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@ Inspired by experimental study [Gopalkrishnan/Triantafyllou/et al,
'94], computational study in [Persson/Peraire/Bonet *09]

@ An oscillating cylinder produces vortices that interact with a
heaving and pitching airfoil, in a typical flapping motion

@ Freestream Mach = 0.2, Re = 500, St = 0.1 (for cylinder)

@ Thrust on airfoil highly dependent on distance s and the vortices
convected from cylinder — potentially good case for high-order
methods




@ High-order fully consistent DG on unstructured meshes

@ CDG fluxes for viscous terms — sparsest known scheme

@ Newton-Krylov solvers, ILU/p-multigrid preconditioning

@ Minimum Discarded Fill element ordering

@ MPI-parallelization by connectivity-weighted domain partitioning
@ Deforming domains by mapping-based ALE-approach

@ Curved and deformed meshes by nonlinear elasticity

@ Nonlinear stability by hierarchical sensors and artifical viscosity
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@ Two meshes: 4,362 and 12,885 triangular elements
@ Polynomial degrees p = 1,2,3,4
@ Explicit RK4 scheme in time, At = 2.5 - 107 for all cases

@ Parallel execution on 96 cores, 4 million timesteps per case
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@ Analytically prescribed mapping G(X, 1)

@ Combination of rigid motions and smooth blending functions
@ Symbolic computation of grid velocity vy = % and deformation

gradient G = VxG
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@ No moving meshes — high-order accuracy in space and time
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-s, St = 0.2 (drag coefficients)

Airfoil position s = 3.76:
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Airfoil position s = 3.50:
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-St = 0.1 (drag coefficients)

Airfoi

| position s = 3.76:
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_ Results, St = 0.1 (lift coefficient, cylinder)




 Results, St = 0.1 (lift coefficient, airfoil)

A|rf0|I position s = 3.76:
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@ Cp on cylinder (top) and on
airfoil (bottom)
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