
C1.6 Vortex Transport by Uniform Flow

1. Code description

XFlow is a high-order discontinuous Galerkin (DG) finite element solver written in ANSI C, intended to
be run on Linux-type platforms. Relevant supported equation sets include compressible Euler, Navier-
Stokes, and RANS with the Spalart-Allmaras model. High-order is achieved compactly within elements
using various high-order bases on triangles, tetrahedra, quadrilaterals, and hexahedra. Parallel runs
are supported using domain partitioning and MPI communication. Visual post-processing is performed
with an in-house plotter. Output-based adaptivity is available using discrete adjoints.

2. Case summary

The prescribed initial condition was imposed via least-squares projection onto the space spanned by
the DG basis at each order. Time stepping was performed using a fourth order diagonally-implicit
Runge-Kutta time stepping scheme. At each stage, the nonlinear system was solved using implicit
Newton preconditioned with a line-Jacobi smoother.

At each stage of the time stepping scheme, the residual was converged to an absolute L1 norm
below 10−12 using a conservative state vector. The freestream quantities provided in the problem
description are in SI units, but we found that setting up the problem in these units made adequate
iterative convergence of the momentum equations difficult to achieve. This is because the code monitors
the L1 norm of the entire state vector for convergence, and due to the large values of energy and
limits of machine precision, driving this norm below ∼ 5 × 10−7 was not feasible for all meshes.
Therefore, the input conditions were normalized using Rgas = 1, p∞ = 1, T∞ = 1. This means that our
nondimensional velocities are related to the physical velocities via the factor

√
(287.15J/kg.K)(300K),

and hence this factor was used to multiply the computed L2 errors for consistency.
Runs were performed on the nyx supercomputing cluster at the University of Michigan. The

number of cores ranged from 64 on the coarsest meshes to 192 on the finest meshes. On one core of
the nyx machine, one TauBench unit is equivalent to 16.5 seconds of compute time.

3. Meshes

Triangular meshes were constructed in-house using a Matlab script. This script created a uniform
lattice over the square domain and then created right triangles by bisecting each square along one of
the diagonals. Random perturbations to the mesh (for the requested case) were added according to the
specified δ = 0.15h. We note that the perturbed mesh sequence is not nested in that the perturbations
were imposed independently on each mesh in the sequence. Sample meshes are shown in Figure 1.

4. Results

The figures and tables below present the requested results. DIRK4 was used for the temporal dis-
cretization: the number of time steps was set to 1600 for the coarsest mesh (8 × 8), and doubled for
every successively-refined mesh. This may have been somewhat excessive for the coarse orders but it
avoided tuning at different orders.

Slow vortex: M∞ = .05, β = .02, R = 0.005
Figure 2 shows convergence of the velocity L2 error of the velocity field with mesh refinement..

Figure 3 shows the same results versus work units. Tables 1 and 2 show the same data in tabular
form.

Fast vortex: M∞ = .5, β = .2, R = 0.005
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(a) Unperturbed mesh (b) Perturbed mesh

Figure 1: Sample unperturbed and perturbed meshes generated for this case.
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(a) Uniform mesh
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(b) Perturbed mesh

Figure 2: M = 0.05, β = .02, R = 0.005: L2 error of the velocity field, plotted versus a function of
the degrees of freedom.

Table 1: M = 0.05, β = .02, R = 0.005: L2 error of the velocity field.
nelem p = 0 p = 1 p = 2 p = 3

128 2.5513e-02 3.4804e-02 2.6765e-02 2.3969e-02
rate - - - -

512 2.8395e-02 3.0200e-02 2.4535e-02 9.4855e-03
rate -0.15 0.20 0.13 1.34

2048 3.0112e-02 2.6634e-02 8.5876e-03 3.3916e-04
rate -0.08 0.18 1.51 4.81

8192 3.0576e-02 2.1069e-02 5.9813e-04 2.2432e-05
rate -0.02 0.34 3.84 3.92

Figure 4 shows convergence of the velocity L2 error of the velocity field with mesh refinement..
Figure 5 shows the same results versus work units. Tables 3 and 4 show the same data in tabular
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(a) Uniform mesh
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(b) Perturbed mesh

Figure 3: M = 0.05, β = .02, R = 0.005: L2 error of the velocity field, plotted versus work units.

Table 2: M = 0.05, β = .02, R = 0.005: L2 error of the velocity field, perturbed mesh.
nelem p = 0 p = 1 p = 2 p = 3

128 2.4900e-02 3.4458e-02 2.7366e-02 2.3302e-02
rate - - - -

512 2.8220e-02 3.0710e-02 2.2548e-02 9.6376e-03
rate -0.18 0.17 0.28 1.27

2048 3.0090e-02 2.6947e-02 9.4376e-03 4.3670e-04
rate -0.09 0.19 1.26 4.46

8192 3.0589e-02 2.1354e-02 6.8883e-04 1.1911e-05
rate -0.02 0.34 3.78 5.20

form.

Table 3: M = 0.5, β = .2, R = 0.005: L2 error of the velocity field.
nelem p = 0 p = 1 p = 2 p = 3

128 2.5422e+00 3.4847e+00 2.9073e+00 3.4619e+00
rate - - - -

512 2.8269e+00 3.1647e+00 3.4386e+00 3.6491e+00
rate -0.15 0.14 -0.24 -0.08

2048 2.9853e+00 2.8899e+00 2.1465e+00 1.4650e-01
rate -0.08 0.13 0.68 4.64

8192 3.0101e+00 2.8459e+00 1.9414e-01 1.5597e-03
rate -0.01 0.02 3.47 6.55
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(a) Uniform mesh
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(b) Perturbed mesh

Figure 4: M = 0.5, β = .2, R = 0.005: L2 error of the velocity field, plotted versus a function of the
degrees of freedom.
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(a) Uniform mesh
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(b) Perturbed mesh

Figure 5: M = 0.5, β = .2, R = 0.005: L2 error of the velocity field, plotted versus work units.

Table 4: M = 0.5, β = .2, R = 0.005: L2 error of the velocity field, perturbed mesh.
nelem p = 0 p = 1 p = 2 p = 3

128 2.4887e+00 3.4423e+00 2.9796e+00 3.4647e+00
rate - - - -

512 2.8218e+00 3.1485e+00 3.4319e+00 3.5880e+00
rate -0.18 0.13 -0.20 -0.05

2048 3.0080e+00 2.8632e+00 2.1699e+00 2.0651e-01
rate -0.09 0.14 0.66 4.12

8192 3.0571e+00 2.8899e+00 2.4941e-01 1.9834e-03
rate -0.02 -0.01 3.12 6.70
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