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Abstract

DG and Fourier pseudo-spectral computations are performed for the Taylor-Green vortex problem at low and

moderate Reynolds numbers. The aim is to assess the potential of high-order methods for the direct numerical

simulations of turbulent �ows. The reference solution provided in the context of the Workshop is given by an

over resolved computation carried out using a Fourier spectral code. In particular, we will focus on the evolution

of enstrophy and the turbulent kinetic energy decay. Further comparisons are made in physical and spectral

space with respect to a reference solution computed employing a pseudo-spectral code.

1 Introduction

AGHORA is an in-house CFD solver developed at ONERA. The full set of compressible Navier-Stokes equations

can be solved in two or three dimensions. So far, AGHORA supports tetrahedral or hexaedral mesh elements.

The discretization scheme is based on a discontinuous Galerkin modal approach, the order of the approximation

depending directly on the speci�ed polynomial degree.

The test case considered in the context of the workshop is the direct numerical simulation (DNS) of the Taylor-

Green vortex �ow. This case is a critical test for numerical schemes, as the convective and viscous terms play

important roles. The convective terms generate the energy cascade between the di�erent scales of the turbulent

�ow, and accurate representation of the viscous �ux is needed because it has to dissipate the energy around the

highest wavenumbers.

We have performed DG computations for low and moderate Reynolds numbers, respectively Re = 280 and Re =

1600. The reference solutions are provided in the context of the workshop (statiscal properties of the �ow and

magnitude of the vorticity �eld are available). We have also performed our own pseudo-spectral computations for

more in-depth comparisons of the spectral and physical characteristics of the �ow.
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2 Case details

In order to assess the DG discretization for direct numerical simulation, the Taylor-Green vortex is a case of interest,

since it allows the analytic initialization of a two direction isotropic �eld (urms
0 = vrms

0 , wrms
0 = 0) in physical space

[1]. It corresponds in spectral space to an injection of energy at the wavenumber ki = 2
L , 2πL being the box size.

The initial �eld is given by the following functions :
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Although this case is meant to be incompressible, one can extend the initial pro�le to compressible equations,

imposing the following initial pressure �eld :

p0 (x, y, z) = p∞ +
ρ0
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The incompressible limit is reached by setting the Mach number for all simulation to M = 0.1. All the quantities

involved in the study are nondimensionalised using L, V0 and ρ0.

The DG computations are performed on meshes containing cubic elements. The number of degrees of freedom

(DOFs) is de�ned as the product of the total elements number times the dimension of the polynomial basis ((p+1)3

in the case of cubic elements, where p is the polynomial order). We also use a de-aliased Fourier pseudo-spectral

code developped at Cambridge University named Fergus [2] to obtain a reference solution in each case.

In order to analyse the results, we de�ne space averaged quantities related to the turbulent motion over a volume

V :

• The mean turbulent kinetic energy Ek (also named TKE) :

Ek =
1
V

�
V

u.u
2

dx

• The mean enstrophy Ω:

Ω =
1
V

�
V

ω.ω

2
dx

• The mean kinetic energy dissipation rate ε, which can be evaluated in two ways :

ε = −dEk

dt
=

2µ

V

�
V

S : S
2

dx

• The incompressible and compressible contributions to the mean dissipation rate, ε1 and ε3 respectively:

ε1 =
2µ

V

�
V

Sd : Sddx , ε3 =
1
V

�
V

p∇.udV

where Sd is the deviatoric part of the strain rate tensor, u the velocity vector and ω the vorticity vector.
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The temporal evolution of these mean quantities allows us to monitor the quality of the solution over time. Espe-

cially, the mean enstrophy and dissipation rates are representative of the accurate discretization of the gradients.

For local comparisons in physical space, we can plot the vorticity modulus or the values of Q criterion, which is

related to the stretched vortex tubes appearing when the turbulence is developped in the �ow. The best way to

visualize these structures is to plot positives values of Q, i.e. :

Q =
1
2

(R : R− S : S) > 0

where R is the rotationnal tensor and S the strain rate tensor.

3 Numerical method

We brie�y describe here the main features of the DG method used to compute the Taylor-Green vortex case.

The solution in each element is expressed in terms of a polynomial expansion. The basis functions in two or

three dimensions are built using tensor products of 1D polynomials. In the particular case of parallelepipeds,

the Legendre polynomial basis is used. For tetrahedral elements, we use the orthogonal Dubiner basis, based

on Jacobi polynomials. A modi�ed Gram-Schmidt orthonormalization procedure may also be used for general-

shaped elements. We employ over integration for the de-alising of the method. This implies the de�nition of

(p + 1)3 quadrature points on each parallelepipedic element. The Lax-Friedrichs �ux is chosen to approximate the

convective �uxes across the interface of elements. The BR2 scheme [3, 4] is used to discretize the viscous �uxes,

both in cells and on faces using local and global lifting operators. Finally, an explicit third order low storage

Runge-Kutta scheme is used for time stepping. The approximation order of the spatial scheme can be chosen by

specifying the polynomial degree.

4 Computational details

The domain consists of a cubic box with periodic boundary conditions on all faces. The length of the domain is 2π

in each of the axis directions. The meshes considered in this study are cartesian with regular grid spacing, therefore

composed of cubic elements.

Two DG and one pseudo-spectral (PS) computations have been performed for both the low and moderate Reynolds

number cases. For the latter, parallel runs have been performed. Tab. 1 summarizes the details of the 6 computa-

tions carried out.

Method Case Accuracy (p+1) Nb. cores Nb. DOFs/Elements ∆t

DG Re = 280 3 1 963/ 323 1.45× 10−3

DG Re = 280 4 1 963/ 243 1.95× 10−3

PS Re = 280 - 1 963 6.28× 10−3

DG Re = 1600 4 256 2563/ 643 7.29× 10−4

DG Re = 1600 4 432 3843/ 963 4.86× 10−4

PS Re = 1600 - 1 3843 3.14× 10−3

Table 1 : Detail of the computations performed
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5 Results

5.1 DNS computations at Re = 280

We �rst consider a case with Re = 280. At this low Reynolds number, 643 Fourier modes are su�cient to represent

accurately all the scales of motion, in the limit of ∆x = 2η ,where η is the Kolmogorov scale, as proposed by Pope

[5]. We also performed a computation using 1283 Fourier modes using the Fergus pseudo-spectral code [2] verifying

∆x < η, in order to obtain a reference solution. Two DG computations involving 963 degrees of freedom have been

carried out using a third and a fourth order-discretization. We �rst compare the evolution of the mean turbulent

kinetic energy, enstrophy and dissipation rate in Fig. 1 to check the capacity of DG schemes to capture the basic

dynamics of turbulent �ows.

Figure 1: Evolution of mean TKE, dissipation rate and enstrophy evolution for the Taylor-Green simulations at
Re=280. Comparison between the DG discretizations and the Fourier pseudo-spectral method.
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The di�erences between the DG and the spectral code solutions are very small for the TKE evolution. The

enstrophy decays too abruptly for the DG third-order case, while the fourth-order case shows a good correlation

with the spectral result. We observe the same behaviour for the dissipation rate.

In Fig.2, we plot the energy spectra for each solution at a time past the enstrophy peak, for which all scales down

to η are well developped in the �ow.

Figure 2: TKE spectra at t = 9.4, dashed grey line represents the -5/3 slope

We observe that the DG discretizations act here as a low-pass �lter on the turbulent �eld. This e�ect is in particular

visible for the third-order DG discretization for which the energy content of the smaller scales is not accurately

represented. The fourth-order DG case captures more accurately the small-scale phenomena, although an energy

damping is still present in the upper range of the spectrum.

5.2 DNS computations at Re = 1600

This case requires a greater number of degrees of freedom than for the Re = 280 case for the represention of the

whole spectrum of turbulent scales. All scales are captured with 5123 degrees of freedom in the spectral computation

although in practice 2563 degrees of freedom are su�cient to represent the main characteristics of the �ow (see van

Rees [6]). We performed two computations with the DG code involving 2563 and 3843 DOFs. The last one matches

the Fourier modes needed for a pseudo-spectral 2563 computation (as the dealiasing is realised by using
(

3
2 × 256

)3

Fourier modes in pseudo-spectral methods). Fig. 3 represents the evolution of the turbulent kinetic energy, the

dissipation and the enstrophy for both simulations.

5



Figure 3: Evolution of mean TKE, dissipation rate and enstrophy evolution for the Taylor-Green simulations at
Re=1600. Comparison between the DG discretizations and the Fourier pseudo-spectral method.

Both computations show very good agreement with the spectral reference solution, and in particular during the

�rst phase of the simulation for which the convective phenomena are predominant. Small discrepancies appear,

however, near the enstrophy peak, when all the scales of turbulent motion are developped and contribute to the

overall dynamics of the �ow. To further investigate the cause of these di�erences, Fig. 4 shows the spectra for a

time past the enstrophy peak, for both the DG computation and the pseudo-spectral computation involving 2563

Fourier modes.
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Figure 4: TKE spectra at t = 8.2 for the Re = 1600 case

We see that the DG computation with more DOFs has a richer spectral content than the under-resolved one. It

could be interesting to investigate wether the quality of the spectral representation is improved by performing

computations with the number of DOFs but with an increased approximation order.

As the AGHORA code solves the compressible set of Navier-Stokes equations, we can investigate the e�ects of

compressibility if any, by �rst comparing the values of dissipation given by ε = −dEk

dt and ε1 = 2µ
V

�
V

Sd : Sddx in

Fig.5 and also by plotting ε3 in Fig. 6 for both DG discretizations.

Figure 5: Comparison between ε and ε1 for the two DG computations
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Figure 6: Evolution of ε3 for the two DG computations

The evolution of dissipation in Fig. 5 shows that the di�erence between the total dissipation and the incompressible

component of the dissipation is signi�cant for the DG 643 computation. For the DG 963 computation, this di�erence

is almost imperceptible. It therefore seems that compressibility e�ects play a role in the under-resolved computation.

This is con�rmed in Fig. 6 which shows that the compressible part of the dissipation is more important for the DG

643 computation. The oscillations of ε3 are probably a consequence of acoustic waves propagating in the �ow, as

this term is a function of the pressure.

We have also checked the solutions obtained with the DG and spectral computations in physical space. First, we

have analysed the �eld of vorticity magnitude on a quarter of a slice at x = 0 in the domain. This is presented in

Fig. 7, for both the DG solutions and the data available from van Rees et al. [6].

Figure 7: Modulus of vorticity on a slice at x = 0 for 5123 spectral (black), DG 643 p3 (left) and DG 963 p3 (right)
computations (superimposed in red)

The vorticity map for the under-resolved DG computation (DG 643 p3) fails to reproduce some of the details and

shows some discrepancies with respect to the spectral solution. However, the main structures are relatively similar.

The 963 DG computation shows a far better agreement. The small di�erences are observed for low values of the

vorticity magnitude (e.g. in the representation of the vortex cores).
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To further assess the capacity of the DG discretization to represent the vortical structures of the �ow, we have

studied the solution based on the Q criterion. This criterion is related to the elongated worm-like vortices which

are typical of isotropic turbulent �ows. Here we choose the time t = 10.8, which corresponds to a time past the

enstrophy peak.

Figure 8: Representation of the Q criterion for 2563 spectral (left), DG 643 p3 (center) and DG 963 p3 (right)
computations

Despite the fact that the marginally resolved DG computation provides a poorer representation of the vortex �eld

as seen in Fig. 8, we have found a very good agreement between the three computations in terms of the organisation

of turbulent structures in physical space.

Conclusion

We have assessed ONERA's Aghora DG code based on the Taylor-Green vortex �ow at Re = 280 and Re = 1600.

The low Reynolds number tests have shown that high-order methods are relevant for unsteady computations of

turbulent �ows. Indeed, the analysis of the TKE spectra shows that a better representation of the �ow is obtained

when the order of approximation is increased, at equal number of DOFs. We have also obtained very good agreement

between the DG and the Fourier spectral reference computations in terms of the temporal evolution of mean

quantities like the turbulent kinetic energy or the enstrophy. This good correlation is also veri�ed for the moderate

Reynolds number computations. The results for this case also show the capacity of DG schemes to represent

accurately the �ow motion in physical space (turbulent structures by looking at iso-Q criterion surfaces and vorticity

modulus). However, it seems that resolutions higher than those considered here are required to represent the full

spectral content of the �ow. It could be interesting to study wether increasing the discretization order while keeping

the same number of DOFs is su�cient to capture the structures down to the Kolmogorov scales. The comparison

between the dissipation rate computed from the turbulent kinetic energy and from the incompressible part of the

strain rate tensor shows that the DG computation with fewer DOFs is more sensitive to compressibility e�ects. This

was veri�ed by analysing the evolution of the compressible part of the dissipation rate, since its value is greater in

the under-resolved DG computation. Further investigations are required to �nd out the origin of this phenomenon.
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