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Extended Abstract

In the following work, we present the results of selected simulations of the classical Taylor-Green vortex
problem with a variant of the Discontinuous Galerkin method (DG) labeled the �Discontinuous Galerk-
ing Spectral Element Method� (DGSEM). We consider both the well-resolved (DNS-like) case and the
underresolved case and show that stabilized high-order schemes are well suited for this type of simulation
and outperform their low-order counterparts.

Taylor-Green Vortex �ow

The Taylor-Green vortex �ow problem constitutes the simplest �ow for which a turbulent energy cas-
cade can be observed numerically. Starting from an initial analytical solution containing only a single
length scale, the �ow �eld undergoes a rapid build-up of a fully turbulent dissipative spectrum because
of non-linear interactions of the developing eddies (Fig. 1). The resulting �ow �eld exhibits the features
of an isotropic, homogeneous turbulence and is often used in code validation or evaluation of numerical
approaches to subgrid scale modeling [2], [3], [4].
All our computations were run on a structured Cartesian grid of hexahedral elements, covering a triple-
periodic box of size [−π, π]3. The physical time frame from 0s to 20s was covered according to the
problem description, starting from the initial analytical solution with given velocity and pressure �elds,
a constant temperature and an essentially incompressible �ow �eld with a Mach number of Ma = 0.1.

Figure 1: Taylor-Green Vortex (Re = 5000). Isocontours of vorticity magnitude, colored by helicity at
t = 0.5s, 1.9s and 9.0s

We have studied the Taylor-Green vortex problem extensively for a range of Reynolds numbers from



Re = 200 up to Re = 5000 for both resolved and underresolved scenarios. In this work, we will present
our �ndings for two scenarios: a) high-resolution computations of this �ow for Re = 1600 for a resolution
of 2563 DOF and varying distribution of elements and subcell resolution through polynomial order and
b) underresolved simulations of the same �ow with only 643 DOF.

Code Framework

Our code framework is based on a collocation type formulation of the Discontinuous Galerkin method
labeled the �Discontinuous Galerkin Spectral Element method�, see Kopriva [7], and solves the compress-
ible Navier-Stokes equations. The implementation allows the selection of arbitrary polynomial order and
thus enables us to study the features of high order formulations very e�ciently within our framework.
Explicit time integration is achieved by a 5-stage 4th order Runge-Kutta scheme.
The code is accompanied by a postprocessing tool for visualization and a-posteriori extraction of relevant
�ow features and a 3D Fast Fourier transform for the analysis of �ow spectra. The whole framework is
fully MPI-parallelized, where special care has been taken to achieve a high parallel e�ciency and excel-
lent scaling. On the Jugene (IBM BlueGene/P system, Jülich Supercomputing Center) system, a strong
scaling of close to 90% was measured on up to 125000 processors [1].
In this work, we present computations performed on the NEC Nehalem cluster (TauBench of 7.6s) and on
the Cray XE6 Hermit cluster (TauBench of 15.1s) at the High Performance Computing Center Stuttgart
(HLRS) on 128 to 512 cores.

Results for the well-resolved case: 2563 DOF

As indicated in the test case 3.5 setup description, a resolution of 2563 DOF is expected to resolve almost
all of the �ow scales for a Reynolds number of 1600 and is thus very close to a DNS. We have conducted
a series of simulations of this test case with varying number of elements and associated polynomial de-
gree, resulting in ≈ 2563 DOF for all cases. Table 1 summarizes some selected setups and gives their
computational e�ort in TauBench workunits. Note that the computation with N = 15 needed a weak
stabilization by �ltering, due to the interaction of two e�ects: Firstly, the resolution of 2563 DOF with a
grid Nyquist wavenumber of kNy = 128 is not su�cient for a full DNS, i.e. parts of the dissipation range
cannot by captured on this grid. Secondly, the reduced dissipation of the very high order formulation
reduces its tolerance of computational crimes like aliasing errors introduced by the insu�cient integration
precision of the �ux terms [5].

No. of Elements N DOF per dir Stabilization No. of cores TAU Work Units

128 1 256 - 128 (Cray XE6) 840,000

64 3 256 - 256 (Cray XE6) 915,000

32 7 256 - 256 (Cray XE6) 929,000

25 9 250 - 125 (Cray XE6) 944,000

21 11 252 - 343 (Cray XE6) 1,670,000

16 15 256 weak 256 (Cray XE6) 2,310,000

64 7 512 - 512 (NEC Nehalem) 38,100,000

24 15 384 - 512 (NEC Nehalem) 14,000,000

Table 1: Selected Taylor-Green vortex computations

Figure 2 shows the results for the kinetic energy dissipation rate over simulated time for the highlighted
combinations of h- and p-resolution in table 1, and a zoom-in on the time with a strong dominance of the
small scales. As evident from these plots, the high-order simulations with their lower numerical errors
outperfom their lower-order counterpart. In particular, the results for N = 7 (32x8) are very close to the
DNS results.
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Figure 2: Kinetic energy dissipation rate and zoom in on maximum region

Figure 3: Visualization of vortex detection criterion λ2 = −1.5 for N = 1, N = 3 and N = 15 case (left
to right, 2563 DOF in each case)

Figure 3 gives a visual impression of the solution quality for the 2563 DOF computations by depicting
the vortex structure at t = 8s. The linear approximation of the solution in each cell (N = 1; left
plot) captures only the very large structures in the �ow and shows strong discontinuities at the grid cell
interfaces. Increasing the polynomial order to N = 3 (middle plot) results in a signi�cant improvement,
large scale structures become considerably smoother and small scale features start to appear, although
contaminated by noise. For the very high order computation (N = 15, right plot), the clutter is almost
gone, small structures are well resolved and the vortex representation is smooth.

Results for the underresolved case: 643 DOF

As presented in the previous section, it is obvious that for well-resolved multiscale �ows, high order
schemes bene�t from their superior dissipation and dispersion qualities and outperform low-order formu-
lations. However, for most pratical �ow problems, the high Reynolds numbers make a high-resolution
simulation prohibitively expensive. In these underresolved cases, the theoretical order of convergence
associated with the polynomial approximation as the grid size tends to zero loses relevance, since h is
�large� and far from zero. Instead, the dissipative and dispersive error behavior for underresolved wave-
lengths dominates the approximation quality and is a better measure for the accuracy of the method.
In �gure 4, we consider again the Taylor-Green vortex at Re = 1600 for a low and a high order approx-
imation with equal nominal resolution, but we reduce the degrees of freedom consecutively by a factor
of 2. With decreasing resolution, the numerical error dominates the behavior of the low-order scheme
and e�ectively masks the underlying physics and introduces a much lower �numerical� Reynolds number.
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Figure 4: Kinetic energy dissipation rate for reduced resolutions: left: N = 1, right: N = 15, curves of
the same color have the same no. of total DOF (red - 2563; blue - 1283; green - 643)

(The maximum of the dissipation rate moves to earlier times, which is characteristic of the Taylor-Green
vortex at lower Reynolds numbers, see e.g. [3].) The high-order scheme proves to be more resilient to
the reduced number of degrees of freedom and still captures the relevant �ow structures satisfactorily,
even for the coarse 643 DOF resolution. It should be noted however that due to the inherently lower
dissipative error and higher suspectibility to aliasing errors, the high order discretizations require a sta-
bilizing mechanism such as overintegration or �ltering. These stabilizing techniques and the accuracy of
high-order discretizations for underresolved Taylor-Green vortex simulations were investigated in detail
in [6].
Figure 5 corroborates these �ndings for the increasing Reynolds number by comparing the 16th order
stabilized computation with 643 DOF with state-of-the-art explicit and implict LES formulations with
the same resolution. Details can be found again in [6].
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Figure 5: Plot for the kinetic energy dissipation rate for Re = 800, 1600, 3000 for N = 15 computations
compared to DNS and LES reference data. Published in [6].

Conclusion

We have investigated the Taylor-Green vortex �ow for well-resolved and underresolved scenarios with
the Discontinuous Galerkin Spectral Element method. Our framework is capable of delivering high-order
accurate results in a highly e�cient way. Investigations into the behavior of underresolved high-order
discretizations indicates their potential usefulness for coarse-scale simulations of multi-scale problems.
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