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ENO (essentially nonoscillatory) and weighted ENO (WENO) schemes were de-
signed for high resolution of discontinuities, such as shock waves, while optimized
schemes such as the DRP (dispersion–relation–preserving) schemes were optimized
for short waves (with respect to the grid spacing1x, e.g., waves that are 6–81x
in wavelength) in the wavenumber space. In this paper, we seek to unite the ad-
vantages of WENO and optimized schemes through the development of Optimized
WENO (OWENO) schemes to tackle shock/broadband acoustic wave interactions
and small-scale flow turbulences relative to the grid spacing. OWENO schemes are
optimized in two levels. In the first level, optimized schemes are constructed for all
candidate stencils by minimizing the error in the wavenumber space. In the second
level, these optimized schemes are convexly combined using weights constructed to
achieve not only higher order of accuracy but also high resolution for short waves.
In addition, a new definition of smoothness indicators is presented for the OWENO
schemes. These smoothness indicators are shown to have better resolution for short
waves. A third-order OWENO scheme and a seventh-order WENO scheme are com-
pared against each other for performance on the scalar model equation. It has been
shown that the OWENO scheme indeed gives much better results in resolving short
waves than the WENO scheme while yielding nonoscillatory solutions for disconti-
nuities. Finally the OWENO scheme is extended to the linearized Euler equations to
solve two computational aeroacoustics (CAA) benchmark problems to demonstrate
its capability. c© 2001 Elsevier Science
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1. INTRODUCTION

The past decade and a half has seen many impressive developments in computational
aeroacoustics (CAA). As pointed out by Tam [22], aeroacoustic problems differ signifi-
cantly from aerodynamic problems in their nature, characteristics, and objectives. They are
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intrinsically unsteady, and the dominant frequencies are usually high. Therefore, the de-
velopment of CAA algorithms needs independent thinking. As a result of this independent
thinking, many powerful numerical algorithms have been developed to address the par-
ticular problems in CAA, e.g., the dispersion–relation–preserving (DRP) finite difference
schemes [23] and other high-order algorithms [7, 10, 12, 16, 19]. The basic idea in DRP
schemes is to optimize the scheme coefficients for the high resolution of short waves with
respect to the computational grid, i.e., waves with wavelength of 6–81x (defined here as
6–8 points-per-wave or PPW). Therefore, DRP schemes are also called optimized schemes.

The idea of optimizing the scheme coefficients to minimize a particular type of error
instead of the truncation error has been used very successfully over the years by many
researchers in designing a variety of optimized schemes [4, 11, 15, 26]. The rationale for
optimizing numerical schemes for short waves is that in a broadband acoustic wave, there
are both short and long wave components. For long waves, even lower-order schemes can do
a decent job in resolving them. It is the short waves, however, which require high resolution
if one is to resolve the broadband wave with as high accuracy as possible.

Other optimized schemes have also been developed successfully for CAA applications
[27–29]. In the DRP schemes, central differences are employed to approximate the first
derivative. They are, therefore, nondissipative in nature. Although nondissipative schemes
are ideal for aeroacoustic problems, numerical dissipation is required to damp any non-
physical waves generated by boundary and/or initial conditions. In practice, high-order
dissipation terms are added to the DRP schemes to suppress spurious oscillations. The
amount of artificial dissipation required is, however, problem dependent. One may need to
fine-tune the artificial damping to obtain the best results for a particular problem at hand. To
remedy this problem, optimized upwind DRP schemes have been developed more recently
by Zhuang and Chen [27, 28], and Lockard, Brentner and Atkins [16]. Instead of using the
central difference stencil, an upwind-biased stencil was selected based on the local wave
propagating direction. Then the upwind schemes are optimized in the wavenumber space
following the same idea of DRP schemes. The upwind DRP schemes are by design dissipa-
tive. Therefore, they are capable of suppressing spurious oscillations without the addition
of extra artificial damping, relieving the user from fine-tuning the amount of numerical
dissipation. Another advantage of the upwind DRP schemes is that acceptable results can
be obtained even if the mean flow contains discontinuities. With both the DRP and upwind
DRP schemes, it is very difficult to obtain oscillation-free numerical solutions if the mean
flow is discontinuous, because the schemes are linear. For nonlinear shock-acoustic wave
interaction problems, numerical oscillations may contaminate the resultant solutions and
even diverge the simulations.

ENO (essentially non-oscillatory) schemes started with the classic paper of Hartenet al.
[6] and were designed for shock capturing. Before the birth of ENO schemes, several
approaches were possible to suppress numerical oscillations. One approach was to add
artificial dissipation [8]. The dissipation can be tuned to be large enough near disconti-
nuities to suppress oscillations, but small elsewhere to maintain high-order accuracy. A
disadvantage of the approach is that the dissipation terms are problem dependent. Another
approach is to use limiters to eliminate oscillations [25]. The TVD schemes [5, 17] are such
examples. One drawback of this approach is that the solution accuracy near extrema (even
near smooth extrema) must degrade to first order, resulting in clipping of smooth extrema.
The ENO schemes remedied the drawback of TVD schemes in that they are uniformly
high-order accurate, yet essentially nonoscillatory for piecewise smooth solutions. More
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recently, weighted ENO (WENO) schemes [9, 14, 21] were developed to further increase
the order of accuracy, while resolving discontinuities with essentially no numerical oscilla-
tions. Many studies [1, 2] confirmed that ENO and WENO schemes are indeed uniformly
high-order accurate, and capable of resolving shocks with high resolution. They have been
successfully applied to problems with shocks and complex smooth flow structures, such as
those occurring in shock interactions with turbulent flows, and shock/vortices interactions.
Although ENO and WENO schemes are not designed for CAA, they have been applied to
CAA problems because of their high order of accuracy. The direct applications of ENO and
WENO to CAA problems are, however, not optimum because ENO and WENO schemes
are designed for high resolution of discontinuities and to achieve a high formal order of
accuracy, and NOT optimized for broadband acoustic waves. For short waves, ENO and
WENO schemes suffer the same drawback as conventional maximum-order finite difference
schemes in that they quickly lose resolution compared to optimized schemes.

In this paper, we seek to unite the advantages of both the optimized DRP schemes and
WENO schemes in the development of Optimized WENO (OWENO) schemes. The idea is
to optimize the WENO schemes in the wavenumber space, following the practice of the DRP
schemes to achieve high resolution for short waves with about 6 PPW. At the same time,
OWENO schemes will retain the advantages of WENO schemes in that discontinuities are
captured with essentially no oscillations, and without any extra numerical damping. At least
two groups of researchers [13, 26] attempted to optimize WENO schemes for short waves.
In the approach presented in [13, 26], only the weights in the WENO schemes are optimized.
Although it was also found in [26] that the smoothness indicators added significant numerical
damping for short waves, no solutions were given there or in [13]. In this paper, optimizations
are done in two levels. In the first level, optimized schemes for all candidate stencils are
constructed. In the second level, optimizations are also performed to find the best weights
to combine all the stencils. In addition, new smoothness indicators are presented for short
waves. In the following section, we first review the concept behind optimized, ENO, and
WENO schemes. Then OWENO schemes are derived for the linear wave equation, and their
dissipative and dispersive behaviors are analyzed. After that, the extension of OWENO
to the linear Euler equations is described, followed by a brief discussion on the time-
marching method. Next, sample demonstration cases with 1-D scalar wave equation and
the linearized Euler equations are carried out to evaluate the performance of OWENO
schemes. Finally, conclusions from the study are summarized, and possible future work is
outlined.

2. OVERVIEW OF OPTIMIZED, ENO, AND WENO SCHEMES

In the design of a traditional finite difference scheme, the usual practice is to maximize the
order of accuracy of the numerical scheme given the size of the difference stencil. However,
maximum-order schemes may not be the best for high-frequency short waves, as shown by
Tam and Webb [23]. To present the basic idea, we will consider the scalar wave equation
with a constant positive wave speeda,

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= 0 with u(x, 0) = u0(x), (1)

whereu is a state variable,t > 0 is time, andx is the Cartesian coordinate. We assume
proper boundary conditions are available when necessary. Given a uniform gridxi = i1x,
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i = 0, . . . , N with a constant grid spacing1x, we seek to develop a semi-discrete conser-
vative numerical scheme approximating (1) in the form

∂ui

∂t
+ a

1x

(
ũr

i+1/2− ũr
i−1/2

) = 0, (2)

whereui is a numerical approximation tou(x, t) at grid pointxi andũr
i+1/2 andũr

i−1/2 are
numerical fluxes (more preciselyaũr

i+1/2 is the flux) depending onk continuous grid points
includingxi itself, i.e.,

ũr
i+1/2 = ũr

i+1/2(ui−r , . . . ,ui+s) =
k−1∑
j=0

cr j ui−r+ j . (3)

Here r ≥ 0, s ≥ 0, andr + s+ 1= k; k is the size of the stencil used to compute the
numerical flux; andcr j are constants independent of the solution. The coefficientscr j can
be determined through a Taylor expansion to achieve a maximumkth order accuracy, i.e.,
by satisfying

∂ui

∂x
=
(
ũr

i+1/2− ũr
i−1/2

)
1x

+ O(1xk). (4)

The philosophy of optimized schemes is to sacrifice the formal order of accuracy for achiev-
ing better resolution for a wider range of wavenumbers, for short waves in particular. Instead
of always achieving the maximum order of accuracy ofk, we set to design a scheme with
formal order of accuracy ofp1 with p1 < k, i.e.,

∂ui

∂x
=
(
ũr

i+1/2− ũr
i−1/2

)
1x

+ O(1xp1). (5)

Using a Taylor expansion, we can derivep1 equations about the coefficientscr j . We need an
extrak− p1 equations to determine all the coefficients. The idea in the DRP schemes [23] is
to minimize the difference between the numerical wavenumber and the actual wavenumber.
Based on a Fourier analysis, the numerical wavenumber for (2) with the given stencil is
found to be

ᾱr ≡ −
√−1

1x

s∑
j=−r

cr, j+r exp(
√−1 jα1x)[1− exp(−√−1α1x)]=α + O(α1x)p1, (6)

whereα is the actual wavenumber. Therefore, the optimization problem is to minimize the
L2 norm of the difference between the numerical wavenumber and the actual wavenumber
for a particular wavenumber range [−α01x, α01x]. To be more specific, we seekcr j so
that they satisfy Eq. (5) and minimize the integral

Er =
α01x∫
−α01x

{λ[Re(ᾱr1x)− α1x]2+ (1− λ)[Im(ᾱr1x)]2} d(α1x), (7)

whereEr is the error to be minimized; parameterλ is chosen to be between 0 and 1 to
balance the errors in the real and the imaginary parts. The imaginary part is a measure
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of the amplitude error, while the real part indicates the phase error. For a nondissipative
central difference scheme, the imaginary part of the numerical wavenumber diminishes,
and the minimization problem is simplified. Interested readers should refer to [23] for more
information on the central DRP schemes. For upwind optimized schemes, refer to [16, 27,
28] for details.

The design philosophy for ENO schemes [6] is very different from that for the optimized
schemes. ENO schemes were developed primarily for high-accuracy capturing of disconti-
nuities or steep gradients. This was achieved through “adaptive stencil,” namely to change
the left shiftr with the locationxi depending on the smoothness of the local solution to avoid
the discontinuity if possible. Note that in selecting the ENO stencil ofk points, the field data
at 2k− 1 points is scanned. If one uses all the data scanned in the selection process, one
can achieve a maximum (2k− 1)th order of accuracy if the solution on the 2k− 1 points
is smooth. This is exactly the idea used in the WENO schemes. Instead of using only one
of the candidate stencils to form the numerical flux, one uses a convex combination of all
of them, i.e.,

ũWENO
i+1/2 =

k−1∑
r=0

wr ũ
r
i+1/2 (8)

wherewr are the weights,wr ≥ 0, and

k−1∑
r=0

wr = 1.

Apparently the key to the success of WENO schemes would be the choice of the weights
w. Based on a Taylor expansion, we can compute a set of weights, denoted bydr , which
achieves the maximum (2k− 1)th order of accuracy. Then for the WENO flux to achieve the
maximum order of accuracy, the weights should satisfy the following accuracy requirement
if the solution is smooth over all stencils:

wr = dr + O(1xr−1). (9)

In [9], the weights

wr = δr∑k−1
r=0 δr

, δr = dr

(ε + βr )2
,

(10)

βr =
k−1∑
l=1

∫ xi+1/2

xi−1/2

1x2l−1

(
∂ l pr (x)

∂ l x

)2

dx, r = 0, . . . , k− 1

were developed, wherepr (x) is theconstructedpolynomial of (k− 1)th order over the
interval [xi−1/2, xi+1/2], ε is a small number preventing the denominator to be zero, and
according to Fedkiwet al. [3], serves as a blending coefficient between the maximum order
central scheme and ENO schemes, andβr is the smoothness indicator. The smootheness
indicators fork = 2, 3 are given in [9], and the indicators fork = 4− 6 are given in [1]. A
sufficient condition [9] for the weights in (10) to satisfy (9) is

βr = D(1+ O(1xr−1)), (11)

whereD is some nonzero quantity independent ofr .
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3. OPTIMIZED WENO SCHEMES

With the descriptions on optimized, ENO, and WENO schemes, it is then straightforward
to present the OWENO schemes. The OWENO schemes are developed in the following two
major steps.

Step 1. Given the stencil sizek, develop optimized schemes achievingp1th order of
accuracy (p1 ≤ k) for all thek candidate stencils

{xi−r , . . . , xi+k−r−1}, r = 0, 1, . . . , k− 1. (12)

By satisfying (5),p1 linear equations of the following form can be obtained aboutcr j

k−1∑
j=0

bl j cr j = zl , for l = 1, . . . , p1, (13)

wherebl j andzl are constants. The rest of thek− p1 free parameters are determined by
minimizing Er in (7). Er is a function of the coefficientscr j ,

Er = Er (cr 0, . . . , cr,k−1). (14)

Equations (13) can be used to eliminatep1 coefficients. Without loss of generality, we
assume that the firstp1 coefficientscr j , j = 0, p1− 1 are eliminated, and they can be
expressed as functions of the lastk− p1 parameters. Substituting these expressions into
(14), we obtain

Er = Er (cr,p1, . . . , cr,k−1). (15)

To minimizeEr , the following conditions must be satisfied:

∂Er

∂cr j
= 0, for j = p1, . . . , k− 1. (16)

Equations (16) would give the desired solution for the remaining coefficients.

Step 2. These optimized schemes for all thek candidate stencils are then convexly
combined to obtain the OWENO schemes. More specifically, we first seek constantshr in
the combination

ũOWENO
i+1/2 =

k−1∑
r=0

hr ũ
r
i+1/2

so that if the solution is smooth over all candidate stencils, we have

1

1x

(
ũOWENO

i+1/2 − ũOWENO
i−1/2

) = (∂u

∂x

)
i

+ O(1xp1+p2) (17)

with
∑k−1

r=0 hr = 1, hr ≥ 0, and p2 ≤ k− 1. Equation (17) can be used to determinep2
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TABLE I

p1 = 2, p2 = 1 (3rd Order OWENO)

j r = 0 r = 1 r = 2 r = 3

crj 0 0.28418590 −0.10076912 0.10019444 −0.27941025
1 1.0318226 0.60076912 −0.41620299 0.98165507
2 −0.41620299 0.60076912 1.0318226 −1.6250794
3 0.10019444 −0.10076912 0.28418590 1.9228346

hr 0.14150117 0.48616615 0.33383476 0.038497919

weights, leavingk− 1− p2 weights as free parameters. These free parameters can then
again be determined by minimizing an integral in the form of Eq. (7), but with ¯αr replaced
by ᾱ =∑k−1

r=0 hr ᾱ
r . The approach in determining parametershr is very similar to the

procedure in determiningcr j in Step 1. Sincehr is determined assuming the solution is
smooth, it is not suitable when the solution has a discontinuity in one or more of the
candidate stencils. We again use the smoothness indicators presented in (10) withdr replaced
by hr .

Performance tests with these smoothness indicators will be presented later. It will be
shown that these weights are not suitable for short waves because they cannot distinguish
short waves with 6 PPW from discontinuities. A new set of weights will be presented in a
later section.

In this paper we constructed a variety of schemes with different stencil sizes, and
order of accuracy. In our optimization, we have selectedλ = 0.5 to minimize both the dissi-
pation and the dispersion errors andα01x = 0.35π . The selection ofα01x =
0.35π optimizes the schemes for waves with about 6 PPW. The coefficients for some
of the OWENO schemes withk = 4 are listed in Tables I–IV. Figures 1–3 show the com-
parison of the relative wavenumber errors among the OWENO schemes of different orders
of accuracy and the seventh-order accurate WENO scheme with the same stencil (with-
out the smoothness indicators). Lele [11] defines the resolving efficiency as the fraction
of the range of wavenumbers such that the error is below some toleranceτ . If the tol-
erance is set to be 0.01, then the resolving efficiency of the first-order OWENO scheme
is 1.45/π = 0.46 (corresponding to 4.3 PPW), the resolving efficiency of the third-order
OWENO scheme is 1.46/π = 0.46 (4.3 PPW), the resolving efficiency of the fifth-order
OWENO scheme is 1.22/π = 0.39 (5.2 PPW), and the resolving efficiency of the seventh-
order WENO scheme is 1.25/π = 0.40 (5.0 PPW). However, if higher accuracy is re-
quired, e.g.,τ = 0.001, then the resolving efficiency of the first-order OWENO scheme
is 1.15/π = 0.37 (corresponding to 5.5 PPW), the resolving efficiency of the third-order
OWENO scheme is 1.16/π = 0.37 (5.5 PPW), the resolving efficiency of the fifth-order
OWENO scheme is 0.82/π = 0.26 (7.7 PPW), and the resolving efficiency of the seventh-
order WENO scheme is 0.86/π = 0.27 (7.3 PPW). It is interesting to see that the fifth-order
OWENO scheme has a lower resolving efficiency than the maximum-order, nonoptimized
seventh-order WENO scheme. On the other hand, the first-order and third-order OWENO
schemes do have better resolving efficiency than the WENO scheme fork = 4. Since the
third-order OWENO scheme has a higher formal order of accuracy, and a slightly better
resolving efficiency, it is selected in all the numerical computations to be presented
later.
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TABLE II

p1 = 1, p2 = 0 (1st Order OWENO)

j r = 0 r = 1 r = 2 r = 3

crj 0 0.28950603 −0.10076912 0.094874312 −0.24051909
1 1.0204113 0.60076912 −0.40479166 0.89823611
2 −0.40479166 0.60076912 1.0204113 −1.5416604
3 0.094874312 −0.10076912 0.28950603 1.8839434

hr 0.15024393 0.48017755 0.32988027 0.039698251

TABLE III

p1 = 3, p2 = 2 (5th Order OWENO)

j r = 0 r = 1 r = 2 r = 3

crj 0 0.25866239 −0.083333333 0.074670939 −0.18445575
1 1.0573462 0.58333333 −0.39067948 0.88670057
2 −0.39067948 0.58333333 1.0573462 −1.7200339
3 0.074670939 −0.083333333 0.25866239 2.0177891

hr 0.14196688 0.51976365 0.31535440 0.022915068

TABLE IV

p1 = 4, p2 = 3 (7th Order WENO)

j r = 0 r = 1 r = 2 r = 3

crj 0 1/4 −1/12 1/12 −1/4
1 13/12 7/12 −5/12 13/12
2 −5/12 7/12 13/12 −23/12
3 1/12 −1/12 1/4 25/12

hr 4/35 18/35 12/35 1/35

FIG. 1. Comparison of relative wavennumber errors between the seventh-order WENO scheme and the first-
order OWENO scheme with p1 = 1, and p2 = 0.
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FIG. 2. Comparison of relative wavenumber errors between the seventh-order WENO scheme and the third-
order OWENO scheme with p1 = 2, and p2 = 1.

4. EXTENSION TO THE LINEARIZED EULER EQUATIONS

The unsteady Euler equations in conservation form in quasi-1-D can be written as

∂Q

∂t
+ ∂F

∂x
= H, (18)

whereQ is the vector of conserved variables,F is the inviscid flux vector, andH is the

FIG. 3. Comparison of relative wavenumber errors between the seventh-order WENO scheme and the fifth-
order OWENO scheme with p1 = 3, and p2 = 2.
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vector for the source terms given below:

Q= A{ρ, ρu, E}T , F = A{ρu, ρu2+ p, u(E + p)}T , H =
{

0, p
∂A

∂x
, 0

}T

. (19)

Hereρ is density,u is the velocity,p is the pressure,E is the total energy, andA is the area
of the cross section. Pressure is related to the total energy by

E = p

γ − 1
+ 1

2
ρu2

with γ = 1.4 for air. The linearized Euler equations can be derived by letting

p = p0+ p′, ρ = ρ0+ ρ ′, u = u0+ u′, (20)

where the quantities with subscript 0 are the mean flow values, while those with′ are
perturbations. Substituting (20) into (18), and eliminating high-order terms with respect to
the perturbations, we obtain the linearized Euler equations. The linearized Euler equations
can be written in two forms, one in conservation form, and the other in nonconservation
form. The nonconservation linearized Euler equations in transformed coordinateξ = ξ(x)
can be written as

∂q

∂t
+
(

J
∂q

∂ξ

)
∂ξ

∂x
= S, (21)

whereq = {ρ ′, u′, p′}, J is the Jacobian matrix, andScontains the vector of sources, which
are functions of the mean flow variables, their first derivatives, and nozzle area derivatives.
The OWENO scheme for equation (21) takes the following form:

∂qi

∂t
+ 1

1ξ

[
J+i
(
q̃−i+1/2− q̃−i−1/2

)+ J−i
(
q̃+i+1/2− q̃+i−1/2

)](dξ

dx

)
i

= Si . (22)

Here, each component of̃q−i+1/2 is computed using the procedure presented in the last
section, which assumes that the wave travels in the positivex-direction. Each component
of q̃+i+1/2 is computed in a symmetric fashion assuming the wave travels in the negative
x-direction. The Jacobian matrixJ can be decomposed into two parts,J = J+ + J−, with
J+ containing only nonnegative eigenvalues andJ− only nonpositive eigenvalues. The
following equation is used to decomposeJ:

J+ = 1

2
RJ(3J + |3J |)R−1

J , J− = 1

2
RJ(3J − |3J |)R−1

J ,

whereRJ is composed of the right eigenvectors ofJ, and3J is a diagonal matrix containing
the eigenvalues ofJ. Note that the nonconservative linearized Euler equations have the first
derivatives of the mean flow in the source terms, which become singular if the mean flow
has a discontinuity. To handle discontinuous mean flow, one must use the conservation form

∂U

∂t
+ ∂G

∂x
= 2, (23)

whereU is the conserved perturbation variables,G is the flux vector, and2 is the source
vector. Let the Jacobian matrix beB, i.e.,

B = ∂G

∂U
.
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Now the source term does not contain the derivatives of mean flow variables. The mean
flow is again obtained analytically. Define left and right propagating flux vectors as

G− = 0.5[G−max|λl (B)|U ] G+ = 0.5[G+max|λl (B)|U ] (24)

whereλl , l = 1, 2, 3 are three eigenvalues of matrixB. We then apply the OWENO scheme
to Eq. (23) in the following manner:

∂Ui

∂t
+ 1

1x

(
G̃i+1/2− G̃i−1/2

) = 2i G̃i+1/2 = G̃
−
i+1/2+ G̃+i+1/2 . (25)

Each component ofG+ is computed using the procedure presented in the last section
assuming that the wave travels in the positivex-direction, and symmetrically the components
of G− can be computed. For the inlet and exit boundary conditions, we follow the approach
developed in [23]. One-sided optimized schemes are used to maintain the solution accuracy
near boundaries.

5. TIME-INTEGRATION

After proper spatial discretizations, the conservation laws reduce to either a scalar or a
system of ordinary differential equations in time, which can be written in the form:

d Q

dt
= L(Q). (26)

In this study a third order TVD Range-Kutta method developed in [20] is employed, which
can be written as:

Q(1) = Qn +1t L(Qn)

Q(2) = 3

4
Qn + 1

4
Q(1) + 1

4
1t L

(
Q(1)

)
(27)

Qn+1 = 1

3
Qn + 2

3
Q(2) + 2

3
1t L

(
Q(2)

)
6. TEST WITH LINEAR WAVE EQUATION AND NEW SMOOTHNESS INDICATORS

To verify the designed advantages of OWENO schemes, we first tested the 7th order
WENO and 3rd order OWENO schemes for the linear wave equation (1) witha = 1. In the
first case a sine wave

u0(x) = sin

(
π

3
x

)
was specified in the computational domain and propagated with periodic boundary con-
ditions. We initially turned off the “smoothness indicators” in both WENO and OWENO
schemes since the solution was smooth. The computational domain for this case was set
to be [−18, 18] with grid size1x = 1, i.e., 6 PPW. The time step was set at1t = 0.1
to minimize the effects of the time-integration scheme. The simulation was then carried
out until t = 60. By then, the sine wave traveled for 10 wavelengths. Figure 4a shows
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FIG. 4. Comparison of WENO and OWENO schemes for the propagation of a sine wave without the smooth-
ness indicators.

the comparison of the solutions with the WENO and OWENO schemes to the exact so-
lution. The solution errors are compared in Fig. 4b. Note that the solution error obtained
with the OWENO scheme is significantly lower (by more than an order of magnitude)
than that with WENO. Next, we turned on the smoothness indicators with everything else
remaining exactly the same. The solutions with both WENO and OWENO schemes are
compared to the exact solution in Fig. 5a, and the solution errors are shown in Fig. 5b.
Again, the solution error with the OWENO scheme is much lower than that with WENO.
However, the errors with both schemes are significantly higher than those without smooth-
ness indicators. This case clearly indicates that the smoothness indicators “thought” that
the sine wave at six grid-spacings per-wave was actually discontinuous, and therefore were
turned on. Therefore, significant numerical dampings were added in the solution, as is
evident in Fig. 5. If we are to develop proper OWENO schemes for short waves, it is crit-
ical that the smoothness indicators should not be turned on for short waves. We tested a
variety of new smoothness indicators, and found the following one worked the best for

FIG. 5. Comparison of WENO and OWENO schemes for the propagation of a sine wave with the original
smoothness indicators in [9].
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short waves:

βr =
k−1∑
l = 2
k > 2

[ ∫ xi+1/2

xi−1/2

1xl−1∂
l pr (x)

∂ l x
dx

]2

, r = 0, . . . , k− 1. (28)

For k = 4, the new smoothness indicators take the following form:

β0 = (2ui − 5ui+1+ 4ui+2− ui+3)
2+ (−ui + 3ui+1− 3ui+2+ ui+3)

2 (29)

β1 = (ui−1− 2ui + ui+1)
2+ (−ui−1+ 3ui − 3ui+1+ ui+2)

2 (30)

β2 = (ui−1− 2ui + ui+1)
2+ (−ui−2+ 3ui−1− 3ui + ui+1)

2 (31)

β3 = (−ui−3+ 4ui−2− 5ui−1+ 2ui )
2+ (−ui−3+ 3ui−2− 3ui−1+ ui )

2. (32)

In smooth regions, Taylor expansion of (29–32) gives

βr = (u′′i 1x2)2+ (u′′′i 1x3)2+ O(1x6), r = 0, . . . ,3. (33)

Obviously, ifu′′i 6= 0, then

βr = (u′′i 1x2)2(1+ O(1x2)), r = 0, . . . ,3, (34)

which is similar to the accuracy requirement given in (11). Equation (34) in fact means
that two extra orders of accuracy can be possibly obtained using the new smoothness
indicators by convexly combining the optimized schemes. Note that the third-order OWENO
scheme was obtained usingp1 = 2, and p2 = 1. Therefore, the new set of smoothness
indicators should be compatible with the third-order OWENO scheme. To numerically
verify this claim, an accuracy study was performed using the third-order OWENO scheme
with the new smoothness indicators. The computational domain was set to be [−1, 1], with
u0(x) = sin(πx) and periodic boundary conditions. The simulation was carried out until
t = 1 with CFL= 0.25. The numericalL1 andL∞ errors are presented in Table V. Note
that in both norms, third-order accuracy is achieved.

One may argue that if one of the derivatives

∂ l pr (x)

∂ l x

in (28) is an odd function ofx − xi , then the integral of the derivative is zero, thus failing
to recognize a possible steep gradient. The counter argument is that for anyk > 3, the

TABLE V

Accuracy Study with 3rd Order OWENO Scheme

N L1 error L1 order L∞ error L∞ order

10 8.59e-3 — 1.41e-2 —
20 8.92e-4 3.27 1.85e-3 2.93
40 4.69e-5 4.25 1.23e-4 3.91
80 5.02e-6 3.22 1.59e-5 2.95

160 5.55e-7 3.18 8.49e-7 4.23
320 6.96e-8 3.00 1.09e-7 2.96
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FIG. 6. Simulation of a square wave with a linear shock profile using both WENO and OWENO schemes
with the new smoothness indicators.

smoothness indicators consist of the integrals of at least two derivatives. Sincepr (x) is a
(k− 1)th order polynomial, if one derivative is an odd function, the other derivative should
be an even function. Therefore its integral should not be zero. As a result, the smoothness
indicators should still be capable of recognizing a possible steep gradient. A close exami-
nation of (29–32) reveals that the smoothness indicators are zero if and only if the solution
at the stencil is linear. For example, we haveβ0 = 0 only whenui − 2ui+1+ ui+2= 0 and
ui+1− 2ui+2+ ui+3 = 0, i.e., the solution is linear in the stencil, in which case the solution
in the stencil should not be recognized as a steep gradient. In the case ofk = 3, pr (x) is
a quadratic function. Its second-derivative is a nonzero constant in most cases which can
never be an odd function, unlesspr (x) degenerates into a linear function. In this case, we
have again linear data in the stencil, which should not be recognized as a steep gradient.
We designed a square wave case with a linear shock profile to test the above argument,
i.e., the shock is linearly spread over four grid points as shown in Fig. 6. It is obvious that
the smoothness indicator for the stencil containing the linear shock profile is zero. Both
the seventh-order WENO and the third-order OWENO schemes were tested for this case
with the new smoothness indicators. A total of 121 grid points were generated to cover
the domain of [−30, 30]. The shock wave was then propagated across the computational
domain twice with1t = 0.1. The computational solutions with both schemes are compared
with the exact solution in Fig. 6. Note that both schemes produced nonoscillatory shock
profiles with the new smoothness indicators.

With the new smoothness indicators, the solutions with the WENO and OWENO schemes
and their errors for the sine wave are shown in Fig. 7. It is obvious that the solution errors with
the new smoothness indicators are reduced significantly compared to those with the original
smoothness indicators. The solution errors with and without the smoothness indicators are
presented in Fig. 8. Note that the new smoothness indicators do not significantly affect the
short waves for both WENO and OWENO schemes. Next, the OWENO scheme was tested
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FIG. 7. Comparison of WENO and OWENO schemes for the propagation of a sine wave with the new
smoothness indicators.

for an artificial “broadband” wave, which is composed of the following three sine waves as
given by

u0(x) = sin

(
πx

3

)
+ sin

(
πx

6

)
+ sin

(
πx

12

)
.

The wavelengths of the three waves are 6, 12, and 24, respectively, and they are therefore
called short, medium, and long waves. The initial wave form is displayed in Fig. 9. The
computational domain was chosen to be [−12, 12] with grid size1x = 1 and1t = 0.1.
The wave then traveled for five short wavelengths untilt = 30. The solutions with WENO
and OWENO schemes are compared with the exact solution in Fig. 10a. The solution errors
are shown in Fig. 10b. Again OWENO performed better than WENO as expected for this

FIG. 8. Comparison of WENO and OWENO schemes for the propagation of a sine wave with the new
smoothness indicators and without smoothness indicators.
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FIG. 9. The formation of a “broadband” wave.

artificial “broadband” wave. After that, we wanted to see how OWENO schemes perform
for discontinuities. In this test, a square wave was propagated in the computational domain
with periodic boundary conditions. The computational domain was chosen to be [−30, 30]
with 1x = 0.5. The initial wave was specified as

u0 =
{

1 −10≤ x ≤ 10

0 otherwise.

The time step1t was set to 0.1, which is small enough so that the error due to time
integration is negligible. The simulation was carried out untilt = 120. Therefore, the wave
was allowed to travel across the computational domain twice. Figure 11 shows the numer-
ical results with the WENO and OWENO schemes using the new smoothness indicators
and the exact solution. Note that both WENO and OWENO schemes gave monotonic so-
lutions for the square wave (at least to the naked eyes), although the OWENO scheme

FIG. 10. Comparison of WENO and OWENO schemes for the propagation of a “broadband” wave with the
new smoothness indicators.
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FIG. 11. Comparison of WENO and OWENO schemes for the propagation of a square wave with the new
smoothness indicators.

smeared the solution slightly more than the WENO scheme. This case also demonstrates
that the new smoothness indicators work well for discontinuities. Just to show the compar-
ison between the new and original smoothness indicators for discontinuities, we used both
smoothness indicators with the WENO scheme to perform the same simulation. Figure 12
displays the solutions with the original and new smoothness indicators. The solutions are
indistinguishable from each other. Finally, to demonstrate the potential of OWENO schemes
for shock/acoustic wave interaction problems, the linear combination of a square wave and
a sine wave was simulated. The period of the combined wave was 24. The initial wave form

FIG. 12. Comparison of WENO schemes for the propagation of a square wave with the original and new
smoothness indicators.
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FIG. 13. The formation of a discontinuous sine wave.

was set to be

u0 =
{

1+ sin
(
πx
3

)
, 7.5≤ x < 19.5

sin
(
πx
3

)
otherwise,

which is displayed in Fig. 13. The computational domain for the case was [0, 24] with
1x = 1 and1t = 0.1. The simulation was carried out untilt = 48 so that the wave traveled
across the computational domain twice. The computed solutions with WENO and OWENO
schemes are shown in Fig. 14. Although both schemes smeared the discontinuity heavily

FIG. 14. Comparison of WENO and OWENO schemes for the propagation of a discontinuous sine wave with
the new smoothness indicators.
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at this grid resolution, it is noted that the smearing of the discontinuity does not affect the
resolution for the sine wave that much with the OWENO scheme. For the WENO scheme,
however, the resolution for the sine wave is much lower. In practical CAA simulations
involving discontinuities, it may not always be possible to resolve the discontinuities with
high resolutions. With OWENO schemes, it seems hopeful that the acoustic waves may still
be resolved with high resolutions.

7. APPLICATION TO CAA BENCHMARK PROBLEMS

After the advantages of OWENO schemes were verified on the linear wave equation, they
were then extended to solve the linearized Euler equations, in both the conservation and
nonconservation forms. Two benchmark problems from the Third Computational Aeroa-
coustics (CAA) Workshop on Benchmark Problems [24] were then solved with the OWENO
schemes.

Problem 1. Propagation of Sound Waves through a Transonic Nozzle

This benchmark problem is designed to model acoustic wave propagation through a
nozzle where the local Mach number near the throat may be close to 1. The area variation
of the nozzle is given by

A(x) =
0.536572− 0.198086e− ln 2( x

0.6)
2

, x > 0

1.0− 0.661514e− ln 2( x
0.6)

2

, x < 0.
(35)

The governing equations are the linearized quasi-1-D Euler equations. The Mach number
in the uniform region downstream of the throat is 0.4. Small amplitude acoustic waves,
with angular frequency$ = 0.6π , are generated way downstream and propagate upstream
through the narrow passage of the nozzle throat. The upstream-propagating wave in the
uniform region downstream of the nozzle throat is represented by

 ρ ′u′

p′

 = µ
 1
−1

1

 cos

[
$

(
x

1− M
+ t

)]
, (36)

whereµ = 10−5. The computational domain is [−10, 10]. Since the mean flow is smooth, the
nonconservation form linearized Euler equations were used in the simulation. A nonuniform
grid with 301 points was employed with a hyperbolic sine transformation. The grid was
clustered near the throat, and the ratio between the largest grid spacing to the smallest was
about 30. The mean flow was computed analytically. No smoothness indicators were used
in the weights because of the smooth mean flow. The time step was set to be 0.005. The
simulation started with zero perturbations everywhere until it reached a periodic steady
state. Figure 15 displays the exact maximum pressure envelope and the computed pressure
distributions at four different times in a period. It is obvious that the pressure distributions
are nicely bounded by and touch the exact envelope. The computed pressure envelope is
then compared with the exact pressure envelope in Fig. 16. Enlarged views of the same
figure near the throat and exist are shown in Fig. 17. Note that the agreement between the
computational and exact solutions is excellent.
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FIG. 15. Comparison between the exact pressure envelope and computed pressure distributions at four dif-
ferent times.

Problem 2. Shock–Sound Interaction

This problem is designed to simulate shock–sound interactions. The geometry is ex-
actly the same as in Problem 1, but now there is a supersonic shock downstream of
the throat. The inlet Mach number isM = 0.2006533, and the exist pressure is set at
0.6071752 to generate a normal shock downstream of the throat. At the inflow boundary, the

FIG. 16. Comparison between the exact pressure envelope and the computed pressure envelope.
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FIG. 17. Comparison of the computed pressure envelope and the exact pressure envelope near the throat and
the exit.

conditions are  ρu
p

 =
 1

M
1
γ

+ µ
1

1
1

 sin

[
$

(
x

1+ M
− t

)]
, (37)

whereµ = 10−5, ω̄ = 0.6π. Since there was a shock wave in the mean flow, we employed
the conservation-form linearized Euler equations. The mean flow was again obtained analyt-
ically, and is shown in Fig. 18. A uniform grid with 201 points in the computational domain
[−10, 10] was used. A time step of 0.01 was employed in the simulation. We again started
the simulation from zero perturbation fields everywhere until the computation reached a
periodic steady state. Figure 19 shows the comparison of the computed pressure field using
the third-order OWENO scheme with the new smoothness indicators defined in (29–32)
and the exact pressure solution at the beginning of a period. The density perturbation was

FIG. 18. Mean flow distributions for the case of shock–sound interaction.
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FIG. 19. Comparison of computed pressure distributions with WENO and OWENO schemes and exact
solution at the beginning of a period using the conservation-form linearized Euler equations.

used in the smoothness indicators. Note that the agreement between the computational and
exact pressure fields is excellent before and after the shock wave. There is, however, a slight
overshoot near the shock wave in the computed pressure field. Just for comparison, the
same simulation was also performed with the seventh-order WENO scheme and the orig-
inal smoothness indicators. The computed solutions essentially coincided with each other
as shown in Fig. 19. We also used pressure and velocity perturbations in the smoothness
indicators, and changed the value ofε in (10) based on the definition given by Fedkiwet al.
[3]. The solutions shown in Fig. 19 are the best we could obtain. One possible factor for the
overshoot is that the extension of the scalar scheme to the linearized Euler equations is done
using a split flux approach. According to the recommendations given by Shu [21], an exten-
sion based on the characteristic variables may give better predictions near the shock. Future
work is necessary to investigate the cause of the oscillation around the shock wave. We also
used the nonconservative linearized Euler equations to simulate this case assuming that the
shock wave is smeared over one mesh spacing so that finite first derivatives of the mean
flow can be calculated near the shock wave. The pressure field after the shock wave was
not correctly captured by the nonconservative formulation. This simulation demonstrates
the importance of conservation in the computational simulations with discontinuities.

8. CONCLUSIONS

Optimized WENO schemes have been developed in this study to unite the advantages
of both the optimized and WENO schemes in the simulation of shock/broadband acoustic
waves. By design, OWENO schemes are capable of resolving waves at 6 PPW, while
giving essentially nonoscillatory solutions for discontinuities. It was found that the original
smoothness indicators developed by Jiang and Shu [9] added significant numerical dampings
into the schemes for waves at 6 PPW. New smoothness indicators are developed, and
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shown to be compatible with the accuracy requirement. These new smoothness indicators
performed much better for waves at 6 PPW than the original ones. They were also tested
with discontinuities, and were found to perform as well as the original indicators. Numerical
tests with the scalar model wave equation verified the designed advantages of OWENO
schemes. The OWENO schemes are then extended to the linearized Euler equations, in
both the conservation and nonconservation forms. Two problems in the Third Computational
Aeroacoustics (CAA) Workshop on Benchmark Problems were solved with the third-order
OWENO scheme. The scheme was found to perform satisfactorily for both problems. It is
shown, however, the conservation form linearized Euler equations must be used if the mean
flow is discontinuous to capture the proper behavior of the acoustic waves across the shock
wave. The implementation of the OWENO schemes for the nonlinear Euler equations is
now under way, and will be reported in a future publication.
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