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1. Code description

The current flow solver makes use of high-order discontinuous Galerkin (DG) discretizations
with up to fourth-order accuracy (i.e. p = 3). The convective flux on elemental interfaces is
resolved by the HLLC Riemann flux function, while the discretization of the viscous flux is based
on implementation of a symmetric interior penalty method. To enhance solution efficiency, the
DG solver uses a p-multigrid approach, driven by a linearized element Gauss-Seidel smoother or
a Generalized Minimal Residual (GMRES) algorithm. The present high-order discontinuous
Galerkin 3D solver implements the standard MPI message-passing library for inter-processor
communication, where the mesh is partitioned based on the METIS graph partitioner.

A Petrov-Galerkin code has also been developed with accuracy ranging from second order to
third order (p = 2). The solution is obtained using an approximate Newton method where the
linear system is solved via a preconditioned GMRES approach with ILU(k) preconditioning. The
current 3D PG solver also enables parallel computing using MPI.

2. Case summary

In this benchmark case, the L; norm of the density residual is monitored and the residual
tolerance is set to be 10-11. The mesh and order refinement studies are performed on multiple
processors and the work units are obtained using the formula shown below,

, wall time x number of processors
Work units =

TauBench time
where the average TauBench CPU time is 13.4394 seconds.
3. Meshes

A sequence of four unstructured meshes, containing 11210, 79738, 600764 and 4671500
tetrahedral elements, are used for the accuracy and efficiency study. The meshes are generated
with PointWise software with respective 1.6X 103, 1.1X 103, 7.9X 104 and 5.6X 10-* viscous
spacing normal to the wall. The outer boundary is placed at approximately seven chord lengths
away to the delta wing surface. In the DG solver, no-slip and adiabatic wall boundary conditions
are prescribed on the wing surface, while isothermal boundary conditions are set in the PG
solver. Since no curvature is presented on the delta wing surface, linear meshes containing
straight-sided edges and flat faces are employed in the current study. The baseline (i.e. the
coarsest) mesh near the wing surface is displayed in Fig. 1 as an example. It should be noted that
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the surface nodes in the meshes we generate are distributed nearly uniformly, as oppose to the
meshes (not shown) provided in the workshop where more clustered elements are placed near
the wing tip regions. Tables 1 and 2 list the number of degrees of freedom (nDoFs) per equation
and the number of processors used in the DG and PG solvers.

Figure 1. The baseline unstructured mesh (containing 11210 tetrahedrons and 2407 nodes) used in the laminar
delta wing benchmark case.

nDoFs Mesh 0 Mesh 1 Mesh 2 Mesh 3
DGp=1 44.8X103 318.9X 103 2.4X 106 18.6X10¢
DGp=2 112.1X103 797.4X 103 6.0X 106 46.5X 10¢
PGp=1 2.4X103 15.2X 103 107.2X103 806.2X 103

Table 1. Number of degrees of freedom per equation in the DG and PG schemes.
nprocessors Mesh 0 Mesh 1 Mesh 2 Mesh 3
DGp=1 1 8 84 652
DGp=2 4 28 216 N/A
PGp=1 1 2 16 100

Table 2. Number of processors used in the DG and PG schemes for the sequence meshes.

4., Results

The simulation starts with uniform flow with Mach number of 0.3 and viscous drag and lift
coefficients are computed using the second- and third-order of DG discretizations (p =1 and p =
2) as the steady state solution is achieved. The reference force coefficients, corresponding to Cjref
= 0.3455 and Cqef= 0.1605, are obtained using the fourth-order (p = 3) DG scheme on the mesh
with 600764 tetrahedral elements (i.e. containing a total of over 12 million degrees of freedom

2



per equation). As seen, our reference forces agree within two decimal places with the ones
provided in the paper by Leicht and Hartmann [JCP 2010] and the slight difference may be
caused by the different wall boundary conditions implemented in the current DG code. Fig. 2
displays streamlines originated from the sharp leading edge as well as slices of Mach number
contours along the delta wing and the downstream. The generation of vortices near the wing tip
region and their pattern behind the wing body can be clearly observed. Fig. 3 shows lift (a) and
drag (b) error convergence as a function of length scale (h—1/%nDoFs) for the DG
discretizations, where the third-order DG scheme outperforms the second-order counterpart.
For example, with the same length scale or number of degrees of freedom, the third-order DG
scheme achieves a higher error level than the second-order DG scheme. Fig. 4 displays a
comparison of the force error convergence in terms of work units. It can be observed that the
computational cost decreases with increasing discretization order from second order to third
order. The outperformance of the higher-order scheme is more evident when a tighter error
tolerance is desired.

Figure 2. Streamlines and slices of Mach number contours along the delta wing and its downstream using the third-
order DG scheme on Mesh 2 (containing approximately 0.6 million tetrahedrons).

Streamlines and slices of the velocity magnitude near the half delta wing model are shown in Fig.
5 using the second-order accurate Petrov-Galerkin formulation on the finest mesh (Mesh 3). As
seen, the solution looks very similar with the one obtained by the DG scheme. Table 3 lists the lift
and drag coefficients computed using the second-order PG scheme on the same sequence of
meshes used in the DG schemes, where the calculated forces via the second-order PG scheme are
slightly different with the second-order DG discretization results. Additionally, some non-
monotonic convergence is shown using the stabilized PG scheme. This behavior may be caused
by different wall boundary conditions implemented in the two high-order flow solvers. In
particular, the current PG formulation does not implement dual-consistent boundary conditions.
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Figure 3. Convergence of lift and drag error as a function of length scale for the 2nd and 3rd accurate discontinuous
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Figure 4. Convergence of lift and drag error as a function of work units for the 2rd and 374 accurate discontinuous
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Figure 4. Streamlines and slices of velocity magnitude near the delta wing using the 2rd-order Petrov-Galerkin
scheme on Mesh 3 (containing approximately 4.6 million tetrahedrons).

Force coefficients Mesh 0 Mesh 1 Mesh 2 Mesh 3
C 0.4003309 0.3404456 0.3579097 0.3454654
Cq 0.1876298 0.1599375 0.1582711 0.1614232

Table 3. Force coefficients computed by the second-order PG scheme in the laminar delta wing case.




