Problem C1.6. Vortex transport by uniform flow

Overview

This problem is aimed at testing a high-order method's capability to <u>preserve vorticity in an unsteady</u> <u>inviscid flow</u>. Accurate transport of vortexes at all speeds (including Mach << 1) is very important for Large-Eddy and Detached-Eddy simulations, possibly the workhorse of future industrial CFD simulations, as well as for aeronautics/rotorcraft applications.

Governing Equations

The governing equations are the unsteady 2D Euler equations, with a constant ratio of specific heats of $\gamma = 1.4$ and gas constant $R_{gas} = 287.15$ J/kg K.

Flow Conditions

The domain is first initialized with a uniform flow of pressure P_{∞} , temperature T_{∞} and given Mach number (see **Testing Conditions** bellow), and a vortical movement of characteristic radius R and strength, β , is superposed around the point of coordinates (X_c , Y_c):

$$\delta u = -(U_{\infty} * \beta) * (y - Y_c) / R * \exp(-r^2/2)$$

$$\delta v = (U_{\infty} * \beta) * (x - X_c) / R * \exp(-r^2/2)$$

$$\delta T = 0.5 * (U_{\infty} * \beta)^2 * \exp(-r^2) / C_p$$

where

$$u_0 = U_\infty + \delta u$$
, $v_0 = \delta v$

$$C_p = \frac{\gamma}{(\gamma - 1)} * R_{gas}$$

$$r = \sqrt{((x - X_c)^2 + (y - Y_c)^2)} / R$$

and $U_{\infty} = M_{\infty} * \sqrt{(\gamma * R_{gas} * T_{\infty})}$ is the speed of the unperturbed flow.

Fluid's pressure, temperature and density are prescribed such that the over imposed vortex is a steady solution of the stagnant (e.g. without uniform transport) flow situation :

$$T_0 = T_\infty - \delta T$$
, $\rho_0 = \rho_\infty * (T_0/T_\infty)^{(\frac{1}{(\gamma-1)})}$ and $\rho_\infty = P_\infty/(R_{gas} * T_\infty)$. Pressure is computed as $P_0 = \rho_0 * R_{gas} * T_0$.

The superposed vortex should be transported without distortion by the flow. Thus, the initial flow solution can be used to assess the accuracy of the computational method (see **Requirements** bellow).

Geometry

The computational domain is rectangular, with $(x, y) = [0..L_x]x[0..L_y]$.

Boundary Conditions

Translational periodic boundary conditions are imposed for the left/right and top/bottom boundaries

respectively.

Testing Conditions

Assume that the computational domain dimensions (in meters) are $L_x = 0.1$, $L_y = 0.1$ and set $X_c = 0.05$ [m], $Y_c = 0.05$ [m] (marking the center of the computational domain), and $P_{\infty} = 1.85$ N/m2 and $T_{\infty} = 300$ K.

Consider the following two flow configurations:

- 1. "Slow vortex": $M_{\infty} = 0.05$, $\beta = 1/50$, R = 0.005.
- 2. "Fast vortex" : $M_{\infty} = 0.5$, $\beta = 1/5$, R = 0.005.

Define the time-period **T** as $T = L_x/U_{\infty}$ and perform a "long" simulation, where solution is advanced in time for 50 *time-periods* (dT = 50 T).

The above flow configurations and simulation time define <u>two</u> different testing conditions.

Requirements

- 1. For both testing conditions, perform two sets of simulations, <u>on both</u> *regular* meshes (uniform Cartesian nodes distribution) and the corresponding *randomly perturbed* meshes (meshes provided, see **Additional Notes** bellow).
- 2. Compute solutions on a series of minimum three successively refined grids, with grid-sizes h: $L_x/32$ (grid 1), $L_x/64$ (grid 2), $L_x/128$ (grid 3), etc.
- 3. Advance the solution in time as required (50 time periods, **T**) and compute the **L2**-norm of the error at the end of the simulation, as advised in the guidelines, using the two velocity-vector components (u, v), $L_2(err)$.
- 4. Compare the numerical solution at the end of simulation, with the exact solution (i.e. the solution after initialization, u_0 and v_0).
- 5. For each test condition considered, perform a sensitivity study to determine the appropriate time-step size, *dt*. The final results obtained *on the finest mesh and for the duration considered*, while using the time-step *dt*, should be time-step size insensitive: the difference in the measured $L_2(err)$ should not change with more than 0.1%, if the time-step size is reduced from *dt* to 0.5*dt*.
- 6. Study the numerical order of accuracy, e.g. $L_2(err)$ v.s. a characteristic grid-size h, defined as $h=1/(nDOFs)^{\frac{1}{ND}}$ (where ND = {2, 3} for 2D and 3D respectively) (see **Guidelines**), and discretization order *p*.
- 7. Submit the following sets of data (for each testing condition considered):
 - *L2(err)* v.s. *h*, for different characteristic grid-sizes *h* and discretization orders *p*. Note: at least 3 data points are required for each regression line.

- The computational cost (in work units) to perform the entire simulation (on both the regular and perturbed meshes), for different discretization orders *p*.

Additional Notes

- <u>Only the "slow vortex" simulations (on regular and perturbed meshes) are mandatory.</u>
- Successively refined regular 2D meshes (both tri- and quad-meshes) and respective 3D meshes (tetand hex-meshes) in GMESH format for four different mesh sizes, are provided for convenience.

File names: 2d_[tri/quad]_grid-[1/2/3/4].msh and 3d_[tet/hex]_grid-[1/2/3/4].msh .

• Randomly perturbed meshes, of corresponding average mesh-sizes (*h*), where the mesh's nodes are randomly displaced with a maximum distance δ_{max} : $\delta_{max} = 0.15 * h$

in both X- and Y-coordinate directions, are also provided.

File names: rp_2d_[tri/quad]_grid-[1/2/3/4].msh and rp_3d_[tet/hex]_grid-[1/2/3/4].msh .