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Anisotropic Solution-Adaptive Viscous Cartesian Grid Method
for Turbulent Flow Simulation
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An anisotropic viscous Cartesian grid method based on a 2N tree data structure is developed. The method is
capable of handlingcomplex geometries automatically.In addition, viscous boundary layers can be computed with
high resolution, using automatically projected high aspect ratio viscous layer grids. Compared with a widely used
Octree data structure, the 2N tree data structure supports anisotropic grid adaptations in any of the coordinate
directions. Therefore, key � ow features such as shock waves, wakes, and vortices can be captured in a very ef� -
cient manner. To handle the adaptive viscous Cartesian grid, an implicit, second-order, � nite volume � ow solver
supporting arbitrary grids has been developed. A linearity-preserving least-squares solution reconstruction algo-
rithm is used to achieve second-order accuracy. Furthermore, several directional adaptationcriteria are developed
and tested. The overall grid generation, � ow simulation, and grid adaptation methodology is then demonstrated
for a variety of � ow problems, including a case of supersonic turbulent � ow over a high-angle-of-attack missile
con� guration.

Nomenclature
C p = pressure coef� cient
D = diagonal matrix in the block lower–upper

symmetric Gauss–Seidel method
dmax = meshing parameter, the maximum

grid size desired
dmin = meshing parameter, the minimum

grid size desired
disN = meshing size in the body normal direction
disT = meshing size in the body tangential direction
F = vector of inviscid � ux
Fv = vector of viscous � ux
G = geometric entity, de� ned as a set of points
I = intersection operator
Ix x , Ixy , Ixz,..., = reconstructioncoef� cients
L = number of triangleson the triangulatedsurface
M = number of Cartesian front nodes
N = total number of cells
Nnb = number of neighboring faces sharing a node
Q = vector of conserved variables
QN = vector of cell-averagedconserved variables
q = any of the primitive variables (density,

pressure, and velocity components)
r = position vector
S = a solid, de� ned as a set of points
S f = face area of face f
Vi = volume of control volume i
W = matrix of reconstructioncoef� cients
w = weight in the Laplacian smoother
x , y, z = Cartesian coordinates
1t = time step
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¼i x = second derivative-basedadaptation criterion
¿i x = � rst derivative-basedadaptation criterion

I. Introduction

T HE unstructured grid-based computational � uid dynamics
(CFD) methodologyhas undergoneconsiderabledevelopment

in the last two decades, in terms of both grid generation and solu-
tion algorithm development. This is largely due to the dif� culty in
generating structured grids for complex geometries. Unstructured
grids provide considerable � exibility in tackling complex geome-
tries and in adapting the computationalgrids according to � ow fea-
tures. It is generally recognized that unstructured grid-based CFD
methods offer the best promise for nearly automated � uid � ow sim-
ulation. After nearly two decades of intensive development, many
new types of unstructured grids have been developed besides the
classical triangular or tetrahedral grids1¡5 and unstructuredquadri-
lateral or hexahedralgrids.6;7 These new types include unstructured
prismatic grids8 and mixed grids.9;10 Tetrahedral grids are the easi-
est to generate. Many well-known grid generationalgorithms, such
as the advancingfront11 and the Delauney triangulationmethod (see
Ref. 12) have been developed to generate tetrahedralgrids for com-
plex geometries.However, experiencehas indicated that tetrahedral
grids are not as ef� cient and/or accurate as hexahedralor prismatic
grids for viscous boundary layers.13 On the other hand, prismatic
grids and hexahedral grids can resolve boundary layers more ef� -
ciently, but they are more dif� cult to generate than tetrahedralgrids.
Many CFD researchershavecome to theconclusionthatmixed grids
(or hybrid grids) are the way to go when taking into account of both
accuracyand ef� ciency.For example, a hybrid tetrahedral/prismatic
grid approach9 was successfullydemonstrated for complex geome-
tries, and other mixed grid methods can handle many different cell
types including tetrahedrons, hexahedrals,prisms, and pyramids.10

One disadvantage of tetrahedral grids is that tetrahedra are not as
ef� cient as Cartesian cells in � lling three-dimensional space given
a certain grid resolution. This can be easily understood given that
at least � ve tetrahedraare required to � ll a cube without adding any
new grid points. In addition, from a quality standpoint of view, an
adaptive Cartesian grid is much less skewed than a tetrahedral grid
and should present fewer numerical dif� culties for stiff problems.
Furthermore, there is strong evidence that prismatic grids are much
more accurate and ef� cient than a tetrahedralfor the viscousbound-
ary layer.13 Therefore, it seems a more appealinggrid topology is a
hybridof adaptiveCartesianand viscous layer grids, either extruded
prism grids or projected prism grids.

1969
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The use of Cartesian grids in solving � uid � ow problems started
many decades ago because it is trivial to generate the computational
grids. One dif� culty in using Cartesian grids is in the boundary
treatment of curved geometries. Recently, there has been a re-
newed interest in using adaptive Cartesian grids for complex
geometries.14¡19 In these Cartesian grid approaches, body surfaces
(or geometries) are used to perform cell cutting to preserve the
geometric � delity. With a robust cell-cutting algorithm, the grid
generation process can be completely automated. Coupled with a
tree-based data structure and solution-based grid adaptation, these
methods have been demonstrated to be very viable tools for inviscid
� ows with very complex geometry. The extension of the Cartesian
grid approach to viscous � ows was achieved with either the adap-
tive Cartesian/prism grids20¡22 or with projected viscous layer grids
from the Cartesian grid23¡26 (the so-called “viscous” Cartesian grid
method). This paper attempts to further develop the viscous Carte-
sian grid method by incorporatingthe capability of anisotropicgrid
adaptationsthrough the use of the 2N tree data structure26 instead of
the usualOctree.The 2N treedata structuresupportsanisotropicgrid
adaptationsof Cartesian cells naturally. The use of anisotropicgrid
adaptation(vs isotropicgrid adaptations)offers the potentialof dra-
matic reduction in the total number of cells to achieve a given level
of solution accuracy because most high-gradient� ow features such
as shock waves, slip lines, vortex sheets, and wakes are anisotropic.

The paper is, therefore, arranged as follows. In the next section,
we will � rst present the viscous Cartesian grid generation method
with a 2N tree data structure. Important steps in the grid gener-
ation process will be described. Then, an implicit, second-order,
cell-centered � nite volume viscous � ow solver will be presented.
This � ow solver is capableof handlingarbitrarygrids, including the
adaptive viscous Cartesian grid. Next, several derivative-basedgrid
adaptation criteria will be described. These criteria are capable of
identifyingthe directions in which the grid should be adapted.After
that, several inviscid and viscous � ow problems will be presented
to demonstrate the capability of the method. In particular, the ad-
vantagesof anisotropicgrid adaptationswill be showcased.Finally,
conclusions will be summarized.

II. Viscous Cartesian Grid Approach Based on 2N Tree
The � rst step in a CFD simulationinvolvinga nontrivialgeometry

is to import the geometry, de� ne a closed computational domain,
and generate a computational grid. Generally, the grid generation
process can be broken into the following steps:

1) Acquire the geometry.
2) De� ne a water-tight (closed) computationaldomain and repair

the geometry if necessary.
3) Generate the computationalgrid on the boundaries.
4) Generate the computational grid, that is, the volume grid, in

the interior of the computational domain.
In a viscous Cartesian grid method, a volume grid is � rst gener-

ated before a surface grid is producedthroughprojections.A unique
advantageof the method is that “dirty” geometriesmay be automat-
ically handledwithout geometry repair. This is possible through the
generalized de� nition of geometry, which is given hereafter.

A. Generalized De� nition of Geometric Entity
In this paper, a geometric entity is de� ned to be any entity sup-

porting the following two operations:
1) Given a simple solid, for example, a cube or a tetrahedron,

the entity is capableof returning a status “intersected”or “noninter-
sected” based on whether the entity intersects the given solid. Let
the geometric entity be represented by G (which is de� ned as a set
of points) and the given solid by S. The intersection operation is
I .G; S/ is then de� ned by

I .G; S/ D
»

1 if G \ S 6D 0

0 otherwise
(1)

2) Given an arbitrary point g in space, the projection p from the
given point to the entity is well de� ned. The line segment from the
given point to the projection is the shortest distance from the given
point to the entity, that is,

p.G; g/ :D jpgj · jrgjr 2 G (2)

Fig. 1 Cartesian cell subdivisions supported by a 2N tree data
structure.

Note that this de� nition of the geometric entity is very general, and
any geometry de� ned with a solid or a surface patch can be seen
as a valid geometric entity because these operations can be easily
implemented.Note that any discretepoints, lines, curves,and planes
are also valid geometric entities. With this de� nition of geometric
entities, the grid generation process is presented next.

B. Adaptive Cartesian Grid Generation
Two meshing parameters, dmin and dmax, are speci� ed � rst. They

represent the minimum and maximum sizes of Cartesian grid cells
to be generated. The only requirement that the set of geometric en-
tities must satisfy is that the computationaldomain formed with the
entities is “physically” closed if gaps or holes smaller than dmin are
ignored.This closureconditionis muchweaker than the requirement
ofwater-tightgeometryimposedbyothergrid generators.One of the
popular data structures for adaptive Cartesian grids is the Octree.
The drawback of Octree is that only isotropic grid re� nement is
supported. In this paper, a 2N tree data structure is developed and
implemented. The 2N tree is a hierarchical data structure in which
each nonleaf tree node can have either 2, 4, or 8 child nodes. As a
result, it supportsbinary,Quadtree,and Octree typesof subdivisions
and, therefore, allows the adaptive Cartesian grid to be adapted in
an anisotropic manner, as shown in Fig. 1.

The adaptiveCartesian grid is generated by recursivelysubdivid-
ing a single coarse root Cartesian cell. Because the root grid cell
must cover the entire computational domain, the surface geometry
is contained in the root cell. Because the geometric entities support
the intersection operation, all of the Cartesian cells intersected by
the geometry can be easily determined. The size of the Cartesian
cells intersectingthe geometry is controlledby two parameters,disT
and disN. Parameter disN controls the Cartesian cell size in the ge-
ometry normal direction, whereas disT speci� es the Cartesian cell
size in the geometry tangential direction. The ratio disT/disN deter-
mines the maximum aspect ratio in the Cartesian grid.The recursive
subdivisionprocessstopswhen all of the Cartesiancells intersecting
the geometries satisfy the length scale requirements.For the sake of
solution accuracy, it is very important to ensure that the Cartesian
grid is smooth. In the presentstudy, the sizes of any two neighboring
cells in any coordinatedirectioncannot differ by a factor exceeding
two. The use of the 2N tree data structure makes high aspect ratio
Cartesian cells possible. This property can translate into consider-
able ef� ciency gains when anisotropic grid adaptations are used to
resolve � ow features.
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Fig. 2a Missile geometry.

Fig. 2b Stair-step Cartesian front.

Fig. 2c Smoothed Cartesian front.

C. Cartesian Grid Front Generation and Smoothing
To insert a viscous layer grid between the Cartesian grid and the

body surface, Cartesian cells intersected by the geometry must be
removed, leaving an empty spacebetween the Cartesian grid and the
body surface. Once again, all of the Cartesian cells intersected by
the geometry can be determined because the geometry supports the
intersectionoperation. In addition, the intersectedcells also serve to
divide cells outside the geometryfrom the cells inside the geometry.
Depending on whether the problem is external or internal, cells
inside or outside the geometry must be removed. The 2N tree is
not only used to record the recursive cell subdivision process, it
is also used to perform ef� cient intersection operations with the
geometry.For example, if a (coarse)Cartesiancell does not intersect
a geometric entity, all of the child cells from the Cartesian cell must
not intersect the geometric entity.

Once the Cartesian cells intersected by the geometry and cells
outside the computational domain are removed, we are left with a
volumeCartesiangrid.The boundaryfaces of this volumeCartesian
grid form the so-calledCartesian front, and one such front generated
by a missile geometry (Fig. 2a) is shown in Fig. 2b. Note that the
front is not smooth and includes many sharp corners. Before this
front is projected to the geometry, it is smoothed with a Laplacian
smoother to produce a smoother front. One can use a very simple
smoother in the following form:

rnew
i D rold

i .1 ¡ w/ C w
1

Nnb

X
rc (3)

where ri is the position vector of a node on the Cartesian front, Nnb

is the numberof Cartesian faces sharingnode i , rc are the face center
position vectors of the faces sharing node i , and w is a relaxation
factor in [0, 1]. The Laplacian smoothing algorithm can be applied
severaltimes to obtaina reasonablysmoothfront.Shown in Fig. 2c is
the smoothedCartesianfront after theLaplaciansmootheris applied
four times with w D 0:5. Note that the front is much smoother than
the stair-step Cartesian front shown in Fig. 2b.

To prevent the smoothed Cartesian front from intersecting the
body geometry, Cartesian cells that are within a certain distance
of the body are also removed. Although one cannot prove that the
smoothed Cartesian front cannot intersect the body, we have not
encountered a case in which any intersections are detected.

D. Projection of the Cartesian Front to the Body Surface
After the smoothed front in the Cartesian grid is obtained, each

node in the front needs to be connected to the body surface to form
a single layer of viscous grids. It can be proved mathematically
that the projection lines cannot intersect each other away from the
geometric entity. Note that, per de� nition, the geometric entities
must support the projection operation, which comes in handy now.
Because the Cartesian front is composed of boundary faces of a
solid region, the front is closed and water-tight. After the front is
projected to the boundary geometric entities, a water-tight surface
grid is generated on the boundary. The “footprints” of the layer
grids on the body surface have the same topology (or connectivity)
as the Cartesian front. With this assumption, the viscous layer grids
are naturally blended with the adaptive Cartesian grid, eliminating
the need of cell cutting currently adopted by many Cartesian grid
generators. By connecting each point on the Cartesian front and
the corresponding projected point on the boundary, we obtain a
single layer of prism grids. This single layer can be subdivided into
multiple layers with proper grid clustering near the geometry to
resolve a viscous boundary layer.

The ef� ciency of the projection operation in three dimensions is
critical to the success of the method. In a typical application, we
usually have a triangulatedsurface with L triangles and a Cartesian
front with M nodes. A brute-force exhaustive search based pro-
jection algorithm would take O(ML) operations, which is too ex-
pensive even for medium-sized applications. Instead an alternating
digital tree27 is used to record the bounding boxes of the triangles.
Given a node to project, only triangles close to the node are iden-
ti� ed from the tree-based search operation and are projected to.
This new algorithmreduces the number of operationsfrom O.M L/
to about O(M log L). The speed-up for a medium-sized problem
(L D 100,000and M D 100,000) can be more than several orders of
magnitude.

A projection based on the minimum distance rule usually misses
geometrically important concave features, such as the corner points
in Fig. 3. To preserve these features, they must be detectedor speci-
� ed � rst. One criterion is to detect all sharpedgesbased on the angle
between the two faces sharing an edge. Then a feature-preservation
technique is used to reconnect the front nodes to those features.
This technique is schematically shown in Fig. 3. Example viscous
Cartesian grids around the missile geometry, without and with fea-
ture preservation, are displayed in Fig. 4. Note that the � n–body
intersection was heavily smeared without feature preservation but
was resolved clearly with feature preservation.

Fig. 3 Illustration of a smeared concave corner in front projection.
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a)

b)

Fig. 4 Viscous adaptive Cartesian grid for a missile a) without and
b) with feature preservation.

III. Finite Volume Flow Solver for Arbitrary Grids
A � ow solver capable of handling arbitrary polyhedrons has

been developed to uniformly handle the adaptive Cartesian and
the viscous layer grids. This � ow solver is an extension of a two-
dimensional solver developed by Wang.22 The so-called hanging
nodes problem actually disappears because of the use of a cell-
centered � nite volume method supporting arbitrary grid cells. A
Cartesian face with a hanging node is actually treated as four sep-
arate faces. The hanging nodes are, in fact, not visible to the � ow
solver. This simple treatment is not only accurate, but fully conser-
vative as well.

The Reynolds-averagedNavier–Stokes equations can be written
in the following integral form:

Z

V

@Q

@t
dV C

Z

S

.F ¡ Fv / dS D 0 (4)

The integration of Eq. (4) in an arbitrary control volume Vi gives

d NQ i

dt
Vi C

X

f

F f S f D
X

f

Fv; f S f (5)

where F f and Fv; f are the numerical inviscid and viscous � ux vec-
tors through face f and S f is the face area. The overbar will be
dropped from here on. Two major ingredients of the � ow solver,
data reconstruction and time integration, are brie� y described in
the followingsubsections.Roe’s � ux-differencesplitting28 has been
used to compute the inviscid, whereas the viscous � ux is computed

using a simple and robust approach presented in Ref. 22 without a
separate viscous reconstruction.

A. Reconstruction
In a cell-centered� nite volumemethod, � ow variablesare known

in a cell-averagesense. No indication is given as to the distribution
of the solutionover the control volume. To evaluate the inviscid � ux
through a face, � ow variables are required at both sides of the face.
This task is ful� lled through data reconstruction. In this paper, a

Fig. 5a Initial viscous Cartesian grid.

Fig. 5b Level-3 solution-adaptiveCartesian grids using Octree.

Fig. 5c Level-3 solution-adaptiveCartesian grids using 2N tree.
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least-squares reconstructionalgorithm capable of preserving linear
functions on arbitrary grids is employed. This linear reconstruction
alsomakes the � nitevolumemethod second-orderaccuratein space.
This reconstruction is brie� y described next. The reconstruction
problem reads as follows: Given cell-averaged primitive variables
(denoted by q) for all of the cells of the computational grid, build a
linear distributionfor each cell, for example, c, using data at the cell
itself and at its neighboring cells sharing a face with c. We use that

a)

b)

Fig. 6 Computed pressure contour on the level-3 solution-adaptive
Cartesian grids using a) Octree and b) 2N tree.

Fig. 7 Comparison between computed and experimental surface pres-
sure coef� cient at 44% semispan station.

the cell-averaged solutions can be taken to be the point solutions
at the cell centroids without sacri� cing the second-order accuracy.
Therefore, we seek to reconstruct the gradient (qx , qy) for cell c,
which produces the following linear distribution:

q.x; y/ D qc C qx .x ¡ xc/ C qy.y ¡ yc/ C qz.z ¡ zc/ (6)

where (xc , yc , zc) are the cell-centroid coordinates. The following
expressions can be easily derived from a least-squares approach:

2
4

qx

qy

qz

3
5 D W

2

666664

P
n

.qn ¡ qc/.xn ¡ xc/

P
n

.qn ¡ qc/.yn ¡ yc/

P
n

.qn ¡ qc/.zn ¡ zc/

3

777775
(7)

where

W D 1
1

2

64
Iyy Izz ¡ I 2

yz Ix z Iyz ¡ Ix y Izz Ix y Iyz ¡ Ix z Iyy

Ix z Iyz ¡ Ix y Izz Ix x Izz ¡ I 2
xz Ix y Ix z ¡ Ixx Iyz

Ix y Iyz ¡ Ix z Iyy Ix y Ix z ¡ Ix x Iyz Ix x Iyy ¡ I 2
x y

3

75

1 D Ix x

¡
Iyy Izz ¡ I 2

yz

¢
C Ix y .2Ix z Iyz ¡ Ix y Izz/ C I 2

x z Iyy

Ix x D
X

n

.xn ¡ xc/
2; Iyy D

X

n

.yn ¡ yc/
2

Izz D
X

n

.zn ¡ zc/
2; Ixy D

X

n

.xn ¡ xc/.yn ¡ yc/

Iyz D
X

n

.zn ¡ zc/.yn ¡ yc/; Ixz D
X

n

.xn ¡ xc/.zn ¡ zc/

Fig. 8 Initial and level-3 adaptive grids for turbulent � ow case.
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Fig. 9 Pressure contours on the initial and level-3 grids.

where n loops over the supportingneighboring cells. Note that ma-
trix W is symmetric and dependent only on the computationalgrid.
If one stores six elements of W for each cell, the reconstructioncan
be performed ef� ciently through a loop over all faces.

To handle steep gradients or discontinuities, a limiter due to
Venkatakrishna3 is used. This limiter is further modi� ed by Wang22

for adaptive grids.

B. Time Integration
Although explicit schemes are easy to implement, and are often

useful for steady-state, inviscid � ow problems, implicit schemes
are found to be much more effective for viscous � ow problems
with highlyclusteredcomputationalgrids.An ef� cientblocklower–
upper symmetric gauss–seidel (LU-SGS) implicit scheme29 has
been developed for time integration on arbitrary grids. This block
LU-SGS (BLU-SGS) scheme takes much less memory than a fully
(linearized)implicitscheme,only havingessentiallythe sameor bet-
ter convergence rate than a fully implicit scheme. The basic idea is
presented here. Using backward Euler scheme for time-integration,
we obtain

Qn C 1
i ¡ Qn

i

1t
Vi C

X

f

¡
Fn C 1

f ¡ F n C 1
v; f

¢
S f D 0 (8)

Equation (8) can be further written in the delta form

1Qi

1t
Vi C

X

f

.1F f ¡ 1Fv; f /S f D ¡
X

f

¡
Fn

f ¡ Fn
v; f

¢
S f ´ Res

(9)
where 1Qi D Qn C 1

i ¡ Qn
i , 1F f D Fn C 1

f ¡ F n
f , and 1F f;v D

Fn C 1
f;v ¡ Fn

f;v . In Eq. (9) the left-hand side � uxes can be replaced by
their � rst-order counterparts to further simplify the implicit opera-
tor. In addition,the � ux differencecan be linearized in the following
manner:

1F f .Q i ; Qn/ D
@ F f

@ Q i
1Q i C

@ F f

@ Qn
1Qn (10)

where cell n and cell i share face f . The viscous � ux difference can
also be similarly linearized.Then Eq. (9) can be written as
"

I

1t
Vi C

X

f

Á
@ F f

@ Q i
¡

@ Fv; f

@ Q i

!#

1Q i

C
X

f

Á
@ F f

@ Qn
¡

@ Fv; f

@ Qn

!

1Qn D Res (11)

Equation (11) is then solved with the following BLU-SGS scheme
with multiple inner iterations.One can either � x the numberof inner
iterations or prescribe a convergence tolerance. Given the solutions
1Q.k ¡ 1/ at sweep level k ¡ 1, we compute the solution at the kth
sweep using the following algorithm for the forward sweep:

D1Q¤
i C

X

f;n < i

Á
@F f

@Qn
¡ @Fv; f

@ Qn

!

1Q¤
n

C
X

f;n > i

Á
@ F f

@ Qn

¡ @ Fv; f

@ Qn

!
1Q.k ¡ 1/

n D Res (12)

where

D D
I

1t
Vi C

X

f

Á
@ F f

@ Q i

¡ @ Fv; f

@ Q i

!

For the backward sweep we use

D1Q.k/

i C
X

f;n > i

Á
@ F f

@ Qn
¡

@ Fv; f

@Qn

!

1Q.k/
n

C
X

f;n < i

Á
@ F f

@ Qn
¡

@ Fv; f

@ Qn

!

1Q¤
n D Res (13)

Normally, only three inner iterations are suf� cient. More details on
the BLU-SGS scheme can be found in Ref. 29.

To simulate � ow turbulence, the classical two-equation k–" tur-
bulence model with wall function was used.30 Numerical tests with
the wall functions indicate that an average yC value of about 30
usually gives reasonable results.

IV. Solution-Based Grid Adaptation
Solution-based grid adaptations have the potential of achieving

the highest accuracy with minimum computer resources. Further-
more, to achieve automation in � ow simulation, solution-basedgrid
adaptation is essential. An ideal adaptation criterion would indi-
cate regions that are causing the large errors, as well as regions
that have too � ne grids. A variety of adaptation criteria have been
studied,31¡35 and it was shown that one can obtain a misleadingcon-
verged solution if one is not careful.34;35 Flow problems are usually
of convectionand diffusion type. Numerical errors produced in one
region may signi� cantly degrade the solution accuracy in other re-
gions. In other words, one may not improve the solution much by
re� ning the regions that have the largestabsoluteand relative errors,
as demonstrated in a recent paper by Gu and Shih.36 The pursuit of
an optimumgrid adaptationcriterionis still a very intensiveresearch
area in CFD. In practice, it seems derivative-based adaptation cri-
teria usually give acceptable results. In this paper, two directional
adaptation criteria are developed and implemented. These direc-
tional criteria take full advantage of the anisotropicgrid adaptation
capability offered by the 2N tree. The three coordinate directions
of each Cartesian cell are examined independentlyfor possible grid
adaptations.Because the viscous layer grid is generated by project-
ing the Cartesian front to the geometry, it cannot be independently
adapted. However, the number of viscous layers, and the grid clus-
tering factor (or the minimum cell size in the wall normal direction),
can be adapted based on local � ow properties, such as the local cell
Reynolds number or the yC value. Both � rst and second derivative-
based grid adaptation criteria have been developed. The following
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cellwise parameters are used as the adaptation indicators in the x
direction

¿i x D

@q

@ x


i

1x1 C u
i (14)

¼i x D

@ 2q

@x2


i

1x2 C v
i (15)

where q can be any � ow variable (pressure, total velocity, or den-
sity) and u and v are positiveconstants.The employmentof positive
exponentsu and v have the effects of pushing the grid toward more
uniformity, and guarding against overadaptation near discontinu-
ities, which was identi� ed to be the main cause of converging to
the wrong solution.34 In the tests we performed, we found that val-
ues of u D 0:5 and v D 1 gave reasonable results. The adaptation
indicators in other directions can be computed similarly. Next, the
standard deviation of the parameter is computed as

¿ D
³ PN

i D 1 ¿ 2
i x C

PN

i D 1 ¿ 2
i y C

PN

i D 1 ¿ 2
i z

3N

´ 1
2

(16)

where N is the total numberof Cartesiancells.Finally, the following
conditions are used for grid adaptation:

1) If ¿i x > ®¤¿ , cell i is to be re� ned in the x direction.
2) If ¿i x < ¯¤¿ , cell i is to be coarsened in the x direction.

where ® is a control parameter determining the total number of
cells to be re� ned, whereas ¯ controls the number of cells to be
coarsened. In this study, ® is chosen to be 1, and ¯ is set to be 0.1.
The adaptation criteria are similar in the y and z directions.

In the steady-statetest cases to be presentedlater, we have always
started from very coarse initial grids that resolve the geometry. We

Fig. 10 Comparison of computed Cp pro� les with experimental data.

have found that it is not necessary to perform grid coarsening. In
an unsteady � ow simulation with moving features, it is probably
essential to perform both grid re� nement and coarsening.

In turbulent � ow simulations, the optimum average yC value is
about 30 for the k–" turbulence model with wall functions. There-
fore, the grid clustering factor in the hyperbolic tangent grid dis-
tribution function is adjusted in every grid adaptation step so that
the � rst cells from the wall have an average yC value of about 30.

V. Test Cases
A. Octree vs 2N Tree for Transonic Flow over ONERA M6 Wing

This � rst test case is transonic � ow over an ONERA M6 wing
con� guration.37 The M6 wing has a leading-edge sweep angle of
30 deg, an aspect ratio of 3.8, and a taper ratio of 0.562. The air-
foil section of the wing is the ONERA D airfoil, which is a 10%
maximum thickness-to-chord ratio conventional section. The � ow
was � rst computed at a Mach number of 0.84, an angle of attack of
3.06 deg, and with an inviscid � ow assumption. This case was se-
lected to demonstrate the superiorityof the 2N tree over Octree in ef-
� ciently capturing � ow features. The starting coarse computational
grid was generated using the Octree data structure, and is shown in
Fig. 5a. The mesh consists of 14,141 cells and 47,904 faces and two
layers of projected layer grids. Three levels of solution-based grid
adaptations were then performed. The adaptation criteria are pres-
sure and Mach number gradients.With the Octree data structure, if
a cell needs to be re� ned in any of the coordinatedirections, the cell
is re� ned in all directions. The level-3 Octree and 2N tree Carte-
sian grids are shown in Fig. 5b and 5c. The Octree Cartesian grid is
composedof 342,289cells and 1,105,732faces,whereas the 2N tree
Cartesian grid has only 88,296 cells and 300,573 faces. However,
the solutionson the adaptedgrids are essentially identical,as shown
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a)

b)

c)

Fig. 11 Level a) 0, b) 2, and c) 4 solution adaptive grids for the missile
con� guration.

Fig. 12 Computed total pressure contours and surface pressure distri-
bution at Mach = 1.8, a = 14 deg.

a) Initial

b) Level 2

c) Level 4

d) Level 6

Fig. 13 Computational grids and total pressure distributions at
X/D = 12.8 at different grid adaptation levels.

in Figs. 6 and 7. Figure 6 compares the pressure contours on the
level-3 grids using Octree and the 2N tree, and Fig. 7 presents the
pressure coef� cients on the wing surface at 44% semispan station.
Note that the C p pro� les on the adaptedgridsof the same level using
Octree and the 2N tree are essentially the same. With the 2N tree, a
75% saving in CPU was achieved over Octree.

This case was also computed assuming fully turbulent � ow. The
Reynolds number is 1:814 £ 107 . During the grid adaptation pro-
cess, the average target yC value was kept around 30. The initial
and � nal computational grids for the turbulent � ow case are shown
in Fig. 8. The initial grid has 40,480 cells, and the � nal level-3
grid has 413,551 cells. The pressure contours on the initial grid are
compared with the contours on the � nal grid in Fig. 9. Note the
dramatic difference in the resolution of the overall � ow features.
The computed surface C p pro� les are compared with experimental
data at four spanwise sections in Fig. 10. It is observed that better
agreement was obtained with grid adaptations.Note that a trend to-
ward a grid-independent solution with grid adaptations is obvious
in Fig. 10.

B. High-Angle-of-Attack Missile Aerodynamics
The second test case is performed for an ogive/cylinder

con� guration,38 for which extensiveexperimentaldata are available
for comparison. The model con� guration of interest is a 3-caliber
ogive with a 10-caliber cylindrical afterbody. The geometry of the
con� guration and the initial viscous Cartesian grid are displayed
in Fig. 11a. The � ow was computed at the following condition:
MachD 1:8, ® D 14 deg, Re D 6:56 £ 106/m. The diameter of the
cylinder is 3.7 in. The � ow� eld is characterizedby large separation
regions and is a considerable challenge for turbulence models.
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Fig. 14 Comparison between computed and experimental pressure coef� cient pro� les at several cross section stations.

Several levels of grid adaptations were performed after the solu-
tions were converged on the coarse grids. Again the target average
yC value is 30, which was achieved on the level-2 grid. The adap-
tation criterion used is total pressure gradient, which is designed
to capture the complex vortex pattern of the � ow. The level-2 and
level-4 grids are displayed in Figs. 11b and 11c. The level-4 grid
has 473,153 cells and 1,516,791 faces. Note that the development
of the complex vortex pattern is evident on the level-4 grid. It is
seen that the grid was also re� ned near the shock wave. A picture
of the � ow� eld is shown in Fig. 12, which displays total pressure
contours and the computational grid. The surface is colored with
pressure distributions.Figure 13 shows the computational grid and
total pressure distributionsat section X=D D 12:8 for different grid
adaptation levels. Note that the difference between solutions on
the level-4 and level-6 grids are quite small. It is also quite obvi-
ous that anisotropic grid adaptations are used very extensively in
the � ow� eld. Computed pressure coef� cient pro� les are compared
with experimental data at several cross section stations in Fig. 14.
Note that, at least visibly, the turbulent solutions are approaching
grid independencebecause the difference in C p computed with the
level-3 and level-4 grids is very small. This is the � rst evidence that
grid-independent turbulent solutions are possible with anisotropic
grid adaptations. Generally speaking, the agreement between the
numerical simulation and the experimental data is fairly good.

VI. Conclusions
A 2N tree adaptiveviscousCartesian grid method has been devel-

oped and tested for both inviscid and viscous turbulent � ows. It is
con� rmed that the 2N tree is much more ef� cient in capturing � ow
features than the Octree data structure.In the inviscid� ow case with
the M6 wing geometry, a 75% saving in total number of cells can be

achieved.With anisotropicgrid adaptationsfor turbulent � ow simu-
lation, drastic improvements in solution accuracy are demonstrated
for both the M6 wing and the high-angle-of-attack missile cases.

The adaptationcriteria are shown to be very effectivein capturing
shock waves, wakes, and complex vortex structures. The use of
anisotropic grid adaptations allows these features to be captured
very ef� ciently.
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