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ENO (essentially nonoscillatory) and weighted ENO (WENO) schemes were de-
signed for high resolution of discontinuities, such as shock waves, while optimized
schemes such as the DRP (dispersion-relation—preserving) schemes were optimized
for short waves (with respect to the grid spacing, e.g., waves that are 6A%
in wavelength) in the wavenumber space. In this paper, we seek to unite the ad-
vantages of WENO and optimized schemes through the development of Optimized
WENO (OWENO) schemes to tackle shock/broadband acoustic wave interactions
and small-scale flow turbulences relative to the grid spacing. OWENO schemes are
optimized in two levels. In the first level, optimized schemes are constructed for all
candidate stencils by minimizing the error in the wavenumber space. In the second
level, these optimized schemes are convexly combined using weights constructed to
achieve not only higher order of accuracy but also high resolution for short waves.
In addition, a new definition of smoothness indicators is presented for the OWENO
schemes. These smoothness indicators are shown to have better resolution for short
waves. A third-order OWENO scheme and a seventh-order WENO scheme are com-
pared against each other for performance on the scalar model equation. It has been
shown that the OWENO scheme indeed gives much better results in resolving short
waves than the WENO scheme while yielding nonoscillatory solutions for disconti-
nuities. Finally the OWENO scheme is extended to the linearized Euler equations to
solve two computational aeroacoustics (CAA) benchmark problems to demonstrate
its capability. © 2001 Eisevier Science
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1. INTRODUCTION

The past decade and a half has seen many impressive developments in computa
aeroacoustics (CAA). As pointed out by Tam [22], aeroacoustic problems differ signi
cantly from aerodynamic problems in their nature, characteristics, and objectives. They
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intrinsically unsteady, and the dominant frequencies are usually high. Therefore, the
velopment of CAA algorithms needs independent thinking. As a result of this independ:
thinking, many powerful numerical algorithms have been developed to address the |
ticular problems in CAA, e.g., the dispersion—relation—preserving (DRP) finite differen
schemes [23] and other high-order algorithms [7, 10, 12, 16, 19]. The basic idea in D
schemes is to optimize the scheme coefficients for the high resolution of short waves v
respect to the computational grid, i.e., waves with wavelength oA&—@lefined here as

6—8 points-per-wave or PPW). Therefore, DRP schemes are also called optimized sche

The idea of optimizing the scheme coefficients to minimize a particular type of err
instead of the truncation error has been used very successfully over the years by n
researchers in designing a variety of optimized schemes [4, 11, 15, 26]. The rationale
optimizing numerical schemes for short waves is that in a broadband acoustic wave, tl
are both short and long wave components. For long waves, even lower-order schemes ¢
adecentjob in resolving them. It is the short waves, however, which require high resolut
if one is to resolve the broadband wave with as high accuracy as possible.

Other optimized schemes have also been developed successfully for CAA applicati
[27-29]. In the DRP schemes, central differences are employed to approximate the
derivative. They are, therefore, nondissipative in nature. Although nondissipative schel
are ideal for aeroacoustic problems, numerical dissipation is required to damp any n
physical waves generated by boundary and/or initial conditions. In practice, high-or
dissipation terms are added to the DRP schemes to suppress spurious oscillations.
amount of artificial dissipation required is, however, problem dependent. One may nee
fine-tune the artificial damping to obtain the best results for a particular problem at hand.
remedy this problem, optimized upwind DRP schemes have been developed more rec
by Zhuang and Chen [27, 28], and Lockard, Brentner and Atkins [16]. Instead of using 1
central difference stencil, an upwind-biased stencil was selected based on the local v
propagating direction. Then the upwind schemes are optimized in the wavenumber sy
following the same idea of DRP schemes. The upwind DRP schemes are by design dis:
tive. Therefore, they are capable of suppressing spurious oscillations without the addi
of extra artificial damping, relieving the user from fine-tuning the amount of numeric
dissipation. Another advantage of the upwind DRP schemes is that acceptable results
be obtained even if the mean flow contains discontinuities. With both the DRP and upw
DRP schemes, it is very difficult to obtain oscillation-free numerical solutions if the me:
flow is discontinuous, because the schemes are linear. For nonlinear shock-acoustic \
interaction problems, numerical oscillations may contaminate the resultant solutions
even diverge the simulations.

ENO (essentially non-oscillatory) schemes started with the classic paper of idaaken
[6] and were designed for shock capturing. Before the birth of ENO schemes, seve
approaches were possible to suppress numerical oscillations. One approach was tc
artificial dissipation [8]. The dissipation can be tuned to be large enough near disco
nuities to suppress oscillations, but small elsewhere to maintain high-order accuracy
disadvantage of the approach is that the dissipation terms are problem dependent. An
approach is to use limiters to eliminate oscillations [25]. The TVD schemes [5, 17] are st
examples. One drawback of this approach is that the solution accuracy near extrema (
near smooth extrema) must degrade to first order, resulting in clipping of smooth extrel
The ENO schemes remedied the drawback of TVD schemes in that they are unifor
high-order accurate, yet essentially nonoscillatory for piecewise smooth solutions. M
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recently, weighted ENO (WENO) schemes [9, 14, 21] were developed to further incre
the order of accuracy, while resolving discontinuities with essentially no numerical oscil
tions. Many studies [1, 2] confirmed that ENO and WENO schemes are indeed uniforr
high-order accurate, and capable of resolving shocks with high resolution. They have &
successfully applied to problems with shocks and complex smooth flow structures, suc
those occurring in shock interactions with turbulent flows, and shock/vortices interactio
Although ENO and WENO schemes are not designed for CAA, they have been applie
CAA problems because of their high order of accuracy. The direct applications of ENO ¢
WENO to CAA problems are, however, not optimum because ENO and WENO schen
are designed for high resolution of discontinuities and to achieve a high formal order
accuracy, and NOT optimized for broadband acoustic waves. For short waves, ENO
WENO schemes suffer the same drawback as conventional maximume-order finite differe
schemes in that they quickly lose resolution compared to optimized schemes.

In this paper, we seek to unite the advantages of both the optimized DRP schemes
WENO schemes in the development of Optimized WENO (OWENO) schemes. The ide
to optimize the WENO schemes in the wavenumber space, following the practice of the C
schemes to achieve high resolution for short waves with about 6 PPW. At the same ti
OWENO schemes will retain the advantages of WENO schemes in that discontinuities
captured with essentially no oscillations, and without any extra numerical damping. At le
two groups of researchers [13, 26] attempted to optimize WENO schemes for short wa
Inthe approach presented in [13, 26], only the weights in the WENO schemes are optimi:
Although itwas also found in [26] that the smoothness indicators added significant numer
damping for short waves, no solutions were given there orin [13]. In this paper, optimizatic
are done in two levels. In the first level, optimized schemes for all candidate stencils
constructed. In the second level, optimizations are also performed to find the best wei
to combine all the stencils. In addition, new smoothness indicators are presented for s
waves. In the following section, we first review the concept behind optimized, ENO, a
WENO schemes. Then OWENO schemes are derived for the linear wave equation, and
dissipative and dispersive behaviors are analyzed. After that, the extension of OWE
to the linear Euler equations is described, followed by a brief discussion on the tin
marching method. Next, sample demonstration cases with 1-D scalar wave equation
the linearized Euler equations are carried out to evaluate the performance of OWE
schemes. Finally, conclusions from the study are summarized, and possible future wo
outlined.

2. OVERVIEW OF OPTIMIZED, ENO, AND WENO SCHEMES

In the design of a traditional finite difference scheme, the usual practice is to maximize
order of accuracy of the numerical scheme given the size of the difference stencil. Howe
maximum-order schemes may not be the best for high-frequency short waves, as show
Tam and Webb [23]. To present the basic idea, we will consider the scalar wave equa
with a constant positive wave spead

Ju(x,t d t
(x, )+a u(x, t)
ot X

whereu is a state variabld, > 0 is time, andx is the Cartesian coordinate. We assume
proper boundary conditions are available when necessary. Given a unifors gfidAXx,

=0 withu(x, 0) = up(x), Q)
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i =0,..., N with a constant grid spacingx, we seek to develop a semi-discrete conser
vative numerical scheme approximating (1) in the form

aU; a

ot + Ax (Gir+1/2 - Clirfl/Z) =0, )

whereu; is a numerical approximation ta(x, t) at grid pointx; andd, , , anddi_, , are
numerical fluxes (more pr6CISGdtju|+1/2 is the flux) depending ok continuous grid points
includingx; itself, i.e.,

k—1

CIir.~.1/2 = Gir+1/2(ui—r’ oo Uigs) = Z CrjUi—rj. )
i=0

Herer > 0, s> 0, andr + s+ 1= k; k is the size of the stencil used to compute the
numerical flux; ands; are constants independent of the solution. The coeffic@ntsan

be determined through a Taylor expansion to achieve a maxikthrorder accuracy, i.e.,
by satisfying

ouj (Uir+1/2 - airfl/Z) k

— = ——= 7% 4+ 0(AX"). 4

X AX +0( ) @)
The philosophy of optimized schemes is to sacrifice the formal order of accuracy for achi
ing better resolution for a wider range of wavenumbers, for short waves in particular. Inste
of always achieving the maximum order of accurackofve set to design a scheme with

formal order of accuracy gb; with p; < k, i.e.,

o (O 12 = T)_1)2) p1

8_X = T + O(AXM). (5)
Using a Taylor expansion, we can derppgequations about the coefficiemts. We need an
extrak — p; equations to determine all the coefficients. The idea in the DRP schemes [23
to minimize the difference between the numerical wavenumber and the actual wavenum
Based on a Fourier analysis, the numerical wavenumber for (2) with the given stenci
found to be

p o

— exp(—v/—1aAx)] =a + O(@AX)™, (6)

j=-r

whereq is the actual wavenumber. Therefore, the optimization problem is to minimize tl
L, norm of the difference between the numerical wavenumber and the actual wavenun
for a particular wavenumber range-¢oAX, agAX]. To be more specific, we seek; so
that they satisfy Eq. (5) and minimize the integral

agAX
E = / (A[Re(@ Ax) —aAX]? + (1 — V)[Im(a” AX)]?} d(@ AX), (7)
—apAX

whereE; is the error to be minimized; parametelis chosen to be between 0 and 1 to
balance the errors in the real and the imaginary parts. The imaginary part is a mea:
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of the amplitude error, while the real part indicates the phase error. For a nondissipa
central difference scheme, the imaginary part of the numerical wavenumber diminist
and the minimization problem is simplified. Interested readers should refer to [23] for mc
information on the central DRP schemes. For upwind optimized schemes, refer to [16,
28] for details.

The design philosophy for ENO schemes [6] is very different from that for the optimize
schemes. ENO schemes were developed primarily for high-accuracy capturing of discc
nuities or steep gradients. This was achieved through “adaptive stencil,” namely to cha
the left shiftr with the locatiorx; depending on the smoothness of the local solution to avoi
the discontinuity if possible. Note that in selecting the ENO stendilgdints, the field data
at X — 1 points is scanned. If one uses all the data scanned in the selection process
can achieve a maximumK2- 1)th order of accuracy if the solution on thk 2 1 points
is smooth. This is exactly the idea used in the WENO schemes. Instead of using only
of the candidate stencils to form the numerical flux, one uses a convex combination o
of them, i.e.,

[WENO
Uitz = Z wy { |+1/2 (8)

wherew, are the weightsy, > 0, and

k—

=

wy = 1.

I
o

r

Apparently the key to the success of WENO schemes would be the choice of the wei
w. Based on a Taylor expansion, we can compute a set of weights, denotiegdvidyich
achieves the maximumk2- 1)th order of accuracy. Then for the WENO flux to achieve the
maximum order of accuracy, the weights should satisfy the following accuracy requirem
if the solution is smooth over all stencils:

wr = 0 + O(AX ). 9)
In [9], the weights
wy = 7& & = 7dr
' Kls ' 7 e+ p)?
k (10)
1 X 9! 2
_ a-1( 9P (X) _
,3,_2/)( AX <8'x> dx, r=0,...,k—1

=1 i—1/2

were developed, wherp; (x) is the constructedpolynomial of k — 1)th order over the
interval [xi_1/2, Xi+1/2], € is @ small number preventing the denominator to be zero, ar
according to Fedkivet al. [3], serves as a blending coefficient between the maximum ord
central scheme and ENO schemes, @nds the smoothness indicator. The smoothenes
indicators fork = 2, 3 are given in [9], and the indicators fer= 4 — 6 are given in [1]. A
sufficient condition [9] for the weights in (10) to satisfy (9) is

B = D(1+ O(Ax"™Yy), (11)

whereD is some nonzero quantity independent of
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3. OPTIMIZED WENO SCHEMES

With the descriptions on optimized, ENO, and WENO schemes, itis then straightforwe
to present the OWENO schemes. The OWENO schemes are developed in the following
major steps.

Step 1. Given the stencil siz&, develop optimized schemes achievipgh order of
accuracy p; < k) for all thek candidate stencils

{Xi—r7~-~axi+k—r—1}7 r =0, 1,...,k—l. (12)

By satisfying (5),p: linear equations of the following form can be obtained atwgut

k—1

Zb”C”':Zh fOfl:l,...,pj_, (13)
j=0

wherebj; andz are constants. The rest of tke- p; free parameters are determined by

minimizing E; in (7). E; is a function of the coefficients;,

Er = Er (CrO, ceey Cr,k—l)- (14)
Equations (13) can be used to eliminaige coefficients. Without loss of generality, we
assume that the firgp, coefficientsc;, j =0, py — 1 are eliminated, and they can be
expressed as functions of the l&st p; parameters. Substituting these expressions int
(14), we obtain

Er = Er (Cl’,plﬂ R Cl',k—l)' (15)
To minimize E;, the following conditions must be satisfied:

JoE,
3er

=0, forj=mpg,....,k—1 (16)

Equations (16) would give the desired solution for the remaining coefficients.

Step 2. These optimized schemes for all tkecandidate stencils are then convexly
combined to obtain the OWENO schemes. More specifically, we first seek constamts
the combination

(OWENO _ h
U2 ru |+1/2

so that if the solution is smooth over all candidate stencils, we have

1 _oweno  ~oweno <8 U)
— (0 — (s = —] + O(AxPTP) 7
AX ( i+1/2 i—-1/2 ) X i

with Zf;cl, h, =1,h, >0, andp, < k— 1. Equation (17) can be used to determine
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TABLE |
p1 =2, p2 =1 (3rd Order OWENO)

i r=0 r=1 r=2 r=3
Cij 0 0.28418590 —0.10076912 0.10019444  —0.27941025
1 1.0318226 0.60076912 —0.41620299 0.98165507
2 —0.41620299 0.60076912 1.0318226 —1.6250794
3 0.10019444  —0.10076912 0.28418590 1.9228346
h, 0.14150117 0.48616615 0.33383476 0.038497919

weights, leavingk — 1 — p, weights as free parameters. These free parameters can tt
again be determined by minimizing an integral in the form of Eq. (7), but afitreplaced
by o = Zf;g h.a". The approach in determining parametérsis very similar to the
procedure in determining; in Step 1. Sincéy, is determined assuming the solution is
smooth, it is not suitable when the solution has a discontinuity in one or more of t
candidate stencils. We again use the smoothness indicators presented in (tiO)eptaced

by hy.

Performance tests with these smoothness indicators will be presented later. It will
shown that these weights are not suitable for short waves because they cannot distin
short waves with 6 PPW from discontinuities. A new set of weights will be presented ir
later section.

In this paper we constructed a variety of schemes with different stencil sizes, @
order of accuracy. In our optimization, we have selegted 0.5 to minimize both the dissi-
pation and the dispersion errors anghAx = 0.357. The selection ofagAX =
0.357 optimizes the schemes for waves with about 6 PPW. The coefficients for so
of the OWENO schemes witk= 4 are listed in Tables I-IV. Figures 1-3 show the com:-
parison of the relative wavenumber errors among the OWENO schemes of different orc
of accuracy and the seventh-order accurate WENO scheme with the same stencil (v
out the smoothness indicators). Lele [11] defines the resolving efficiency as the frac
of the range of wavenumbers such that the error is below some toletant¢he tol-
erance is set to be 0.01, then the resolving efficiency of the first-order OWENO sche
is 1.45/7 = 0.46 (corresponding to 4.3 PPW), the resolving efficiency of the third-orde
OWENO scheme is.46/7 = 0.46 (4.3 PPW), the resolving efficiency of the fifth-order
OWENO schemeis.22/7 = 0.39 (5.2 PPW), and the resolving efficiency of the seventh
order WENO scheme is.25/7 = 0.40 (5.0 PPW). However, if higher accuracy is re-
quired, e.g.r = 0.001, then the resolving efficiency of the first-order OWENO schem
is 1.15/7 = 0.37 (corresponding to 5.5 PPW), the resolving efficiency of the third-orde
OWENO scheme is.16/7 = 0.37 (5.5 PPW), the resolving efficiency of the fifth-order
OWENO scheme is.82/7 = 0.26 (7.7 PPW), and the resolving efficiency of the seventh
order WENO scheme is8/7 = 0.27 (7.3 PPW). Itis interesting to see that the fifth-order
OWENO scheme has a lower resolving efficiency than the maximum-order, nonoptimi:
seventh-order WENO scheme. On the other hand, the first-order and third-order OWE
schemes do have better resolving efficiency than the WENO scherke=fet. Since the
third-order OWENO scheme has a higher formal order of accuracy, and a slightly be
resolving efficiency, it is selected in all the numerical computations to be presen
later.
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TABLE Il
p1 =1, p» = 0 (1st Order OWENO)

i r=0 r=1 r=2 r=3
[T 0.28950603 —0.10076912 0.094874312 —0.24051909
1 1.0204113 0.60076912 —0.40479166 0.89823611
2 —0.40479166 0.60076912 1.0204113 —-1.5416604
3 0.094874312 —0.10076912 0.28950603 1.8839434
h, 0.15024393 0.48017755 0.32988027 0.039698251
TABLE Il
p: = 3, p. = 2 (5th Order OWENO)
j r=0 r=1 r=2 r=3
G O 0.25866239 —0.083333333 0.074670939 —0.18445575
1 1.0573462 0.58333333 —0.39067948 0.88670057
2 —0.39067948 0.58333333 1.0573462 —1.7200339
3 0.074670939 —0.083333333 0.25866239 2.0177891
h, 0.14196688 0.51976365 0.31535440 0.022915068
TABLE IV
p1 = 4, p, = 3 (7th Order WENO)
j r=0 r=1 r=2 r=3
Ci 0 1/4 -1/12 1/12 -1/4
1 13/12 7/12 -5/12 1312
2 -5/12 7/12 1312 —23/12
3 1/12 -1/12 1/4 25/12
h, 4/35 18/35 12/35 1/35
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FIG. 1. Comparison of relative wavennumber errors between the seventh-order WENO scheme and the |
order OWENO scheme withyp= 1, and p = 0.
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4. EXTENSION TO THE LINEARIZED EULER EQUATIONS

0 oF
0Q

The unsteady Euler equations in conservation form in quasi-1-D can be written as
at

ax

’

whereQ is the vector of conserved variablds,is the inviscid flux vector, andH is the

1.4 1.6
FIG. 3. Comparison of relative wavenumber errors between the seventh-order WENO scheme and the
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vector for the source terms given below:

aA T
Q=A{p.pu, E}T, F=A{pu, pu®+ p,u(E+ p)}', H={o, an,O}- (19)

Herep is densityu is the velocity,p is the pressurek is the total energy, and is the area
of the cross section. Pressure is related to the total energy by

E-_P 1
—,-172°

with y = 1.4 for air. The linearized Euler equations can be derived by letting
P=po+p, p=po+p, Uu=uUo+U, (20)

where the quantities with subscript O are the mean flow values, while thosé€ waiith
perturbations. Substituting (20) into (18), and eliminating high-order terms with respect
the perturbations, we obtain the linearized Euler equations. The linearized Euler equat
can be written in two forms, one in conservation form, and the other in nonconservat
form. The nonconservation linearized Euler equations in transformed cooréiratgx)

can be written as
aq 0§
— J 21
ot + ( 85) =S (1)

whereq = {p’, U, p'}, Jis the Jacobian matrix, aricontains the vector of sources, which
are functions of the mean flow variables, their first derivatives, and nozzle area derivati
The OWENO scheme for equation (21) takes the following form:

ﬂ + ig (3 (Gay2 = Giaj2) + 3 (G — Gha0)] <j§> S. (22)
Here, each component &f_, , is computed using the procedure presented in the la;
section, which assumes that the wave travels in the positifieection. Each component
of qgl/z is computed in a symmetric fashion assuming the wave travels in the negat
x-direction. The Jacobian matrikxcan be decomposed into two pads= J* + J—, with
J* containing only nonnegative eigenvalues ahd only nonpositive eigenvalues. The
following equation is used to decompode

J*—}R(A + ARG J‘—}R(A — ARG
—2J J J J —2J J J J

whereR; is composed of the right eigenvectorslofandA ; is a diagonal matrix containing

the eigenvalues af. Note that the nonconservative linearized Euler equations have the fi
derivatives of the mean flow in the source terms, which become singular if the mean f
has a discontinuity. To handle discontinuous mean flow, one must use the conservation

U 0aG
— 4+ — =0, 23
ot + aX (23)
whereU is the conserved perturbation variabl€sis the flux vector, an@® is the source
vector. Let the Jacobian matrix I8 i.e.,

_0G
T U’
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Now the source term does not contain the derivatives of mean flow variables. The m
flow is again obtained analytically. Define left and right propagating flux vectors as

G~ = 0.5[G —max|2'(B)|U] GT = 0.5[G + max|A' (B)|U] (24)

wherer!, | = 1, 2, 3 are three eigenvalues of matix We then apply the OWENO scheme
to Eq. (23) in the following manner:

Ui 1« ~ ~ . ~

— + —(Giy12—Gi_12) = O Gisp= Giy12+ Gtz (25)

ot AX
Each component o66" is computed using the procedure presented in the last secti
assuming that the wave travels in the posikiwveirection, and symmetrically the components
of G~ can be computed. For the inlet and exit boundary conditions, we follow the approz
developed in [23]. One-sided optimized schemes are used to maintain the solution accu
near boundaries.

5. TIME-INTEGRATION

After proper spatial discretizations, the conservation laws reduce to either a scalar
system of ordinary differential equations in time, which can be written in the form:

dQ
5 = L@. (26)

In this study a third order TVD Range-Kutta method developed in [20] is employed, whi
can be written as:

Q¥ =Q"+AtL@Q"

3 1 1

Q® =7Q"+ Q%+ ZAtL(QY) (27)
1 2 2

Q™= 3Q"+ Q% + ZAtL(Q?)

6. TEST WITH LINEAR WAVE EQUATION AND NEW SMOOTHNESS INDICATORS

To verify the designed advantages of OWENO schemes, we first tested the 7th o
WENO and 3rd order OWENO schemes for the linear wave equation (1 pwitii. In the

first case a sine wave
. T
Up(X) = sin (gx)

was specified in the computational domain and propagated with periodic boundary ¢
ditions. We initially turned off the “smoothness indicators” in both WENO and OWEN(C
schemes since the solution was smooth. The computational domain for this case wa
to be [-18, 18] with grid sizeAx =1, i.e., 6 PPW. The time step was setAdt= 0.1

to minimize the effects of the time-integration scheme. The simulation was then carr
out until t = 60. By then, the sine wave traveled for 10 wavelengths. Figure 4a sho
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FIG.4. Comparison of WENO and OWENO schemes for the propagation of a sine wave without the smoc

ness indicators.

the comparison of the solutions with the WENO and OWENO schemes to the exact
lution. The solution errors are compared in Fig. 4b. Note that the solution error obtair
with the OWENO scheme is significantly lower (by more than an order of magnitud
than that with WENO. Next, we turned on the smoothness indicators with everything e
remaining exactly the same. The solutions with both WENO and OWENO schemes
compared to the exact solution in Fig. 5a, and the solution errors are shown in Fig.
Again, the solution error with the OWENO scheme is much lower than that with WENC
However, the errors with both schemes are significantly higher than those without smo
ness indicators. This case clearly indicates that the smoothness indicators “thought”
the sine wave at six grid-spacings per-wave was actually discontinuous, and therefore \
turned on. Therefore, significant numerical dampings were added in the solution, a
evident in Fig. 5. If we are to develop proper OWENO schemes for short waves, it is cl
ical that the smoothness indicators should not be turned on for short waves. We test
variety of new smoothness indicators, and found the following one worked the best

. : T : 12 ; : :
15 Exact ——- WENO, Original Smooth Indicator
O WENO, Original Smooth Indicator ——— g - "
& OWENO, Original Smaoth Indicator OWENO, Original Smooth Indicator}
v 4 4
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FIG. 5. Comparison of WENO and OWENO schemes for the propagation of a sine wave with the origir

smoothness indicators in [9].
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short waves:

k-1 Xit1/2 9 X) 2
- Axi-1EP 0y —0,... k-1 28
ﬂr IZZ |:/Xil/2 X alx X 9 r ) ) ( )

k>2

Fork = 4, the new smoothness indicators take the following form:

Bo = (2ui — BUi1 + AUi2 — Ui+3)* + (—U; + 3Uj41 — Uiz + Ui+a)? (29)
Br = (Ui_1 — 2Uj + Ui+1)® + (—Uj_1 + 3Uj — 3Uj41 + Uj42)° (30)
B2 = (Ui—1 = 2U; + Uis1)? + (—Ui2 + 3Ui—1 — 3U; + Ui1)? (31)
Bz = (—Ui_3+4Ui_o — 5Ui_1 + 2U))* + (—Ui_3+ 3Ui_» — Bui_1 + Uu)>  (32)

In smooth regions, Taylor expansion of (29-32) gives
Br = (U'AX?)? 4+ (U"AX3)? + O(AX®), r=0,...,3 (33)
Obviously, ifui’ # 0, then
Br = (U/AX?)2(1L+ O(AX?), r=0,...,3 (34)

which is similar to the accuracy requirement given in (11). Equation (34) in fact mea
that two extra orders of accuracy can be possibly obtained using the new smoothi
indicators by convexly combining the optimized schemes. Note that the third-order OWEI
scheme was obtained usimg = 2, and p, = 1. Therefore, the new set of smoothness
indicators should be compatible with the third-order OWENO scheme. To numerica
verify this claim, an accuracy study was performed using the third-order OWENO sche
with the new smoothness indicators. The computational domain was set+d ¥ [ with
Up(X) = sin(xx) and periodic boundary conditions. The simulation was carried out un
t = 1 with CFL = 0.25. The numerical; andL , errors are presented in Table V. Note
that in both norms, third-order accuracy is achieved.
One may argue that if one of the derivatives

' pr (%)
a'x

in (28) is an odd function ok — x;, then the integral of the derivative is zero, thus failing
to recognize a possible steep gradient. The counter argument is that fér-aiy the

TABLE V
Accuracy Study with 3rd Order OWENO Scheme

N L, error L, order L, error L., order
10 8.59%e-3 — 1.41e-2 —
20 8.92e-4 3.27 1.85e-3 2.93
40 4.69e-5 4.25 1.23e-4 3.91
80 5.02e-6 3.22 1.59e-5 2.95
160 5.55e-7 3.18 8.49e-7 4.23

320 6.96e-8 3.00 1.09e-7 2.96
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FIG. 6. Simulation of a square wave with a linear shock profile using both WENO and OWENO schem
with the new smoothness indicators.

smoothness indicators consist of the integrals of at least two derivatives. $ipoes a

(k — 1)th order polynomial, if one derivative is an odd function, the other derivative shou
be an even function. Therefore its integral should not be zero. As a result, the smoothi
indicators should still be capable of recognizing a possible steep gradient. A close exe
nation of (29-32) reveals that the smoothness indicators are zero if and only if the soluf
at the stencil is linear. For example, we hgge= 0 only whenu; — 2u; 1 + Ui, 2 =0 and
Ui;1 — 2Ui.2 + Ujr3 = 0, i.e., the solution is linear in the stencil, in which case the solutiol
in the stencil should not be recognized as a steep gradient. In the clase &f p; (X) is

a quadratic function. Its second-derivative is a nonzero constant in most cases which
never be an odd function, unleps(x) degenerates into a linear function. In this case, we
have again linear data in the stencil, which should not be recognized as a steep grac
We designed a square wave case with a linear shock profile to test the above argun
i.e., the shock is linearly spread over four grid points as shown in Fig. 6. It is obvious t
the smoothness indicator for the stencil containing the linear shock profile is zero. B
the seventh-order WENO and the third-order OWENO schemes were tested for this c
with the new smoothness indicators. A total of 121 grid points were generated to co
the domain of |30, 30]. The shock wave was then propagated across the computatio
domain twice withAt = 0.1. The computational solutions with both schemes are compare
with the exact solution in Fig. 6. Note that both schemes produced nonoscillatory she
profiles with the new smoothness indicators.

With the new smoothness indicators, the solutions with the WENO and OWENO schen
and their errors for the sine wave are shown in Fig. 7. Itis obvious that the solution errors w
the new smoothness indicators are reduced significantly compared to those with the orig
smoothness indicators. The solution errors with and without the smoothness indicators
presented in Fig. 8. Note that the new smoothness indicators do not significantly affect
short waves for both WENO and OWENO schemes. Next, the OWENO scheme was te:
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FIG. 7. Comparison of WENO and OWENO schemes for the propagation of a sine wave with the n

smoothness indicators.

for an artificial “broadband” wave, which is composed of the following three sine waves

Up(X) = sin X sin X sin X
o0 =sn () +an(55) +on(3;)

The wavelengths of the three waves are 6, 12, and 24, respectively, and they are ther
called short, medium, and long waves. The initial wave form is displayed in Fig. 9. T
computational domain was chosen to belp, 12] with grid sizeAx = 1 andAt = 0.1.
The wave then traveled for five short wavelengths unt 30. The solutions with WENO
and OWENO schemes are compared with the exact solution in Fig. 10a. The solution er
are shown in Fig. 10b. Again OWENO performed better than WENO as expected for t

given by
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FIG. 8. Comparison of WENO and OWENO schemes for the propagation of a sine wave with the n
smoothness indicators and without smoothness indicators.
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FIG. 9. The formation of a “broadband” wave.

artificial “broadband” wave. After that, we wanted to see how OWENO schemes perfol
for discontinuities. In this test, a square wave was propagated in the computational don
with periodic boundary conditions. The computational domain was chosen te38230]
with Ax = 0.5. The initial wave was specified as

1 -10<x<10
7 )0 otherwise

The time stepAt was set to 0.1, which is small enough so that the error due to tin
integration is negligible. The simulation was carried out untf 120 Therefore, the wave
was allowed to travel across the computational domain twice. Figure 11 shows the nur
ical results with the WENO and OWENO schemes using the new smoothness indica
and the exact solution. Note that both WENO and OWENO schemes gave monotonic
lutions for the square wave (at least to the naked eyes), although the OWENO sch

3 1 T i T ; z
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FIG. 10. Comparison of WENO and OWENO schemes for the propagation of a “broadband” wave with t
new smoothness indicators.
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FIG. 11. Comparison of WENO and OWENO schemes for the propagation of a square wave with the n
smoothness indicators.

smeared the solution slightly more than the WENO scheme. This case also demonst
that the new smoothness indicators work well for discontinuities. Just to show the comy
ison between the new and original smoothness indicators for discontinuities, we used |
smoothness indicators with the WENO scheme to perform the same simulation. Figure
displays the solutions with the original and new smoothness indicators. The solutions
indistinguishable from each other. Finally, to demonstrate the potential of OWENO scher
for shock/acoustic wave interaction problems, the linear combination of a square wave
a sine wave was simulated. The period of the combined wave was 24. The initial wave fi

1-5 T T T T T
Exact
125 + — - WENQ, New Smooth Indicator i
-—-— WENO, Original Smooth Indicator
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| \
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FIG. 12. Comparison of WENO schemes for the propagation of a square wave with the original and n
smoothness indicators.
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FIG. 13. The formation of a discontinuous sine wave.

was set to be

1+sin(%), 75<x <195
Ug =
sin(ZX) otherwise

which is displayed in Fig. 13. The computational domain for the case was [0, 24] wi
Ax = 1landAt = 0.1. The simulation was carried out uriti= 48 so that the wave traveled

across the computational domain twice. The computed solutions with WENO and OWEI
schemes are shown in Fig. 14. Although both schemes smeared the discontinuity hez

25

4 o \
-0.5 0O Exact O
O WENO
-1 0 OWENO

0 6 12 18 24

FIG. 14. Comparison of WENO and OWENO schemes for the propagation of a discontinuous sine wave w
the new smoothness indicators.
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at this grid resolution, it is noted that the smearing of the discontinuity does not affect
resolution for the sine wave that much with the OWENO scheme. For the WENO schei
however, the resolution for the sine wave is much lower. In practical CAA simulatiol
involving discontinuities, it may not always be possible to resolve the discontinuities wi
high resolutions. With OWENO schemes, it seems hopeful that the acoustic waves may
be resolved with high resolutions.

7. APPLICATION TO CAA BENCHMARK PROBLEMS

After the advantages of OWENO schemes were verified on the linear wave equation, 1
were then extended to solve the linearized Euler equations, in both the conservation
nonconservation forms. Two benchmark problems from the Third Computational Aert
coustics (CAA) Workshop on Benchmark Problems [24] were then solved with the OWEN
schemes.

Problem 1. Propagation of Sound Waves through a Transonic Nozzle

This benchmark problem is designed to model acoustic wave propagation throug
nozzle where the local Mach number near the throat may be close to 1. The area varic
of the nozzle is given by

0.536572— 0.19808& "2(3s)°, x> 0

AX) = L2
1.0 — 0.661514 "2(5s)", X < 0.

(35)

The governing equations are the linearized quasi-1-D Euler equations. The Mach nun
in the uniform region downstream of the throat is 0.4. Small amplitude acoustic wav
with angular frequency = 0.6, are generated way downstream and propagate upstre:
through the narrow passage of the nozzle throat. The upstream-propagating wave ir
uniform region downstream of the nozzle throat is represented by

o' 1 X

u|l=un|-1 cos{w (— + t)] , (36)
, 1-M

p 1

whereu = 1075, The computational domainis{L0, 10]. Since the mean flow is smooth, the
nonconservation form linearized Euler equations were used in the simulation. A nonunifc
grid with 301 points was employed with a hyperbolic sine transformation. The grid w
clustered near the throat, and the ratio between the largest grid spacing to the smalles
about 30. The mean flow was computed analytically. No smoothness indicators were
in the weights because of the smooth mean flow. The time step was set to be 0.005.
simulation started with zero perturbations everywhere until it reached a periodic ste
state. Figure 15 displays the exact maximum pressure envelope and the computed pre
distributions at four different times in a period. It is obvious that the pressure distributic
are nicely bounded by and touch the exact envelope. The computed pressure envelc
then compared with the exact pressure envelope in Fig. 16. Enlarged views of the s
figure near the throat and exist are shown in Fig. 17. Note that the agreement betweel
computational and exact solutions is excellent.
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FIG. 15. Comparison between the exact pressure envelope and computed pressure distributions at fou
ferent times.

Problem 2. Shock—Sound Interaction

This problem is designed to simulate shock—sound interactions. The geometry is
actly the same as in Problem 1, but now there is a supersonic shock downstrean
the throat. The inlet Mach number i = 0.2006533, and the exist pressure is set a
0.6071752 to generate a normal shock downstream of the throat. At the inflow boundary,
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10 OOWENO | |
—— EXACT
8
S
£ 6
a

X

FIG. 16. Comparison between the exact pressure envelope and the computed pressure envelope.
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FIG. 17. Comparison of the computed pressure envelope and the exact pressure envelope near the thro
the exit.

conditions are

1
+nun |l sin{w(l_’_LM—t)], (37)
1

wherep = 1075, @ = 0.67. Since there was a shock wave in the mean flow, we employe
the conservation-form linearized Euler equations. The mean flow was again obtained an.
ically, and is shown in Fig. 18. A uniform grid with 201 points in the computational domai
[—10, 10] was used. A time step of 0.01 was employed in the simulation. We again star
the simulation from zero perturbation fields everywhere until the computation reache
periodic steady state. Figure 19 shows the comparison of the computed pressure field t
the third-order OWENO scheme with the new smoothness indicators defined in (29-
and the exact pressure solution at the beginning of a period. The density perturbation

c
Il
Rk Z

1.5 T T T

1.25 | b

075 |

0.5

0.25

FIG. 18. Mean flow distributions for the case of shock—sound interaction.
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FIG. 19. Comparison of computed pressure distributions with WENO and OWENO schemes and ex
solution at the beginning of a period using the conservation-form linearized Euler equations.

used in the smoothness indicators. Note that the agreement between the computatione
exact pressure fields is excellent before and after the shock wave. There is, however, a <
overshoot near the shock wave in the computed pressure field. Just for comparison
same simulation was also performed with the seventh-order WENO scheme and the c
inal smoothness indicators. The computed solutions essentially coincided with each o
as shown in Fig. 19. We also used pressure and velocity perturbations in the smooth
indicators, and changed the valuesof (10) based on the definition given by Fedledal.

[3]. The solutions shown in Fig. 19 are the best we could obtain. One possible factor for
overshoot is that the extension of the scalar scheme to the linearized Euler equations is
using a split flux approach. According to the recommendations given by Shu [21], an ext
sion based on the characteristic variables may give better predictions near the shock. F
work is necessary to investigate the cause of the oscillation around the shock wave. We
used the nonconservative linearized Euler equations to simulate this case assuming th:
shock wave is smeared over one mesh spacing so that finite first derivatives of the
flow can be calculated near the shock wave. The pressure field after the shock wave
not correctly captured by the nonconservative formulation. This simulation demonstra
the importance of conservation in the computational simulations with discontinuities.

8. CONCLUSIONS

Optimized WENO schemes have been developed in this study to unite the advant:
of both the optimized and WENO schemes in the simulation of shock/broadband acou
waves. By design, OWENO schemes are capable of resolving waves at 6 PPW, w
giving essentially nonoscillatory solutions for discontinuities. It was found that the origin
smoothness indicators developed by Jiang and Shu [9] added significant numerical damy
into the schemes for waves at 6 PPW. New smoothness indicators are developed,
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shown to be compatible with the accuracy requirement. These new smoothness indic:
performed much better for waves at 6 PPW than the original ones. They were also te
with discontinuities, and were found to perform as well as the original indicators. Numeri
tests with the scalar model wave equation verified the designed advantages of OWE
schemes. The OWENO schemes are then extended to the linearized Euler equatior
both the conservation and nonconservation forms. Two problems in the Third Computatic
Aeroacoustics (CAA) Workshop on Benchmark Problems were solved with the third-ort
OWENO scheme. The scheme was found to perform satisfactorily for both problems. |
shown, however, the conservation form linearized Euler equations must be used if the n
flow is discontinuous to capture the proper behavior of the acoustic waves across the s
wave. The implementation of the OWENO schemes for the nonlinear Euler equation:
now under way, and will be reported in a future publication.
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