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I. Code Description

ProjectX is a high-order, adaptive discontinuous Galerkin finite element solver. The DG discretization
uses Roe’s approximate Riemann solver1 for the inviscid numerical flux, Bassi and Rebay’s second discretiza-
tion (BR2)2 for the viscous numerical flux, and Oliver’s asymptotically dual-consistent discretization3 for the
RANS source term. Modifications have been made to the Spalart-Allmaras turbulence model4 as described
by Oliver5 to improve robustness of the RANS model for higher-order discretizations. (The model incor-
porates few additional modifications by Modisette.6) To regularize the shocks, artificial viscosity is added
in a smooth manner using a jump-based discontinuity sensor and the shock PDE introduced by Barter and
Darmofal7 with a few additional modifications.8

The solution to the discretized system is obtained using a Newton-based nonlinear solver with pseudo-time
continuation and a line search on unsteady residual that explicitly controls the accuracy of time integration.6,8

The combination improves solver robustness, particularly through initial transients and on coarse meshes.
The linear system arising in each pseudo-time step is solved using GMRES,9 preconditioned with an in-place
block-ILU(0) factorization10 with minimum discarded fill reordering and p = 0 algebraic coarse correction.11

An output-based, anisotropic simplex adaptation algorithm is used to control the discretization error.12

The algorithm iterates toward a mesh that minimizes the output error for a given number of degrees of free-
dom. The anisotropic adaptation decisions are entirely driven by the behavior of an output-based a posteriori
error estimate; thus, the method handles any discretization order, naturally incorporates both the primal
and adjoint solution behaviors, and robustly treats irregular features. The output error estimate uses the
dual-weighted residual (DWR) method of Becker and Rannacher.13 A new mesh that conforms to the metric
request is generated using using BAMG (Bidimensional Anisotropic Mesh Generator),14 and higher-order,
globally curved meshes are constructed through linear elasticity.3

II. Case Description

II.A. Flow Condition

This case considers transonic, turbulent flow over an RAE 2822 airfoil, with a freestream Mach number of
M∞ = 0.734, angle of attack of α = 2.79◦, and Reynolds number based on chord of Rec = 6.5 × 106. The
dynamic viscosity is assumed to adhere to Sutherland’s law, the Prandtl number is set to Pr = 0.71, and
the freestream turbulence level is set to ρ∞ν̃∞ = 5.0ρ∞ν∞.

II.B. Domain Specification

A square outer domain with the half-edge length of R = 10000c is used for this case (i.e. the square is
20000c × 20000c). To minimize the effect of the farfield boundary location, the flux at farfield boundaries
is determined using the Roe flux in which the exterior state is set to the freestream conditions (instead of
specifying the stagnation quantities and flow angle at the inflow and the static pressure at the outflow).15
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II.C. Convergence Criterion

The `2 norm of the DG residual of non-dimensionalized Navier-Stokes equations is used to monitor conver-
gence to the steady state. Our solver operates on non-dimensionalized variables
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The DG residual is computed against the Lagrange test functions with equidistributed nodes, and the `2

norm of the residual is converged to 1×10−9. (Note that the solver time would not be significantly influenced
for any reasonable choice of the tolerance (say < 1×10−7), as we achieve Newton convergence in this regime.
With the specified non-dimensionalization, the difference between the `2 residual and the mass residual is
well within this offset.)

II.D. Hardware Specification

All computations are performed in serial on a Linux machine with an Intel i7-2600 processor and 16 Gbytes
of RAM. The machine produces a Taubench time of 6.60 seconds.

II.E. Residual Timing

The time for performing a single dof = 250, 000 residual evaluation, including the full Jacobian construction
for the implicit solver, is summarized in Table 1. The residual evaluation is performed on a 14285-element
mesh and the times are scaled to 250,000 degrees of freedom.

p time (work unit)

1 8.15

2 6.14

3 6.15

Table 1. dof = 250, 000 residual evaluation time (including the full Jacobian construction).

II.F. Initial Mesh

The initial mesh used for this case is shown in Figure 1. The airfoil geometry is represented using q = 3
simplex elements. Note that the mesh does not have any refinement in the boundary layer region and is
unsuited for RANS calculation. Our objective is to demonstrate a fully-automated transition to a RANS
mesh using the adaptive algorithm. After each mesh refinement, the geometry representation is refined by
re-sampling from a fine cubic spline defining the RAE 2822 geometry.

Figure 1. The initial 520-element mesh.
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II.G. Adaptation Procedure and Data Reported

For each solution order p, the numbers of degrees of freedom considered are:

p = 1, 2, dof = {20000, 40000, 80000, 120000}
p = 3, dof = {40000, 80000, 120000}.

For each p-dof combination, a family of optimized meshes are generated using our anisotropic simplex mesh
adaptation algorithm.12 The output adapted is the drag on the airfoil.

Unlike the simple flows considered in C1.X, it is difficult to converge the nonlinear problem resulting
from the p > 1 discretizations on coarse meshes with no boundary layer resolution. In particular, in fully-
automated adaptation, the solver must find a solution on every mesh encountered in the adaptive sequence
without a single failure. Our p > 1 RANS solver currently does not have this level of robustness. To overcome
the lack of robustness, we make the initial transition from the coarse isotropic mesh, shown in Figure 1, to
a coarse RANS mesh, with some boundary layer resolution, using the p = 1 discretization. Then, the p = 2
and p = 3 adaptation are initialized from the coarse p = 1 RANS mesh.

The drag error variation during this initial transition process for the p = 2, dof = 20, 000 combination is
shown in Figure 2. Starting from the initial mesh shown in Figure 1, seven p = 1, dof = 10, 000 adaptation
iterations are performed to produce a p = 1 mesh shown in Figure 3(a). The mesh is still very coarse, as
reflected in the drag error of 10 counts, but the boundary layer is sufficiently refined such that the p = 2
adaptation sequence can be initialized and carried out in a reliable manner. After 11 additional p = 2,
dof = 20, 000 adaptation iterations, we obtain a p = 2, dof = 20, 000 optimized mesh, shown in Figure 3(b),
that achieves less than 0.2 counts of drag error. This mesh is used as the starting mesh for the all higher-dof
p = 2 cases.

Similarly, the p = 3 adaptation sequence is started from the coarse p = 1 RANS mesh shown in Fig-
ure 3(a). The starting dof used for the p = 3 adaptation is dof = 40, 000.

As in Case 1.1, the performance of each p-dof is assessed by averaging the error obtained on five realization
of meshes in the family. The time reported is the total time required to reach the first realization of the
p-dof-optimized mesh starting from the initial mesh shown in Figure 1; this includes multiple flow solves and
adaptation overhead. For example, the time to perform the entire 18 adaptation cycles is reported for the
p = 2, dof = 20, 000 case, whose drag error history is shown in Figure 2. (See the description provided in
Case 1.1 for details on the error assessment procedure.)
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Figure 2. The drag coefficient history starting from the initial mesh shown in Figure 1.

3 of 9

American Institute of Aeronautics and Astronautics



(a) p = 1, dof = 10, 000, Ecd = 1.0× 10−3 (b) p = 2, dof = 20, 000, Ecd = 1.8× 10−5

Figure 3. Meshes obtained after the initial transition.

III. Results

III.A. Error Convergence

The reference solution is obtained using the adaptive p = 4, dof = 320, 000 discretization. The reference cd
and cl values used for this case are

cd = 0.01842695± 2× 10−8

cl = 0.823093.

The error estimate for cd is based on the adjoint-based error estimate and the fluctuation in the cd value for
this family of optimized meshes.

Figure 4(a) shows the convergence of the drag coefficient against the number of degrees of freedom.
The p > 1 discretizations are more efficient that the p = 1 discretizations for simulations requiring less
than 0.5 drag counts of error. In particular, the p > 1 discretization significantly reduces the number of
degrees of freedom required to achieve higher fidelity. This is in contrast to the transonic inviscid flow over
a NACA 0012 considered in Case 1.3, in which higher-order discretizations is ineffective. In the transonic
RANS problem, the drag is dictated not only by the transonic shock but also by the boundary layer. As the
higher-order discretizations are effective at resolving the boundary layer, even though the shock resolution
itself it not improved, the p > 1 discretizations are overall more efficient than the p = 1 discretization.
However, the p = 3 discretization is not any more efficient than the p = 2 discretization even at the error
level of as low as 0.001 drag counts.

Figure 4(b) shows that, for high-fidelity simulations, the higher-order discretizations are more efficient
than the p = 1 discretization also in terms of the work unit. As indicated by the absence of the data points
in the first 1000 work unit, a relatively large fraction of the time is spent on performing the initial Euler-
to-RANS mesh transition. Figures 4(c) and 4(d) show that the p > 1 discretizations are more efficient than
the p = 1 discretization in also predicting the lift.

III.B. Adapted Meshes

Examples of drag-adapted meshes are shown in Figure 5. Various features in the primal and adjoint solutions
are resolved through adaptive refinement, including: the boundary layers, stagnation streamline, wake, shock,
trailing edge singularity, and the SA irregularity at the outer edge of the boundary layers. The refinements
toward these features are clearly seen in Figure 6.

Comparison of the p = 1, dof = 80, 000 mesh (Figure 5(a)) and the p = 2, dof = 20, 000 mesh (Figure 5(b))
reveals the diffeences in the meshes required to achieve the drag error level of approximately 3× 10−5 using
the p = 1 and p = 2 discretizations. Compared to the p = 1 mesh, the p = 2 mesh is sparse in the region
outside of the shock and the boundary layers.

Comparison of the p = 2, dof = 20, 000 mesh (Figure 5(b)) and the p = 2, dof = 80, 000 (Figure 5(c))
mesh shows how the mesh evolves for a given p to achieve a lower error level. In addition to the boundary
layers and the shock, the adaptation algorithm targets the wake, the stagnation streamline, and the Λ-like
feature inside the sonic pocket in the adjoint. Comparing the close up of the p = 2, dof = 80, 000 mesh
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Figure 4. Error convergence.

shown in Figure 6 and the solutions shown in Figure 7, adaptive refinement of both the primal and adjoint
features is evident.

III.C. Uniform vs. Adaptive Refinement

Figure 8 compares the drag error convergence results obtained using adaptive refinement and a step of
uniform refinement starting from a select adapted meshes. For the p = 1 discretization, adaptive refinement
does not make a significant difference when the mesh is already optimized at a lower number of degrees of
freedom. Note that this does not mean that adaptive refinement does not make a difference; the starting
mesh for the step of uniform refinement is still a highly adapted mesh optimized for this case. On the other
hand, for p = 2, a step of uniform refinement is insufficient to realize the full potential of the higher-order
discretization, even if the mesh is optimized at a lower degrees of freedom. All subsequent refinement must
be performed adaptively to control the effect of multiple singularities in the solution.

Figure 9 shows the timing breakdown of the adaptation overhead relative to the primal solve (i.e the flow
solve). The adaptation overhead is a smaller fraction of the entire solution process for this medium-sized
problem, compared to that observed in small problems (c.f. C1.1 and C1.2). Considering the accuracy-per-
dof benefit of adaptation, the additional cost is justified.
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(a) p = 1, dof = 80, 000, Ecd = 1.9× 10−5

(b) p = 2, dof = 20, 000, Ecd = 1.8× 10−5

(c) p = 2, dof = 80, 000, Ecd = 1.4× 10−7

Figure 5. Select adapted meshes.
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(a) overview (b) shock root

(c) leading edge (d) trailing edge

Figure 6. Close up of different regions of the p = 2, dof = 80, 000 drag-adapted mesh.

(a) Mach number (b) mass adjoint (drag output)

Figure 7. The Mach number distribution and the mass adjoint for the drag output.
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Figure 8. Comparison of adaptive refinement and a step of uniform refinement starting from an adapted mesh.
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Figure 9. Timing breakdown.

III.D. Surface Quantity Distributions

The pressure and skin friction coefficient distributions are shown in Figure 10. Both distributions are smooth,
and the rapid change in the coefficients across the shock are captured well. Note that there is a small region
of recirculation after the shock.
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