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I. Code Description

ProjectX is a high-order, adaptive discontinuous Galerkin finite element solver. The DG discretization
uses Roe’s approximate Riemann solver1 for the inviscid numerical flux and Bassi and Rebay’s second
discretization (BR2)2 for the viscous numerical flux. The solution to the discretized system is obtained
using a Newton-based nonlinear solver with pseudo-time continuation; however, due to the simplicity of
this case, we employ a very high CFL number (106) to achieve near-Newton convergence (except on the
very first solve of the adaptation sequence). The linear system arising in each pseudo-time step is solved
using GMRES,3 preconditioned with an in-place block-ILU(0) factorization4 with minimum discarded fill
reordering and p = 0 algebraic coarse correction.5

An output-based, anisotropic simplex adaptation algorithm is used to control the discretization error.6

The algorithm iterates toward a mesh that minimizes the output error for a given number of degrees of free-
dom. The anisotropic adaptation decisions are entirely driven by the behavior of an output-based a posteriori
error estimate; thus, the method handles any discretization order, naturally incorporates both the primal
and adjoint solution behaviors, and robustly treats irregular features. The output error estimate uses the
dual-weighted residual (DWR) method of Becker and Rannacher.7 A new mesh that conforms to the metric
request is generated using using BAMG (Bidimensional Anisotropic Mesh Generator).8

II. Case Description

II.A. Flow Condition

This case considers subsonic, laminar flow over a flat plate. The freestream Mach number is M∞ = 0.5, and
the Reynolds number based on the plate length is ReL = 1 × 106. A constant viscosity is used throughout
the domain, and the Prandtl number is set to Pr = 0.72.

II.B. Domain Specification

The flat plate geometry is parametrized by two parameters, LH and LV , as provided in the problem descrip-
tion. A sensitivity study of the drag against the domain parameters is performed, where we have chosen for
simplicity

LH = LV = R,

where R is the single parameter controlling the domain size. Figure 1 shows the result of the sensitivity
study. Each solution is obtained using the adaptive p = 3, dof = 20000 discretization, which results in the
cd error of less than 10−9; thus each solution is grid converged (for the purpose of this sensitivity study)
and the cd variation is solely due to the difference in the farfield location. The result suggests that R = 1.0
is sufficient to meet the required cd variation of less than 0.01 counts. Thus, for the rest of this case, the
domain parameters are set to LH = LV = 1.0.
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Figure 1. The sensitivity of the drag coefficient on the farfield location.

II.C. Convergence Criterion

The `2 norm of the DG residual of non-dimensionalized Navier-Stokes equations is used to monitor conver-
gence to the steady state. Our solver operates on non-dimensionalized variables
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The DG residual is computed against the Lagrange test functions with equidistributed nodes, and the `2

norm of the residual is converged to 1×10−10. (Note that the solver time would not be significantly influenced
for any reasonable choice of the tolerance (say < 1×10−7), as we achieve Newton convergence in this regime.
With the specified non-dimensionalization, the difference between the `2 residual and the mass residual is
well within this offset.)

II.D. Hardware Specification

All computations are performed in serial on a Linux machine with an Intel i7-2600 processor and 16 Gbytes
of RAM. The machine produces a Taubench time of 6.60 seconds.

II.E. Residual Timing

The time for performing a single dof = 250, 000 residual evaluation, including the full Jacobian for the
implicit solver, is summarized in Table 1. The residual evaluation is performed on a 5768-element mesh and
the times are scaled to 250,000 degrees of freedom.

p time (work unit)

1 0.82

2 0.80

3 0.94

Table 1. dof = 250, 000 residual evaluation time (including the full Jacobian construction).

II.F. Initial Mesh

The initial mesh used for this flat plate case is shown in Figure 2. Unlike initial meshes used for the other
workshop cases, the initial mesh for this case is refined toward the boundary layer. This refinement is
necessary to facilitate the nonlinear solver convergence; because the flow has a high Reynolds number but
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is laminar, the mesh-induced perturbation makes the flow unsteady when the flow features are significantly
underresolved. However, note that the initial mesh is not refined in the leading edge region.

Figure 2. The initial 150-element mesh. The flatplate region is marked in red.

II.G. Adaptation Procedure and Data Reported

The range of the discretization orders, p, and the degrees of freedom, dof, considered for this case are

p ∈ {1, 2, 3} and dof ∈ {500, 1000, 2000, 4000}.

For each p-dof combination, a family of optimized meshes are generated using our anisotropic simplex mesh
adaptation algorithm.6 The output adapted is the drag on the plate.

As in Case 1.1, the performance of each p-dof is assessed by averaging the error obtained on five realization
of meshes in the family. The time reported is the total time required to reach the first realization of the
p-dof-optimized mesh starting from the initial mesh shown in Figure 2; this includes multiple flow solves and
adaptation overhead. (See the description provided in Case 1.1 for details.)

III. Results

III.A. Error Convergence

The reference solution is obtained using the adaptive p = 3, dof = 20000 discretization. The reference cd
value used for the case is

cd = 0.00131119952± 4× 10−11

where the error estimate is provided based on the adjoint-based error estimate and the fluctuation in the cd
value for this family of optimized meshes.

The cd error convergence against the number of degrees of freedom is shown in Figure 3(a). Note that,
if the problem is smooth, the expected output error convergence rate using a dual-consistent discretization
for a viscous problem in two dimensions is

E = Ch2p = C̃(dof)−p.

The figure shows that the adaptive algorithm achieves the optimal convergence rate despite the presence
of singularity at the leading edge. With the effective control of the singularity though mesh refinement,
the p > 1 discretizations require fewer degrees of freedom than the p = 1 discretization for error level of
approximately 0.01 drag counts or less. We also note that the cd error is less than 0.1 counts, even on the
coarsest meshes with 500 degrees of freedom, e.g. the adaptive p = 3 discretization achieves less than 0.1
counts of error using only 50 elements.

The result of the cd convergence against the work unit is shown in Figure 3(b). The longer time required
for p > 1 for a given degrees of freedom is due to a larger number of adaptation iterations required to reach
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Figure 3. Drag error convergence.

a p-dof optimal mesh that controls the effect of the singularity. (For a given degrees of freedom, our flow
solver in fact runs faster for a higher p.) Again for simulations requiring accuracy of less than 0.01 drag
counts, the p > 1 discretizations are more efficient than the p = 1 discretization.

III.B. Comparison of Adapted Meshes

Drag-adapted meshes obtained for select p-dof combinations are shown in Figure 4. In general, adaptive
refinement targets the boundary layer and the leading edge singularity. Isotropic elements are used to resolve
the leading edge singularity, whereas anisotropic elements with are used in the boundary layer region. The
aspect ratio of the elements in the boundary layer region is as high as 1,000.

Comparison of the p = 1, dof = 4, 000 mesh (Figure 4(a)) and the p = 2, dof = 1, 000 mesh (Figure 4(b))
reveals the differences in the meshes required to achieve the drag error level of 10−7 using the p = 1 and
p = 2 discretizations. The p = 2 mesh is significantly sparser in the freestream region and in the boundary
layer. Because the boundary layer is a smooth feature (i.e. results from singular perturbation and is not a
singularity), the higher-degree polynomial is very effective at resolving the feature.

Comparison of the p = 2, dof = 1, 000 mesh (Figure 4(b)) and the p = 2, dof = 4, 000 mesh (Figure 4(c))
shows how the mesh evolves for a given p to achieve a lower error level (or as the number of degrees of freedom
increases). In increasing the available number of degrees of freedom by a factor of four, the diameter of the
leading edge element decreases from hle ≈ 7 × 10−4 to 3 × 10−5, i.e. the leading edge element diameter
decreases by a factor of over 20, whereas uniform refinement would have resulted in the diameter decreasing
by a factor of two. The refinement is clearly not uniform, and adaptation targets the leading edge singularity.

III.C. Adaptive vs. Uniform Refinement

Figure 5 compares the convergence results obtained using adaptive refinement and a step of uniform re-
finement starting from select adapted meshes. Due to the presence of the leading edge singularity, uniform
refinement results in suboptimal convergence, even though the mesh from which uniform refinement is per-
formed has been optimized for a lower number of degrees of freedom. This simple problem highlights the
importance of performing mesh adaptation and controlling the effect of singularities, especially for high-order
discretizations.
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(a) p = 1, dof = 4, 000, Ecd = 7.7× 10−8

(b) p = 2, dof = 1, 000, Ecd = 1.2× 10−7

(c) p = 2, dof = 4, 000, Ecd = 5.0× 10−9

Figure 4. Select drag-adapted meshes. The overview (left) and the zoom in the region [−δ/2, δ/2]× [0, δ] with δ = 10−2L.
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Figure 5. Comparison of adaptive refinement and uniform refinement starting from adapted meshes.
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