Simulation of the Taylor-Green Vortex at Re=1600 Using the CPR Method

Takanori Haga and Z.J. Wang Iowa State University

1st International Workshop on High-Order CFD Methods Jan. 8, 2012

CPR-3D Code Description

Correction Procedure via Reconstruction code

- Finite difference like formulation
 - DG coefficients are employed
 - Solution points at Gauss-Lobatto nodes (flux points are collocated at cell boundary)
- Hybrid mesh capability: Hex, Tet, Prism, (Pyramid)
- Roe scheme and BR-2 scheme for inviscid and viscous fluxes
- Explicit 3-stage RK scheme for time integration
- MPI parallelization with domain decomposition

Simulation Details

	Grid	р	DOF	Time step
	(Hex)			
comp. 1	64x64x64	2	7,077,888	3.92e-04
comp. 2	64x64x64	3	16,777,216	3.92e-04
comp. 3	64x64x64	4	32,768,000	2.63e-04
comp. 4	96x96x96	2	23,887,872	3.92e-04

Time derivative is approximated by one-sided finite difference

- *p*3 on 64^3 grid has 30% less DOFs than p2 on 96^3
- Large discrepancy comparing to the energy dissipation rate indicates error due to compressible discretization

Vorticity Contours

Vorticity Contours (Cont.)

Ref. spectral & DG 96x96x96, p3

Figure 3: Iso-contours of the dimensionless vorticity norm, $\frac{L}{V_0} |\boldsymbol{\omega}| = 1, 5, 10, 20, 30$, on a subset of the periodic face $\frac{x}{L} = -\pi$ at time $\frac{t}{t_c} = 8$. Comparison between the results obtained using the pseudo-spectral code (black) and those obtained using a DG code with p = 3 and on a 96³ mesh (red).

Work Units

- Machine spec
 - 8 nodes, 8 cores per node (64 cores in total)
 - CPU: Intel Xeon E5530 @ 2.4GHz
 - Memory: 24 GB per node
- Measured TauBench wall clock time = 9.554 [s]
- Work Units for 100 residual evaluations with 250,000 DOFs
 - 64x64x64 grid was used and scaled to the same number of DOFs
 - 16 cores were used and run as 32 processes using Hyperthreading

Computational Costs

	Grid	р	DOF	# of cores (# of processes)	Memory(MB)/ processes	Work units /Iteration
comp. 1	64x64x64	2	7,077,888	16(32)	155	8.56
comp. 2	64x64x64	3	16,777,216	16(32)	310	12.55
comp. 3	64x64x64	4	32,768,000	64(64)	292	40.62
comp. 4	96x96x96	2	23,887,872	64(64)	258	42.02
comp. 5	64x64x64 Note:	- Wor	32,768,000 k units is con	32(64) nputed as	292	22.90
	(Elap	osed [·]	time x Numb	er of <mark>cores</mark>)/T	auBench time	
• B	enefit of u	sina I	-lvperthreadi	na is observe	d (comp.3 vs cor	mp. 5)

Conclusions

- Increasing the degree of polynomial, p (at most p4 in this work) is the right way rather than grid refinement with lower p
 - p3 solution on 64^3 grid is much better than p2 solution on 96^3 grid with 30% less DOFs
 - Residual evaluation for higher *p* is more efficient in terms of the same DOFs
- Error due to the compressible flow discretization was pronounced in the cases of insufficient resolution
- Aliasing error related to the location of the solution and flux points needs to be studied further