C1.5 Radial expansion wave

1. Code description

XFlow is a high-order discontinuous Galerkin (DG) finite element solver written in ANSI C, intended to be run on Linux-type platforms. Relevant supported equation sets include compressible Euler, Navier-Stokes, and RANS with the Spalart-Allmaras model. High-order is achieved compactly within elements using various high-order bases on triangles, tetrahedra, quadrilaterals, and hexahedra. Parallel runs are supported using domain partitioning and MPI communication. Visual post-processing is performed with an in-house plotter. Output-based adaptivity is available using discrete adjoints.

2. Case summary

A fourth-order Runge-Kutta explicit solver was used for all runs in this case. The number of time steps was set using a high-order CFL condition as described in Cockburn and Shu's DG review paper (2001), with an additional conservative factor of 0.25 multiplying the CFL. The results represent the entropy errors at t=2 for a specific heat ratio of 1.4. Runs were performed on the nyx supercomputing cluster at the University of Michigan. The number of cores was 8 for all meshes and orders. On one core of the nyx machine, one TauBench unit is equivalent to 16.5 seconds of compute time.

3. Meshes

The 2D meshes were generated using a Matlab script and consisted of triangular elements. A supersonic boundary condition is imposed on all domain boundaries.

4. 2D Results

The following figures and table present the requested data obtained for the 2D case.

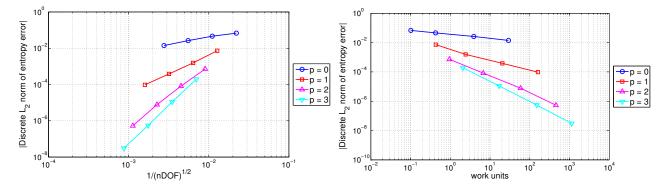


Figure 1: Entropy error convergence with h refinement and work units.

Table 1: Relevant data for the 2D fadial expansion case.					
nelem	p = 0	p = 1	p = 2	p = 3	
2048	6.7861e-02	7.2694e-03	7.2066e-04	1.9474e-04	
rate	-	-	-	-	
8192	4.5995e-02	1.5600e-03	8.2500e-05	1.1100e-05	
rate	0.56	2.22	3.13	4.13	
32768	2.6251e-02	3.8450e-04	7.7491e-06	5.4975e-07	
rate	0.81	2.02	3.41	4.34	
131072	1.4096e-02	9.6379e-05	5.2903e-07	3.0751e-08	
rate	0.90	2.00	3.87	4.16	

Table 1: Relevant data for the 2D radial expansion case.

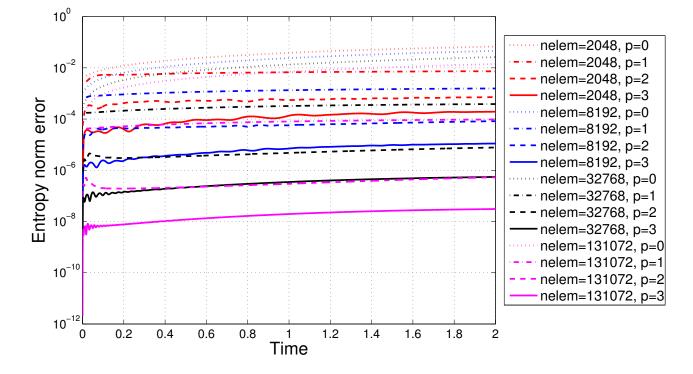


Figure 2: A time history plot for various approximation orders and refinements.