Summary of the C2.4 test case results

Ralf Hartmann
Institute of Aerodynamics and Flow Technology
German Aerospace Center

Test case C2.4

Laminar flow at $M = 0.3$, $Re = 4000$ and $\alpha = 12.5^\circ$ around the delta wing

Reference values (taken from [LH10]):
$C_d^{\text{ref}} = 0.1658$, $C_l^{\text{ref}} = 0.347$.

[Mach number isosurfaces (left) and slices (right) [LH10]]

Test case C2.4
Laminar flow at $M = 0.3$, $Re = 4000$ and $\alpha = 12.5^\circ$ around the delta wing

Following nested hexahedral meshes have been provided on the workshop (hiocfd) homepage

- delta.1.msh with 408 cells
- delta.2.msh with 3,264 cells
- delta.3.msh with 26,112 cells
- delta.4.msh with 208,896 cells

“Official” convergence criterion (taken from “Notes for all participants”)
Reduction of the density residual to 10^{-10} relative to freestream conditions measured in a normalized L^2-norm, i.e.

$$\frac{R}{R_\infty} < 10^{-10} \quad \text{for} \quad R = L^2(\text{Res}_\varrho) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \text{Res}_{\varrho,i}^2}$$
Summary of test case C2.4

Laminar flow at $M = 0.3$, $Re = 4000$ and $\alpha = 12.5^\circ$ around the delta wing

Data available from
- Alessandro Colombo, Francesco Bassi, University of Bergamo, UBerg
- Krzysztof Fidkowski, University of Michigan, UMich
- Ralf Hartmann, DLR, Braunschweig, DLR
- Li Wang, J. Taylor Erwin, W. Kyle Anderson, University of Tennessee, UTenn
Summary of test case C2.4

Laminar flow at $M = 0.3$, $Re = 4000$ and $\alpha = 12.5^\circ$ around the delta wing

Case details

<table>
<thead>
<tr>
<th></th>
<th>U Berg</th>
<th>U Mich</th>
<th>DLR</th>
<th>U Tenn</th>
</tr>
</thead>
<tbody>
<tr>
<td>discretization</td>
<td>DG, BR2</td>
<td>DG, BR2</td>
<td>DG, BR2</td>
<td>DG, SIPG</td>
</tr>
<tr>
<td>basis functions</td>
<td>$P_p(\kappa)$, orth.norm.</td>
<td>$\sigma(Q_p(\hat{\kappa}))$</td>
<td>$\sigma(Q_p(\hat{\kappa}))$</td>
<td>$\sigma(P_p(\hat{\kappa}))$</td>
</tr>
<tr>
<td>numerical flux</td>
<td>exact Riemann</td>
<td>Roe</td>
<td>Roe+entropy fix</td>
<td>HLLC</td>
</tr>
<tr>
<td>farfield</td>
<td>characteristic</td>
<td>Roe + u_∞?</td>
<td>characteristic</td>
<td>subsonic in/outflow</td>
</tr>
<tr>
<td>solver</td>
<td>bw Euler</td>
<td>Newton</td>
<td>Newton</td>
<td>p-MG+el.GS/GMRES</td>
</tr>
<tr>
<td>grid</td>
<td>grids (hiocfd)</td>
<td>grids (hiocfd)</td>
<td>grids (hiocfd)</td>
<td>unstruct./tretrah.</td>
</tr>
<tr>
<td>convergence criterion</td>
<td>official $R/R_\infty < 10^{-10}$</td>
<td>other $R < 10^{-7}$</td>
<td>official $R/R_\infty < 10^{-10}$</td>
<td>other $R < 10^{-11}$</td>
</tr>
<tr>
<td>wall</td>
<td>adiabatic (instead of isothermal)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note, that work units of UMich & UTenn are not comparable to others.
Summary of test case C2.4

Laminar flow at $M = 0.3$, $Re = 4000$ and $\alpha = 12.5^\circ$ around the delta wing

Case details

<table>
<thead>
<tr>
<th></th>
<th>UTenn</th>
</tr>
</thead>
<tbody>
<tr>
<td>discretization</td>
<td>Petrov-Galerkin</td>
</tr>
<tr>
<td>farfield</td>
<td>subsonic in/outflow</td>
</tr>
<tr>
<td>solver</td>
<td>approx. Newton</td>
</tr>
<tr>
<td>grid</td>
<td>unstruct./tretrah.</td>
</tr>
<tr>
<td>convergence criterion</td>
<td>$R < 10^{-11}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{\frac{1}{N} \sum_i^N Res^2_{\rho,i}}$?</td>
</tr>
</tbody>
</table>

Summary of the C2.4 test case results

Ralf Hartmann
Summary of test case C2.4

Reference values

- taken from [LH10]: $C_d^{\text{ref}} = 0.1658$, $C_l^{\text{ref}} = 0.347$
 grids (hiocfd), isothermal wall boundary condition
- obtained by UTenn(DG): $C_d^{\text{ref}} = 0.1605$, $C_l^{\text{ref}} = 0.3455$
 unstructured grids, adiabatic wall boundary condition
Test case C2.4: C_d vs. h

Summary of the C2.4 test case results

Ralf Hartmann
Test case C2.4: C_l vs. h

Summary of the C2.4 test case results

Ralf Hartmann
Test case C2.4: Error in C_d vs. h

Summary of the C2.4 test case results

Ralf Hartmann
Test case C2.4: Error in C_d vs. h for $p = 2$
Test case C2.4: Error in C_l vs. h

Summary of the C2.4 test case results

Ralf Hartmann
Test case C2.4: Error in C_l vs. h for $p = 2$

Summary of the C2.4 test case results
Ralf Hartmann
Test case C2.4: Error in C_d vs. workunits

Summary of the C2.4 test case results

Ralf Hartmann
Test case C2.4: Error in C_l vs. workunits
Test case C2.4: Summary

- Comparison of results of **UTenn** with the results of the other partners is difficult as **UTenn** computed on different grid sequence with different boundary conditions and different convergence criterion.

- Very good agreement of \(C_d \) and \(C_l \) values between **UMich** and **DLR** due to the use of very similar numerical schemes.

- However, **UMich** required a factor of 7–70 more work units than **DLR**.

- Difference due to parallelization issues and/or different convergence criterion?

- Difference of results between **UBerg** and **UMich**/**DLR** due to different basis functions/discrete function spaces.

- There is some agreement when comparing results for similar dimension of discrete function spaces instead of for the same polynomial degree.

- Due to the non-smoothness of the flow solution there is not much gain (if at all) in computing time using a global \(p \) larger than 2.
Test case C2.4: Summary

- Comparison of results of UTenn with the results of the other partners is difficult as UTenn computed on different grid sequence with different boundary conditions and different convergence criterion.
- Very good agreement of C_d and C_l values between UMich and DLR due to the use of very similar numerical schemes.
 - However, UMich required a factor of 7–70 more work units than DLR.
 - Difference due to parallelization issues and/or different convergence criterion?
- Difference of results between UBerg and UMich/DLR due to different basis functions/discrete function spaces.
- There is some agreement when comparing results for similar dimension of discrete function spaces instead of for the same polynomial degree.
- Due to the non-smoothness of the flow solution there is not much gain (if at all) in computing time using a global p larger than 2.
Test case C2.4: Summary

- Comparison of results of UTenn with the results of the other partners is difficult as UTenn computed on different grid sequence with different boundary conditions and different convergence criterion.

- Very good agreement of C_d and C_l values between UMich and DLR due to the use of very similar numerical schemes.
 - However, UMich required a factor of 7–70 more work units than DLR.
 - Difference due to parallelization issues and/or different convergence criterion?

- Difference of results between U Berg and UMich/DLR due to different basis functions/discrete function spaces.
 - There is some agreement when comparing results for similar dimension of discrete function spaces instead of for the same polynomial degree.
Test case C2.4: Summary

- Comparison of results of UTenn with the results of the other partners is difficult as UTenn computed on different grid sequence with different boundary conditions and different convergence criterion.
- Very good agreement of C_d and C_l values between UMich and DLR due to the use of very similar numerical schemes.
 - However, UMich required a factor of 7–70 more work units than DLR.
 - Difference due to parallelization issues and/or different convergence criterion?
- Difference of results between UBerg and UMich/DLR due to different basis functions/discrete function spaces.
 - There is some agreement when comparing results for similar dimension of discrete function spaces instead of for the same polynomial degree.
- Due to the non-smoothness of the flow solution there is not much gain (if at all) in computing time using a global p larger than 2.