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Abstract

A second-order finite-volume (FV) method has been developed to solve the time-domain (TD) Maxwell equations, which
govern the dynamics of electromagnetic waves. The computational electromagnetic (CEM) solver is capable of handling
arbitrary grids, including structured, unstructured, and adaptive Cartesian grids, which are topologically arbitrary. It is argued
in this paper that the adaptive Cartesian grid is better than a tetrahedral grid for complex geometries considering both efficiency
and accuracy. A cell-wise linear reconstruction scheme is employed to achieve second-order spatial accuracy. Second-order
time accuracy is obtained through a two-step Runge–Kutta scheme. Issues on automatic adaptive Cartesian grid generation
such as cell-cutting and cell-merging are discussed. A multi-dimensional characteristic absorbing boundary condition (MDC-
ABC) is developed at the truncated far-field boundary to reduce reflected waves from this artificial boundary. The CEM solver
is demonstrated with several test cases with analytical solutions.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Maxwell’s partial differential governing equations
for electromagnetics represent a fundamental unifica-
tion of electric and magnetic fields predicting elec-
tromagnetic wave phenomena. This achievement was
sometimes viewed as the most outstanding of the
19th century science [1]. Although analytical solu-
tions of Maxwell equations exist for simple geome-
tries, solutions of these equations for a vast majority
of engineering problems have to be sought through
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computational simulations, i.e. Computational Elec-
troMagnetics (CEM). Now engineers worldwide are
using computers to obtain solutions of Maxwell equa-
tions for the purpose of investigating electromag-
netic wave scattering, radiation, and guiding. One of
the primary computational approach in CEM is the
so-called method-of-moments (MM) [2], which in-
volves solving frequency-domain integral equations.
One needs to set up and solve dense, full, complex val-
ued systems of linear equations, which is extremely
CPU and memory intensive for medium to high fre-
quency problems. Prompted to a significant degree
by the limitations of MM, there has been an explo-
sion of interest in direct solutions of the fundamen-
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tal Maxwell’s equations on space grids in the time do-
main.

The most popular algorithm used in solving
Maxwell’s equations in the time domain is undoubt-
edly the FD-TD scheme developed by Yee [3] and
later refined by many researchers [4–7]. FD-TD was
originally developed on uniform Cartesian grid, and
later was extended to handle body-fitted-curvilinear
grids [8–10]. During the last decade, FD-TD has been
used to tackle many challenging electromagnetic prob-
lems such as radar cross section (RCS) of complete
aircraft, phased arrays of antennas, hyperthermia treat-
ment of cancer, etc. In 1989, Shankar et al., developed
what is called a FV-TD method [11], which solved
the Maxwell’s equations using a cell-centered finite
volume scheme with a CFD-like Riemann solver ap-
proach. Due to its control volume formulation, FV-TD
can easily handle body-fitted non-orthogonal grids.
More recently, FV-TD was further refined [12–17] and
extended to unstructured grid [16,18,24]. With the un-
structured grid technology, grid generation for com-
plex geometries can be completely automated. Com-
pared with the original FD-TD scheme on a stair-step
Cartesian grid, FV-TD can easily achieve high geo-
metric fidelity.

One particular type of unstructured grids is the so-
called adaptive Cartesian grid, which has been used
very successfully in Computational Fluid Dynamics
(CFD) [19–22]. The adaptive Cartesian grid has sev-
eral unique advantages over traditional tetrahedral
grids. First, Cartesian cells are much more efficient in
filling space than tetrahedral cells given a certain grid
resolution. This can be easily understood with the fact
that at least five tetrahedra are needed to fill a single
cube without adding a grid point. Second, it’s diffi-
cult to generate nearly isotropic tetrahedral cells be-
cause an equilateral tetrahedral is not a space-filling
topology (i.e. one cannot fill up a 3D space with iden-
tical tetrahedra) as Cartesian cells [23]. The skew-
ness of tetrahedral cells can degrade both accuracy
and efficiency (by reducing the allowable time step)
of the CEM solver. Third, it is straightforward to clus-
ter or decluster cells in a certain region with adap-
tive Cartesian grid. For example, one can cluster cells
near a geometry and de-cluster cells away from it in
wave scattering problems. Finally with cell-cutting the
adaptive Cartesian grid preserves the fidelity of a given
geometry.

It is therefore argued in this paper that adaptive
Cartesian grid is the most promising grid topology for
a CEM solver considering both efficiency and accu-
racy. The paper is organized as follows. In the next ses-
sion, issues concerning adaptive Cartesian grid gen-
eration for arbitrary curved geometries are discussed.
After that, a second-order CEM solver in both space
and time is described. It is also explained why the
solver is capable of resolving material interfaces ex-
actly. In addition, a particular absorbing boundary
condition suitable for the unstructured FV-TD solver
is presented. Then several demonstration cases are
presented to showcase the capability of the present
method. Finally, several conclusions are made to com-
plete the paper.

2. Adaptive Cartesian grid generation

The use of Cartesian grids in solving partial differ-
ential equations (PDE) started decades ago because it
is trivial to generate the computational grid. The most
serious obstacle in applying Cartesian grid technique
to realistic problems is the boundary treatment for
curved geometries. In the original Yee 1966 paper, uni-
form Cartesian grids were used to solve the Maxwell’s
equations. Curved geometries were approximated with
stair-stepped Cartesian grids, inevitably introducing
errors in geometry definition and also the computed
field solution. Although Yee’s FD-TD scheme was ex-
tended to body-fitted structured grids [8–10], numer-
ical errors were introduced due to the skewness and
non-uniformity of the computational grid. As a result,
the most widely used computational grid in FD-TD
analysis is still the uniform Cartesian grid. This is ev-
ident due to the fact that most CEM commercial FD-
TD packages use uniform Cartesian grids. Apart from
the drawback of non-body conforming, the uniform
Cartesian grid has another disadvantage in that fine
grid resolutions must be maintained everywhere, even
if it is unnecessary, wasting considerable computer re-
sources.

With the adaptive Cartesian grid, grid cells can
be clustered and de-clustered anywhere based on the
geometry and/or the physics of the computational
fields if necessary. For example, the computational
grid for a wave scattering geometry can be easily clus-
tered near the geometry and de-clustered in the far
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Fig. 1. Schematic of the quadtree data structure.

field to accurately resolve the geometry without wast-
ing computer resources in regions far away from the
geometry. An Quadtree (Octree in 3D) data structure
is used in generating an adaptive Cartesian grid. In a
Quadtree data structure, a parent cell can have four
children, as shown in Fig. 1. For the purpose of tree-
traversal, each cell stores the pointer to its parent cell
and also its pointers to the children (if any). The adap-
tive Cartesian grid is usually generated through re-
cursive subdivisions of a single Cartesian cell called
the root cell covering the entire computational do-
main. For electromagnetic wave scattering problems
by solid bodies, coarse grid cells may be used in the far
field, e.g., with about 10 points per wavelength (ppw)
(the 10 ppw resolution is used here as an example to
show that the adaptive Cartesian grid can easily ac-
commodate any grid resolution). Therefore, given the
expected wave frequencyf , one can easily compute
the wave length by

λ= c

f
, (1)

wherec is the speed of light. The maximum allowed
Cartesian cell size is thenλ/10. The Cartesian grid can
be easily refined everywhere to satisfy this require-
ment. To fully resolve the geometry, there is a min-
imum grid resolution which the Cartesian grid must
satisfy, i.e.

h�A, (2)

whereh is the Cartesian cell size close to the body,
A is determined from the characteristic length scale of
the body being simulated. Furthermore, one can also

require that a 20 ppw grid resolution is used near the
body, i.e.

h= λ

20
. (3)

From Eqs. (2) and (3), we can determine

h� min

(
λ

20
,A

)
. (4)

Any Cartesian cell intersecting the body can be easily
refined to satisfy Eq. (4). The requirement of Eq. (3)
can be enforced for at least a wave length in all
directions close to the body.

Another unique advantage of the adaptive Cartesian
grid is that the exact geometry is captured with cell-
cutting [20,22]. Cell-cutting is the operation of using
the body geometry surface to intersect the Cartesian
cells, and to divide the cells’ interior to the body to
the exterior. For all the problems shown in this paper,
the geometry formats are connected line segments in
2D, and “water-tight” triangulated surface in 3D. The
basic geometric operation in cell-cutting is line–line
(in 2D) and face–face (3D) intersections. Before the
3D version of the cell-cutting algorithm is presented,
several terminologies are defined. The arbitrarily-
shaped polyhedral cells of the Cartesian grid resulting
from cell-cutting are namedcut-cells. Cartesian grid
faces which are intersected by the body geometry are
calledcut faces. Note that efficient search operations
are critical in the cell-cutting process to ensure that
cell-cutting can be performed in reasonable amount
of time. For this purpose, the Octree data structure is
used to facilitate fast search operations, such as finding
the Cartesian cells overlapping the bounding box of
a triangular face on the body geometry. In addition,
an alternating-digital-tree (ADT) [25] data structure is
used to record the bounding boxes of the triangles of
the body geometry. The ADT structure can be used
to identify all the triangles intersecting a particular
Cartesian cell efficiently, i.e. in O(log(Ntriangle)) time
rather than in O(Ntriangle) time with an exhaustive
search. In summary the following algorithm has been
used for cell-cutting:

• Generate a point list, an edge list, and face list for
the triangulated body surface, and establish their
mutual relations;

• Build an ADT structure for the bounding boxes of
the triangles;
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(a) (b)

Fig. 2. An example adaptive Cartesian grid before and after cell merging.

• Find the intersection points between each edge
in the edge list and the Cartesian grid faces. The
Octree is used for efficient search operations;

• Find the intersection points between each edge
of the Cartesian grid and the triangulated surface.
The ADT is used for fast search operations;

• Identify face–face intersections based on the
edge–face intersections identified in the previous
two steps;

• Form cut faces for all Cartesian faces cut by the
body surface;

• For cut-cells for all Cartesian cells intersected by
the body surface.

If the geometry has sharp edges, the cell-cutting
operation is capable of preserving them. However,
some of the cut-cells may not be convex. In our
numerical tests, it appears that the field solver has
no difficulty handling non-convex cells. Since cut
cells may have arbitrary topology, the field solver
must be capable of handling arbitrary polygons or
polyhedra. An example adaptive Cartesian grid with
cell-cutting is shown in Fig. 2(a). Note that cell-cutting
produced many irregular cut cells which can have
nearly diminishing cell volumes. The small cut cell
can impose very stringent stable time-step limit, which
will severely degrade solver efficiency. This problem
is eliminated through the so-called cell-merging [21],
i.e. merging the small cut cell with one of its bigger
neighboring cells. An example of cell-merging is
shown in Fig. 2(b). Note that some of the small cut
cells near the body are merged with their neighbors to
form bigger cells.

3. Finite volume discretization

The time-domain Maxwell equations for noncon-
ducting dielectrics can be written in a vector form as

∂Q

∂t
+ ∇ × L = 0, (5)

where

Q =
[

D

B

]
(6)

contains the electric displacement and the magnetic
induction vectors and

L =
[−H

E

]
(7)

contains the magnetic and electric intensity vectors.
For simplicity, we assume linear isotropic constitutive
relations, i.e.

D = εE, (8)

B = µH , (9)

where the permittivityε and permeabilityµ of the
material are scalar constants, which determine the
wave phase speedc = 1/(εµ)1/2. In solving (5) with
a finite volume scheme, we first need to discretize the
computational domain into small control volumes. For
geometric flexibility, the control volumes are arranged
in an unstructured manner, and can take arbitrary
shapes, i.e. arbitrary polygons in two dimensions (2D)
and arbitrary polyhedra in three dimensions (3D).
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Then integrating Eq. (5) in an arbitrary control volume
with N planar polygonal faces, we obtain

∂Q

∂t
dV +

N∑
i=1

ni × Li dSi = 0, (10)

where dV is the volume of the control volume,ni is
the unit normal of facei of the control volume, dSi
is the face area of facei. Each control volume has a
cell-averagedQ vector, which is assumed to be the
point Q vector at the cell centroid (which is correct
up to second-order). It is easy to see that the face
tangential components of the electric and magnetic
fields determine the time variation of the volume
averaged electromagnetic fields. It is well known that a
simple central difference-type method for (10) results
in odd–even decoupling. Instead, CFD-type upwind
schemes based on a Riemann solver or intensity-vector
splitting [11–15] are implemented for unstructured
grids. The basic method can be divided into the
following three components: reconstruction, intensity-
vector computation and time integration, which are
presented in the following sections.

3.1. Reconstruction

In a cell centered finite volume procedure, field
variables are known in a cell-average sense. No
indication is given as to the distribution of the solution
over the control volume. In order to evaluate the
intensity vector at a face, field variables are required
at both sides of the face. This task is fulfilled by
reconstruction. A least squares reconstruction method
is selected in this study. This reconstruction is capable
of preserving a linear function on an arbitrary grid.
Given an arbitrary field variableq , the gradients
of q are constructed by the following least squares
reconstruction[
qx
qy
qz

]
= 1

�
L

[∑
n(qn − qc)(xn − xc)∑
n(qn − qc)(yn − yc)∑
n(qn − qc)(zn − zc)

]
, (11)

where:

� = Ixx
(
IyyIzz − I2

yz

) + Ixy
(
2IxzIyz − IxyIzz

)
− I2

xzIyy, (12)

Ixx = ∑
n(xn − xc)2,

Iyy = ∑
n(yn − yc)2,

Izz = ∑
n(zn − zc)2,

(13)

Ixy = ∑
n(xn − xc)(yn − yc),

Iyz = ∑
n(yn − yc)(zn − zc),

Ixz = ∑
n(xn − xc)(zn − zc)

(14)

and

L=
[

IyyIzz − I2
yz IxzIyz − IxyIzz IxyIyz − IxzIyy

IxzIyz − IxyIzz IxxIzz − I2
xz IxyIxz − IxxIyz

IxyIyz − IxzIyy IxyIxz − IxzIyz IxxIyy − I2
xy

]
,

(15)

where subscriptn indicates the supporting neighbor
cells, and subscriptc denotes the current cell,x, y, z
are cell centroid coordinates. It can be observed that
matrixL and� are dependent on the geometry only.
If one storesIxx, Iyy , etc. the reconstruction can be
performed efficiently with one loop over the face list.

3.2. Intensity-vector-computation

After the cell-wise reconstruction, the field vari-
ables at the left and right side of any face can be deter-
mined based on a simple Taylor expansion, i.e.

QfL =QL + ∇QL • (rf − rL), (16)

QfR =QR + ∇QR • (rf − rR), (17)

whererf is the position vector of the face center,rL
and rR are the position vectors of the left and right
cell centroids. Then the intensity vector at the face is
computed based on a Riemann solver [11]. Given the
left and right field variables, the intensity vector at the
face can be expressed as

Lf =
[− (µc)RHR+(µc)LHL−n×(ER−EL)

(µc)L+(µc)R
(εc)RER+(εc)LEL+n×(HR−HL)

(εc)L+(εc)R

]
. (18)

3.3. Time integration

An explicit two-stage scheme is used to integrate
(10) in time with second-order time accuracy, i.e.

Q∗ = Qn − 0.5× Res(Qn)

dV
, (19)

Qn+1 = Qn − Res(Q∗)
dV

, (20)

where

Res(Q)=
N∑
i=1

ni × Li dSi. (21)
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In order to analyze the accuracy and stability of
the above finite volume method, let’s consider the
following one-dimensional linear wave equation

∂u

∂t
+ c ∂u
∂x

= 0, (22)

whereu is a state variable, andc is a positive constant
representing the wave speed. Assume that a uniform
meshxi = i�x is used to solve (22), andui is the
cell-averaged state-variable at theith cell [xi, xi+1].
The semi-discrete finite-volume scheme for (22) with
a linear reconstruction and Roe’s Riemann solver can
be written as:

∂ui

∂t
+ c

(
ui+1 + 3ui − 5ui−1 + ui−1

4�x

)
= 0. (23)

Without the loss of second-order accuracy, the cell-
averaged state variable can be taken to be the state
variable at the centroid of the cell. Then it is easy to
show using a Taylor expansion that

ui+1 + 3ui − 5ui−1 + ui−1

4�x
= ∂ui

∂x
+ O(�x2).

(24)

Therefore, the space discretization is second-order
accurate. Since the two-stage Runge–Kutta scheme is
second order accurate in time, the overall numerical
scheme is second-order accurate in space and time.
Using a von Neumann stability analysis, it can be
shown than the explicit two-stage scheme is stable
when the CFL numberc�t/�x is less than 1.

4. Multi-dimensional characteristic boundary
condition

A widely used absorbing boundary condition
(ABC) for open boundaries is the so-called charac-
teristic boundary condition, in which one-dimensional
characteristic theory is derived and applied on the open
boundary. Consider the one-dimensional Maxwell’s
equation in an arbitrary directionl = (lx, ly , lz),
∂Q

∂t
+ ∂F
∂l

= 0, (25)

where

F =
[−l × H

l × E

]
. (26)

The Jacobian matrix ofF is then

G= ∂F

∂Q
. (27)

Matrix G can be diagonalized as

G=RΛR−1, (28)

whereR is composed of right eigen-vectors ofG,
andΛ is a diagonal matrix including the eigenvalues.
Eq. (25) can be further written as

R−1∂Q

∂t
+ΛR−1 ∂Q

∂l
= 0. (29)

It can be easily shown thatR is a function of the
direction,ε andµ, therefore Eq. (29) can be decoupled
into
∂Wi

∂t
+ λi ∂Wi

∂l
= 0, (30)

whereWi is one of the characteristic variables com-
puted from

W =R−1Q, (31)

andλi is theith eigenvalue. Eq. (30) says thatWi is a
constant along the characteristic defined by

∂l

∂t
= λi . (32)

Traditionally, characteristic boundary conditions are
implemented in the face normal or a coordinate direc-
tion. If a propagating wave is aligned with the face nor-
mal direction, the characteristic boundary condition
generates nearly no reflection at the truncated bound-
ary [15]. In this paper, a truly multi-dimensional char-
acteristic boundary condition is developed which track

Fig. 3. Schematic of the multi-dimensional characteristic absorbing
boundary condition.
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the characteristics in the wave propagating direction,
i.e. l = E × H/|E × H |. This boundary condition is
thus coined multi-dimensional characteristic boundary
condition. A schematic of this boundary condition is
shown in Fig. 3. We want to compute the field vari-
ableQn+1

f from the field variableQn in the interior
domain. The characteristic variables associated with
positive eigenvaluec are interpolated from the inte-
rior, i.e.

Wn
i,p =Wn+1

i,f , (33)

where the position vector is computed from

rp = rf − c�t · l, (34)

where�t is the time-step, andWn
i,p is computed

based on the linear cell-wise reconstruction presented
earlier. The characteristic variables associated with−c
are 0, indicating no incoming waves is present. The
static waves associated with eigenvalue 0 are simply
computed withQnf . ThenQn+1

f are obtained from

Qn+1
f =RWn+1

f . (35)

Numerical tests indicated that the new multi-dimen-
sional boundary condition performed much better than
the traditional one-dimensional characteristic bound-
ary condition. One demonstration example is shown
in Fig. 4, which shows a plane wave propagating in
free space after 20 cycles. The initial condition is an
analytical plane wave att = 0. Note that the multi-
dimensional characteristic boundary condition pro-
duced far superior computational results.

5. Demonstration cases

5.1. Wave scattering by a conducting cylinder

Since analytical solutions exist for this problem,
it is chosen as the first test case. The simulated
electric sizes of the cylinder areka = 1,10, and 50
(wherek is the wave number,a is the radius of the
cylinder). For the case ofka = 1, a near body grid
resolution of 60 ppw is used since a resolution of
20 ppw with 5 points per quadrant is not sufficient in
resolving the geometry. The grid is then declustered
to about 15 ppw near the open boundary. For the
case ofka = 10, the near body grid resolution is
20 ppw, and the grid is then declustered to 10 ppw
near the open boundary. For the case ofka = 50,
the near body grid resolution is 26 ppw, and again
the grid is declustered to 13 ppw near the open
boundary. For all cases, the open boundary is located
two wave lengths away from the geometry. The size
of the computational domain and grid resolution were
determined through extensive testing. The goal is to
obtain accurate (error<5%) near field data so that
RCS can be extracted accurately. The computational
grids and the computed surface currents are displayed
in Figs. 5–7. In all the computations, a scattered
wave formulation is employed instead of the total
wave formulation. Because of that, the grid can be
declustered away from the body without significant
loss of accuracy in the near field solution. A constant

(a) (b)

Fig. 4. Comparison of plane wave propagation with a one-dimensional (a) and multi-dimensional (b) characteristic boundary conditions.
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(a) (b)

Fig. 5. Computational grid and surface current for TEka = 1. (a) Computational grid. (b) Comparison of surface current.

(a) (b)

Fig. 6. Computational grid and surface current for TEka = 10. (a) Computational grid. (b) Comparison of surface current.

CFL number of 1 was used in all the computations.
The computations usually reached a periodic “steady
state” in about 4–6 cycles. Note from Figs. 5–7 that the
agreement between the analytical and computational
surface currents was shown to be very good, indicating
that the computational results with the current grid
resolution are acceptable.

The case ofka = 10 was also simulated with a
triangular grid for comparison purpose. In order to
make a fair comparison with the adaptive Cartesian

grid, the grid resolutions for the triangular grid at the
cylinder surface and the outer boundary are similar.
Such a triangular grid is shown in Fig. 8(a). The grid
has 7133 points, 20,961 faces and 13,828 cells. In
comparison, the adaptive Cartesian with similar grid
resolutions has 4482 points, 8442 faces and 3960
cells. The problem with the triangular grid has 13,828
degrees-of-freedom (DOFs), while it only has 3960
DOFs on the Cartesian grid. It is expected the solution
accuracy on both grids be similar. This is confirmed
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(a) (b)

Fig. 7. Computational grid and surface current for TEka = 50. (a) Computational grid. (b) Comparison of surface current.

(a) (b)

Fig. 8. Triangular grid and comparison of computed surface currents for the case ofka = 10. (a) Triangular grid. (b) Comparison of surface
currents.

in Fig. 8(b), which presents the computed surface
currents on both grids and the exact solution. Note that
the computed solutions have similar quality. However,
the simulation on the triangular grid took 3.3 times the
CPU time on the adaptive Cartesian grid.

Another test was performed to see whether the
simulation is CFL number dependent. The adaptive
Cartesian grid shown in Fig. 6 was used with CFL=
0.5 and 1. The simulations were carried out for

six cycles. The histories of the z component of the
magnetic induction vector at a near field point were
plotted for CFL= 0.5 and 1 in Fig. 9, which clearly
shows that the computed field is CFL-independent,
and that cyclic “steady state” solutions were indeed
obtained after about 4–5 cycles.

Finally the effectiveness of the MDC-ABC bound-
ary condition was tested. In this test, two quadrilateral
grids with different far-field locations were used. One
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Fig. 9.Bz time histories computed with different CFL numbers at a
near field point.

Fig. 10. A quadrilateral grid used to test the multi-dimensional ABC
boundary condition.

grid (called Grid 1) has a far field boundary 2 wave-
lengths away from the cylinder surface, and the other
one (Grid 2) has a far field boundary 6 waves away, as
shown in Fig. 10. The computations were performed
for 6 cycles on both grids. It is obvious that the wave
reflections from the far field boundary of Grid 1 should
reach the cylinder after 4 cycles, while the reflections
on the far field boundary of Grid 2 cannot reach the

Fig. 11. Comparison of computed surface currents with two different
locations of the far field boundary.

cylinder until the 12th cycle. The computed surface
currents for both grids are compared in Fig. 11. Note
that the difference is very small. In fact, the maximum
relative difference between the computed surface cur-
rents is about 1.5%, which indicates that the MDC-
ABC performs very well for this type of wave scatter-
ing problems.

5.2. Wave scattering by a conducting sphere

The three-dimensional validation case is plane
wave scattering by a perfectly conducting sphere, for
which an analytical solution also exists. The incident
wave is of TE mode, withka = 1, and propagates
in the positivex-direction. The computational grid is
shown in Fig. 12. The grid has a total of 48,267 cells.
A grid resolution of 20 ppw is too coarse to resolve
the sphere geometry. Therefore, a grid resolution of
64 ppw is used near the sphere, and the grid is
declustered away from the sphere to about 8 ppw
near the open boundary. The open boundary is two
wavelengths away from the surface of the sphere. In
the simulation, a scattered wave formulation is em-
ployed instead of the total wave formulation. Since
the scattered fields approach zero away from the body,
one can use coarse grid cells near the open bound-
ary without compromising the accuracy of the com-
puted fields near the body. A constant CFL num-
ber of 1 is used in the simulation, which corre-
sponds to about 342 time steps per cycle. The com-
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putation reached a periodic “steady state” after 6 cy-
cles. The analytical electric intensity field is com-
pared with the current prediction in Fig. 13 on sev-
eral cutting planes. Note that the agreement between
the computational and analytical solutions is very
good.

5.3. Wave scattering by a missile

As a demonstration of the current method in han-
dling complex geometries, the case of wave scattering
by a conducting cruciform missile was simulated. The
geometry of the missile is quite complex, having four
fins. The missile geometry was originally defined in
trimmed NURBS patches. The geometry surface was

Fig. 12. Adaptive Cartesian grid around a sphere (ka = 1, TE
polarization).

automatically triangulated given a surface grid resolu-
tion. The generation of the volume adaptive Cartesian
grid was nearly automatic. All the user needs to input
are: the size of the Cartesian grid domain, the mini-
mum grid cell size near the geometry, and the maxi-
mum grid cell size near the open boundary. A compu-
tational grid was then generated without any user inter-
ferences, with automatic cell-cutting and cell-merging.
The adaptive Cartesian grid and the surface geome-
try for the missile is shown in Fig. 14. The frequency
of the incoming wave is 72 MHz. The length of the
missile is about 11 wavelengths. The plane wave is of
TE polarization, and propagates in positivex-direction
(missile length direction). The grid resolution near the
geometry is 20 ppw, and the grid is gradually declus-
tered away from the body. The grid has a total of
139,484 cells. The unsteady simulation reached a peri-
odic “steady” state after only four to five cycles, with
about 4–5 hours of CPU time on a DEC Alpha ma-
chine. The computedz-component of the magnetic
field is shown in Fig. 15. Other useful information
such as radar cross sections can be extracted from the
field solutions if necessary.

6. Conclusions

A FV-TD CEM solver supporting arbitrary grid in-
cluding structured, unstructured and adaptive Carte-
sian grids has been developed. It is argued that adap-
tive Cartesian grid is the optimum grid topology to
handle complex geometries considering both accuracy

(a) (b)

Fig. 13. Comparison of computed and analytical electric field components. (a)x-component. (b)z-component.
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Fig. 14. Computational grid for plane wave scattering by a cruciform missile at 72 MHz.

Fig. 15. Computedz-component of the magnetic field.

and efficiency. A new multi-dimensional character-
istic boundary condition was developed, which was
shown to be far superior than the conventional one-
dimensional counterpart. Several validations cases
confirm the capability and accuracy of the current
CEM solver.
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