weak vortices in low Mach number flows over long-term simulations on relatively
coarse meshes. The results also demonstrate the nearly optimal convergence rate of DG-CVS for Euler
equations.
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