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Summary

A computational fluid dynamics code that solves the Compressible Navier-
Stokes equations was applied to the Taylor-Green vortex problem to examine
the code’s ability to accurately simulate the vortex decay and subsequent tur-
bulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses
explicit central-differencing to compute the spatial derivatives and explicit Low
Dispersion Runge-Kutta methods for the temporal discretization. Several spa-
tial differencing schemes were examined. In addition, the affect large-eddy sim-
ulation sub-grid scale models is described.

1 Code Description

The code used in this study, WRLES (Wave Resolving Large-Eddy Simulation),
is a special purpose large-eddy simulation code that uses high-resolution tem-
poral and spatial discretization schemes to accurately simulate the convection
of turbulent structures. The code solves the compressible Favre-filtered Navier-
Stokes equations. The code is written entirely in Fortran 90 and utilizes both
Message Passing Interface (MPI) libraries[4] and OpenMP compiler directives[3]
for parallelization. The code uses a family of explicit Runge-Kutta time step-
ping schemes written in a general M -stage 2-N storage formulation[7]. Central
differencing is used for the spatial discretization because of its non-dissipative
properties. This helps ensure the accurate convection of turbulent structures.
The central difference stencil is written for an arbitrary stencil size and the spa-
tial discretization can be varied by simply changing the width of the stencil and
the coefficients. Standard stencils from 2nd- to 12th-order are included. In ad-
dition Dispersion Relation Preserving (DRP) stencils are included in the code:
Tam’s 7-point scheme, and Bogey & Bailly’s 7-, 9- and 13-point schemes [1]. So-
lution filtering is used to maintain stability. This is a low-pass filter that leaves
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the low-wavenumber well-resolved structures untouched and removes the high-
wavenumber unresolved structures that can cause instability. For the standard
central difference schemes the filters of Kennedy and Carpenter [5] are imple-
mented in the code. Bogey and Bailly developed filters to match their DRP
stencils and are included.

2 Case Summary

WRLES solves the compressible form of the Navier-Stokes equations. The fol-
lowing flow conditions were specified to provide an incompressible flow at the
proper Reynolds number.

Quantity Value
Reynolds number, Re 1600
Mach Number, M 0.1
Length, L 0.005 ft.
Temperature, T 530 R

Table 1: Flow conditions

Numerous solutions were run to support the following studies

• Baseline study using the 13 point Bogey and Bailley DRP scheme

• Comparison of numerical schemes: standard 4th (ST04), 8th (ST08) and
12th (ST12) order central differncing and 13pt. DRP scheme (BB13)

• Effect of subgrid-stress model: no model, Smagorinsky model and dynamic
Smagorinsky model

The 4-stage, 3rd-order Low Dispersion Runge-Kutta time stepping method
of Carpenter and Kennedy[2] was used for all cases. For the baseline and numer-
ical scheme investigations, grid resolution studies were performed using grids of
643, 1283, and 2563 points. For each differencing scheme and grid, a coefficient
that multiplies the effect of the filter was halved until a minimum value was
found that provided a stable solution with minimal dissipation. It was found
that this minimum filter coefficient was the same for all grid resolutions for a
given scheme.

The 643 and 1283 cases were run on a single processor desktop workstation
with six cores. The 2563 cases were run on the NASA Pleaides high performance
computing system where 8 processors with 8 cores each were used.

The WRLES code was originally written for the 13 point DRP scheme.
The full 13-point stencil is always solved and there is no reduction in work for
the low-order schemes. The other schemes are implemented by changing the
differencing stencil coefficients and zeroes are used where necessary for the the
low-order schemes. For this reason timing information is not reported.
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(a) t∗ = 5 (b) t∗ = 10

(c) t∗ = 15 (d) t∗ = 20

Figure 1: Iso-surfaces of z-vorticity from the BB13 scheme on the 1283 grid

3 Meshes

The meshes were generated using a Fortran code that also computed the initial
conditions. The meshes are regular cartesian meshes of 643, 1283, and 2563

points. In order to maintain the high-order of accuracy at the boundaries of
the domain, additional planes are added beyond x = πL, y = πL and z =
πL and the periodic boundary conditions are enforced over a range of points
adjacent to the boundaries. This insures that all points within the original
domain are computed using the full stencil and that the resolution of the scheme
is maintained.

4 Results

A baseline set of simulations was performed using the BB13 scheme. Three
grid levels were run and a filter coefficient of 0.05 was used for all the cases.
Iso-contours of the z-component of vorticity illustrating the vortical motion,
transition to turbulence and turbulent decay are shown in figure 1. The change
in the integrated kinetic energy over time is shown for all three grid levels in
figure 2. Little difference is seen between the grid levels in this plot; although a
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(b) close up of 10 < t∗ < 20

Figure 2: Evolution of kinetic energy

close-up of 10 < t∗ < 20 indicates that the coarser grids contain less energy as
time evolves.

Figure 3 shows the evolution of the energy dissipation rate in several forms.
The time rate of change of the integrated kinetic energy, ε = −∂Ek

∂t is given
in figure 3(a). Reasonable agreement with the reference solution[6] is show
for all grid levels. The largest discrepancies are at the peak dissipation rates,
7 < t∗ < 12. Here, the accuracy improves with grid resolution and the 2563

grid is in excellent agreement with the reference solution. The evolution of
enstrophy, E , is given in figure 3(b). For incompressible flow E = 1

2
ρ0
µ ε, and one

may expect the predictions of E and ε to be similar. However as the figure shows,
the enstrophy is more difficult to resolve numerically. The peak enstrophy is
severely underpredicted on the coarsest grid. The prediction improves with grid
resolution and the enstrophy on the 2563 grid approaches the correct levels. The
primary contribution of the energy dissipation rate, ε1, can be computed from
the deviatoric portion of the strain rate tensor (figure 3(c)). This prediction of
this quantity is very similar to the prediction of the enstrophy evolution. The
other contribution to the energy dissipation rate, ε3, is from the product of
pressure and dilatation. For incompressible flow this term should be very small.
Figure 3(d) shows that this term is two orders of magnitude smaller than ε1.

Contours of the vorticity norm on the constant x-plane, x = −πL, at time
t∗ = 8 are shown in figure 4. The vorticity is smeared over a large area at the
lowest grid level and the structure is not well defined. At higher grid resolutions,
the structure is becomes more defined, less smeared and the peak vorticity level
increases. The 2563 plot closely resembles the reference solution.

A comparision of the four differencing schemes on the three different grid
levels is show in figure 5. The kinetic energy dissipation rate and the evolution
of enstrophy are shown. These results are consistent with 3. The kinetic energy
dissipation is agrees reasonably well for all grid levels and schemes, with the

4



t*

-d
E k/d

t

0 5 10 15 200

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

64
128
256
ref. soln.

(a) time rate of change of integrated kinetic

energy, -
∂Ek
∂t∗

t*

 
  

0 5 10 15 200

2

4

6

8

10

12

64
128
256
ref. soln.

(b) evolution of enstrophy, E
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(c) evolution of the deviatoric strain tensor,
ε1
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(d) evolution of the pressure dilatation, ε3

Figure 3: Evolution of the energy dissipation rate; comparison of grid resolutions
using the BB13 scheme
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(a) 643 (b) 1283 (c) 2563
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Figure 4: Contours of the vorticity norm, |ω| L
V0

, at x = −πL and t∗ = 8;
comparison of grid resolutions using the BB13 scheme

exception of the 4th-order scheme on the 643 grid. The enstrophy is under-
predicted for all schemes until the 2563 grid is reached. The ST12 and BB13
schemes, both utilize 13 point stencils and their predictions are very similar
with the primary differences occurring at the peak dissipation rates.

To quantify the error in the predicted quantities, the predictions were com-
pared to the reference solution. Linear interpolation was used to compute ref-
erence values at the simulation time intervals. The error presented is the L2
error computed over the time period 0 < t∗ < 20. The data is plotted against
the grid size, ds, and presented in figure 6 The errors all decrease with grid
refinement. But, the relative errors between numerical schemes Ek and −∂Ek

∂t
vary somewhat from the expected behavior. For example, the 8th-order scheme
provides the lowest error in Ek at the 643 and 1283 grid levels. The error in
enstrophy behaves as expected with the higher order schemes producing the
lowest errors; the 13-point DRP scheme shows slightly lower errors than the
standard 12th-order scheme.

Large-eddy simulation sub-grid scale models were examined using the BB13
scheme and the 1283 grid. The standard Smagorinsky model and the dynamic
Smagorinsky model are compared to the no model case. Both sub-grid models
perform similarly; increasing the dissipation rate early in the flowfield evolu-
tion and reducing the dissipation near the peak dissipation rates. Both models
significantly reduce the resolution of enstrophy. The dynamic model produces
a jagged -∂Ek

∂t∗ curve at the peak dissipation rates and also produces slightly
higher levels of enstrophy at that location. Both of these effects are due to the
backscatter of energy from small to large scales that the dynamic model allows.
This was confirmed with a simulation where the backscatter was removed.
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(a) 643 grid
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(b) 643 grid
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(c) 1283 grid
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(d) 1283 grid
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(e) 2563 grid

t*
0 5 10 15 200

2

4

6

8

10

12

BB13
St04
St08
St12
ref. soln.

(f) 2563 grid

Figure 5: Evolution of the energy dissipation rate; comparison of finite differ-
encing schemes. Left column, time rate of change of integrated kinetic energy,
-∂Ek

∂t∗ , right column, evolution of enstrophy, E
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Figure 6: Comparison of the average errors
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(b) evolution of enstrophy, E

Figure 7: Evolution of the energy dissipation rate; comparison of sub-grid scale
models.
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