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The framework for constructing a high-order, conservative spectral (finite) volume
(SV) method is presented for two-dimensional scalar hyperbolic conservation laws
on unstructured triangular grids. Each triangular grid cell forms a spectral volume
(SV), and the SV is further subdivided into polygonal control volumes (CVs) to
supported high-order data reconstructions. Cell-averaged solutions from these CVs
are used to reconstruct a high-order polynomial approximation in the SV. Each CV is
then updated independently with a Godunov-type finite volume method and a high-
order Runge–Kutta time integration scheme. A universal reconstruction is obtained
by partitioning all SVs in a geometrically similar manner. The convergence of the
SV method is shown to depend on how a SV is partitioned. A criterion based on
the Lebesgue constant has been developed and used successfully to determine the
quality of various partitions. Symmetric, stable, and convergent linear, quadratic,
and cubic SVs have been obtained, and many different types of partitions have been
evaluated. The SV method is tested for both linear and nonlinear model problems
with and without discontinuities. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

We continue the development of the spectral (finite) volume (SV) method for hyper-
bolic conservation laws on unstructured grids following the one-dimensional framework
presented in [38]. We wish to pursue a numerical method for conservation laws which has
all of the following properties: (a) conservative, (b) high-order accuracy, i.e., the order of
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accuracy is greater than second order, (c) geometrically flexible, i.e., applicable for unstruc-
tured grids, and (d) computationally efficient. The SV method is developed, we hope, to
satisfy these four requirements, in a relative sense with respect to current state-of-the-art
numerical methods such as the high-order k-exact finite volume (FV) method [5, 16], the
essentially nonoscillatory (ENO) method [1, 10, 19], the weighted ENO (WENO) method
[3, 17, 20, 22, 27], and the discontinuous Galerkin (DG) method [2, 6, 12–14].

One of the most successful algorithms for conservation laws is the Godunov method
[18], which laid a solid foundation for the development of modern upwind schemes, in-
cluding MUSCL [36], PPM [15], ENO [19], and WENO schemes [22, 27]. There are two
key components in a Godunov-type method. One is data reconstruction, and the other is
the Riemann solver. The original Godunov scheme employed a piecewise constant data
reconstruction and the exact Riemann solver, and the resultant scheme was only first-order
accurate. Later on, higher order polynomial reconstructions were used to replace the piece-
wise constant reconstruction, and approximate and more efficient Riemann solvers [21, 25,
29, 31, 35, 37] were employed to replace the exact Riemann solver. In addition, limiters
were also introduced to remove spurious numerical oscillations near steep gradients [36] in
higher-than-first-order Godunov methods.

Although Godunov-type methods were originally developed for structured grids, they
have been successfully extended to unstructured grids, thus achieving greater geometric
flexibility. Most of the unstructured grid methods are second-order accurate because they
are relatively easy to implement and are quite memory efficient. Several high-order schemes
have been developed for unstructured grids. For example, a high-order k-exact finite volume
scheme was developed by Barth and Frederickson [5]. An ENO scheme for unstructured grid
was developed by Abgrall [1]. Two WENO schemes for unstructured grids were developed
by Friedrich [17] and Hu and Shu [20]. Although high-order-accurate finite volume schemes
can be obtained theoretically for an unstructured grid by using high-order polynomial data
reconstructions, higher-than-linear reconstructions are rarely used in three dimensions in
practice. This is mainly because of the difficulty in finding valid high-order (nonsingular)
stencils and the enormous memory required to store the coefficients used in the reconstruc-
tion. In a k-exact finite volume method, each control volume has a different reconstruction
stencil. Therefore, a data reconstruction must be performed at each iteration for each control
volume. This reconstruction step uses the most memory and is the most time consuming in
higher-than-second-order schemes. In a recent implementation of a third-order FV scheme
with a quadratic reconstruction in three dimensions by Delanaye and Liu [16], the average
size of the reconstruction stencils was about 50–70. Still there are many singular recon-
struction stencils. The size of the reconstruction stencils usually increases nonlinearly with
the order of accuracy. For a fourth-order FV scheme, the average stencil size is estimated
to be at least 120. It is very memory and CPU intensive to perform the reconstruction.

More recently, another high-order conservative algorithm, called the discontinuous
Galerkin method, was developed by Cockburn et al. in a series of papers [12–14], and
also in [2, 6] on unstructured grids. In the DG method, a high-order data distribution is
assumed for each element. As a result, the state variable is usually not continuous across
element boundaries. The fluxes through the element boundaries are computed using an ap-
proximate Riemann solver, a method similar to FV methods. The residual is then minimized
with a Galerkin approach. Due to the use of Riemann fluxes across element boundaries,
the DG method is fully conservative. A disadvantage of the DG method is that high-order
surface and volume integrals are necessary, which can be expensive to compute. Another
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high-order conservative scheme for unstructured quadrilateral grids is the multidomain
spectral method on a staggered grid developed by Kopriva and co-workers [23, 24]. The
multidomain spectral method is similar to the spectral element method of Patera [30], which
is not conservative. Other related methods include the cell-average-based spectral method
[9] and the spectral-element-type method [34]. Although a very high-order of accuracy was
achievable with these methods, the methods are difficult to extend to other cell types, such
as triangles or tetrahedral cells.

In [38], the first paper in the series, a new conservative high-order SV method is developed
for conservation laws on one-dimensional unstructured grids. Through the use of spectral
volumes (SVs) and control volumes (CVs), the method is not only conservative but very
efficient. In this paper, we extend the SV method to two dimensions. In the next section, we
first review the basic framework of the SV method on triangular grids. In addition, we present
a TVD Runge–Kutta time integration scheme. In Section 3, the reconstruction problem based
on CV-averaged solutions is studied, and it is shown that the reconstruction problems on
all triangles with a similar partition are identical. In Section 4, convergent reconstructions
for high-order SV schemes are discussed, and the partition of a SV is shown to affect the
convergence of the method. Section 5 discusses issues related to discontinuity capturing
and several TVD and TVB limiters are presented. In Section 6, numerical implementations
of the SV method for both linear and nonlinear scalar conservation laws are carried out,
and accuracy studies are performed for both linear and nonlinear wave equations to verify
the numerical order of accuracy. The shock-capturing capability of the method is also
demonstrated with Burger’s equation. Finally, conclusions and recommendations for further
investigations are summarized in Section 7.

2. REVIEW OF THE SPECTRAL VOLUME METHOD

Consider the multidimensional scalar conservation law

∂u(x, y, t)

∂t
+ ∂ f (u(x, y, t))

∂x
+ ∂g(u(x, y, t))

∂y
= 0 (2.1a)

on domain � × [0, T ] and � ⊂ R2 with the initial condition

u(x, y, 0) = u0(x, y) (2.1b)

and appropriate boundary conditions on ∂�. In (2.1), x and y are the Cartesian coordinates
and (x, y) ∈ �, t ∈ [0, T ] denotes time, u is a state variable, and f and g are fluxes in x and
y directions, respectively. Domain � is discretized into I nonoverlapping triangular cells.
In a k-exact FV method, a data reconstruction is performed for each cell using data from
a collection of neighboring cells, collectively known as a reconstruction stencil, as shown
in Fig. 1a. A unique flux through each face is then computed, given the reconstructed state
variables at both sides of the face using either an exact or approximate Riemann solver. A
summation of fluxes through all the faces of a cell is then used to update the cell-averaged
state variable.

In the SV method, the triangular cells are called spectral volumes, denoted Si , which
are further partitioned into subcells named control volumes (CVs), denoted Ci j . Volume-
averaged state variables on the CVs are used to reconstruct a high-order polynomial in-
side the SV. To represent the solution as a polynomial of degree m in 2D, we need
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FIG. 1. (a) A possible reconstruction stencil for a quadratic reconstruction in a high-order k-exact finite volume
scheme. (b) The partition of a spectral volume into six control volumes supporting a quadratic reconstruction.

N = (m + 1)(m + 2)/2 pieces of independent information, or degrees of freedom (DOFs).
The DOFs in a SV method are the volume-averaged mean variables at the N CVs. For ex-
ample, a SV supporting a quadratic data reconstruction is shown in Fig. 1b. Other candidate
partitions for linear-to-cubic SVs are shown in Figs. 2–4. The number of CVs in Figs. 2–4
is the minimum required for these polynomial reconstructions. Other CV subdivisions are
definitely possible. Integrating (2.1) on Ci j , we obtain

∫
Ci, j

∂u

∂t
dV +

∮
∂Ci, j

(F · n) d A = 0, (2.2)

where F = ( f, g) and n is the unit outward normal of ∂Ci, j , the boundary of Ci j . Define
the CV-averaged state variable for Ci j as

ūi, j = c
�udV
i, j

Vi, j
, (2.3)

FIG. 2. Control volumes in a triangular linear spectral volume. (a) Type 1, n1 = 0, n3 = 1, n6 = 0; (b) Type 2,
n1 = 0, n3 = 1, n6 = 0.
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FIG. 3. Possible triangular quadratic spectral volume partitions. (a) Type 1 with d = 1/3 and Type 2 with
d = 1/4; n1 = 0, n3 = 2, n6 = 0. (b) A singular partition; n1 = 0, n3 = 0, n6 = 1.

where Vi j is the volume (area in 2D) of Ci j . Then (2.2) becomes

dūi, j

dt
+ 1

Vi, j

K∑
r=1

∫
Ar

(F · n) d A = 0, (2.4)

where K is the total number of faces in Ci j , and Ar represents the r th face of Ci j . The surface

FIG. 4. Possible cubic triangular spectral volumes. (a) Type 1, n1 = 1, n3 = 1, n6 = 1. (b) Type 2 with d = 1/6
and Type 3 with d = 1/15; n1 = 1, n3 = 1, n6 = 1. (c) n1 = 1, n3 = 1, n6 = 1. (d) n1 = 1, n3 = 3, n6 = 0.
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integration on each face can be performed with a kth-order-accurate Gauss quadrature
formula (k = m + 1); i.e.,

∫
Ar

(F · n) d A =
J∑

q=1

wrq F(u(xrq , yrq )) · nr Ar + O(Ar hk), (2.5)

where J = integer[(k + 1)/2] is the number of quadrature points on the r th face, wrq are
the Gauss quadrature weights, (xrq , yrq ) are the Gauss quadrature points, and h is the
maximum edge length of all the CVs. Time t is omitted whenever there is no confusion. If
F = constant, the following identity exists:

K∑
r=1

∫
Ar

(F · n) d A = 0. (2.6)

Therefore, we will gain an extra order of accuracy if we sum up the surface integrals for
the faces of Ci j ; i.e.,

K∑
r=1

∫
Ar

(F · n) d A =
K∑

r=1

J∑
q=1

wrq F(u(xrq , yrq )) · nr Ar + O(Ar hk+1). (2.7)

Since O(Vi ) = O(Ar h), we have

1

Vi, j

K∑
r=1

∮
Ar

(F · n) d A = 1

Vi, j

K∑
r=1

J∑
q=1

wrq F(u(xrq , yrq )) · nr Ar + O(hk). (2.8)

Now assume that a multidimensional polynomial in x and y on the order of at most k − 1
exists on Si which is a kth-order approximation to the state variable; i.e.,

pi (x, y) = u(x, y) + O(hk), (x, y) ∈ Si . (2.9)

With the polynomial distribution on each SV, the state variable is most likely discontinuous
across the SV boundaries, unless the state variable is a polynomial on the order of k − 1
or less. Therefore, the flux integration involves two discontinuous state variables just to the
left and right of a face of the SV boundary. This flux integration is carried out using an
exact Riemann solver or one of the Lipschitz continuous approximate Riemann solvers or
flux splitting procedures; i.e.,

F(u(xrq , yrq )) · nr = FRiem(pi (xrq , yrq ), pi,r (xrq , yrq ), nr )

+ O(pi (xrq , yrq ) − pi,r (xrq , yrq )). (2.10)

Here pi,r is the reconstruction polynomial of a neighboring CV Ci, j,r , which shares the face
Ar with Ci j . Both pi and pi,r are kth-order approximations of the exact state variable; i.e.,

pi (xrq , yrq ) = u(xrq , yrq ) + O(hk), (2.11a)

pi,r (xrq , yrq ) = u(xrq , yrq ) + O(hk). (2.11b)
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Therefore

F(u(xrq , yrq )) · nr = FRiem(pi (xrq , yrq ), pi,r (xrq , yrq ), nr ) + O(hk). (2.12)

Substituting (2.12) into (2.4), we obtain

∫
Ar

(F · n) d A =
J∑

q=1

wrq FRiem(pi (xrq , yrq ), pi,r (xrq , yrq ), nr )Ar + O(Ar hk). (2.13)

Summarizing (2.4)–(2.13), we obtain the following semidiscrete, kth-order-accurate scheme
on Ci j for the conservation law (2.1):

dūi, j

dt
+ 1

Vi, j

K∑
r=1

J∑
q=1

wrq FRiem(pi (xrq , yrq ), pi,r (xrq , yrq ), nr )Ar + O(hk). (2.14)

For time integration, we will use the third-order TVD Runge–Kutta scheme from [32]. We
first rewrite (2.14) in a concise ODE form

dū

dt
= Rh(ū), (2.15a)

where

ū =




ū1,1

· · ·
ūi, j

· · ·
ū I,N


, Rh(ū) =




R1,1(ū)
· · ·

Ri, j (ū)
· · ·

RI,N (ū)


, (2.15b)

and

Ri, j = − 1

Vi, j

K∑
r=1

J∑
q=1

wrq FRiem(pi (xrq , yrq ), pi,r (xrq , yrq ), nr )Ar . (2.15c)

Then the third-order TVD Runge–Kutta scheme can be expressed as

ū(1) = ūn + �t Rh(ūn),

ū(2) = 3

4
ūn + 1

4

[
ū(1) + �t Rh

(
ū(1)
)]

, (2.16)

ūn+1 = 1

3
ūn + 2

3

[
ū(2) + �t Rh

(
ū(2)
)]

.

The SV method idea can of course be easily extended to other cell types, such as quadri-
laterals, tetrahedra, hexahedra, prisms, and so forth. For cell types other than triangles and
tetrahedra, it seems symmetric CV subdivisions with the minimum number of CVs for a
given order of accuracy are difficult to obtain. The development of the SV method for other
cell types will be reported elsewhere.
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3. THE RECONSTRUCTION PROBLEM IN A SPECTRAL VOLUME

As discussed in the previous section, in order to compute the flux across a surface, one
needs to evaluate the state variable u at quadrature points. These evaluations can be achieved
by reconstructing the state variable u in terms of some basis functions using the CV-averaged
solutions ū, j within a SV. (For simplicity, we drop the subscript i and use ū, j , C, j , and V, j to
denote ūi, j , Ci, j and Vi, j , respectively.) In general, one can choose any linearly independent
functions as the basis functions. Here we focus only on the reconstruction using polynomials
as the basis functions.

Let Pm denote the space of degree m polynomials in two dimensions. Then the dimension
of the approximation space is

Nm =
(

m + 2

2

)
= (m + 1)(m + 2)

2
,

which is the minimum dimension of the space that allows Pm to be complete. In order to
reconstruct u in Pm , we need to partition the SV into a set of Nm nonoverlapping CVs. Let
S denote the physical space of a SV and 	m denote the partition; i.e.,

	m = {C,1, C,2, . . . , C,Nm

}
,

where C, j ⊂ S, j = 1, 2, . . . , Nm (or N if there is no confusion), is the j th CV inside the
SV, and

S =
Nm⋃
j=1

C, j .

The reconstruction problem reads as follows: Given a continuous function in S, u ∈ C(S)
(the space of continuous functions in S), and a partition 	m of S, find pm ∈ Pm such that∫

C, j

pm(x, y) dV =
∫

C, j

u(x, y) dV, j = 1, . . . , Nm . (3.1)

To actually solve the reconstruction problem, we introduce the complete polynomial basis,
el(x, y) ∈ Pm , where Pm = span{el(x, y)}Nm

l=1. Therefore pm can be expressed as

pm =
Nm∑
l=1

alel(x, y), (3.2a)

or in the matrix form

pm = ea, (3.2b)

where e is the basis function vector [e1, . . . , eN ] and a is the reconstruction coefficient
vector [a1, . . . , aN ]T . Substituting (3.2a) into (3.1), we then obtain

1

V, j

Nm∑
l=1

al

∫
C, j

el(x, y) dV = ū, j , j = 1, . . . , Nm . (3.3)
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Let ū denote the column vector [ū,1, . . . , ū,N ]T . Equation (3.3) can be rewritten in the
matrix form

Ra = ū, (3.4)

where the reconstruction matrix

R =




1
V1

∫
C,1

e1(x, y) dV · · · 1
V1

∫
C,1

eN (x, y) dV
... · · · ...

1
VN

∫
C,N

e1(x, y) dV · · · 1
VN

∫
C,N

eN (x, y) dV


. (3.5)

The reconstruction coefficients a can be solved as

a = R−1ū, (3.6)

provided that the reconstruction matrix R is nonsingular. Substituting Eq. (3.6) into
Eq. (3.2), pm is then expressed in terms of cardinal basis functions or shape functions
L = [L , . . . , L N ]:

pm =
Nm∑
j=1

L j (x, y)ū, j = Lū. (3.7)

Here L is defined as

L ≡ eR−1. (3.8)

Equation (3.7) gives the functional representation of the state variable u within the SV. The
function value of u at a quadrature point or any point (xrq , yrq ) within the SV is thus simply

pm(xrq , yrq ) =
Nm∑
j=1

L j (xrq , yrq )ū, j . (3.9)

The above equation can be viewed as an interpolation of a function value at a point using
a set of cell-averaged values with each weight equal to the corresponding cardinal basis
functional value evaluated at that point.

Note that once the polynomial basis functions el are chosen, the cardinal basis functions
L j are solely determined by the partition 	m of S. The shape and the partition of S, in
general, can be arbitrary as long as the reconstruction matrix R is nonsingular. However,
different shapes of spectral volumes can result in the same expression of the cardinal basis
functions (in terms of a few geometric parameters) if a geometrically similar partition can
be applied to them. In the following, we examine a special case where all SVs are triangular
and all CVs are polygons with straight edges. In this case, even though the shapes of the
SVs may all be different, as long as they are partitioned in a geometrically similar manner,
they all have the same reconstruction, in which the functional values of the cardinal bases
at similar grid points are all exactly the same. We defer the discussion of other types of
spectral volumes (e.g., quadrilateral, tetrahedron, curved boundaries, etc.) elsewhere.
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FIG. 5. The schematic of the mapping from the physical triangle to the standard triangle.

We first consider a transformation 
 : S → D, shown in Fig. 5a, which transforms an
arbitrary triangle S to a right triangle D. Another often-used transformation is from an
arbitrary triangle to an equilateral triangle E , shown in Fig. 5b. Let us use (x, y) to denote
the coordinates in S and (�,�) the coordinates in D. For simplicity, we assume one of the
nodes is located at the origin r0 = (0,0) and the other two at r1 = (x1, y1) and r2 = (x2, y2)
in S, corresponding to (0,0), (1,0), and (0,1) in D, respectively. Thus, the transformation can
be written as


 : r = r1� + r2�, � ≥ 0,� ≥ 0, and � + � ≤ 1. (3.10)

Since the transformation is linear, for a complete set of basis functions e(x, y) ∈ Pm , one
can easily show that

e(x, y) = e(�,�)T . (3.11)

Here T is the transformation matrix containing only the geometric information of the nodal
positions of S. For example, if e(x, y) = [1, x, y, x2, xy, y2], then

T =




1 0 0 0 0 0
0 x1 y1 0 0 0
0 x2 y2 0 0 0

0 0 0 x2
1 x1 y1 y2

1

0 0 0 2x1x2 x1 y2 + x2 y1 2y1 y2

0 0 0 x2
2 x2 y2 y2

2




.

One can also show that

dV = dx dy = 2V d� d�, (3.12)
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where V = 1
2 |r1 × r2| is the volume of S. Substituting Eqs. (3.11) and (3.12) into Eq. (3.8),

we obtain

L = [e1(�,�), . . . , eN (�,�)]

∫

C,1
e1(�,�) d� d� · · · ∫

C,1
eN (�,�) d� d�

... · · · ...∫
C,N

e1(�,�) d� d� · · · ∫
C,N

eN (�,�) d� d�




−1 


V,1

2V
· · ·

V,N

2V


. (3.13)

From the above equation, the cardinal basis functions can be made independent of the nodal
positions of S if each and every V, j is proportional to V . This can be achieved by subdividing
the SV into polygonal CVs with straight edges. Therefore, different shapes of triangles
have the identical cardinal bases L j (�,�) in the transformed space D if they are similarly
partitioned into polygons. Transforming back to the physical space S, although the functions
L j (x, y) may be different for different triangles, their functional values L j (xrq , yrq ) at
similar points (points having the same (�,�) in the transformed space D) are exactly the
same. We thus have a universal reconstruction formula, Eq. (3.9), for evaluating the state
variable u at similar points. This also implies that the reconstruction needs to be carried out
only once, and that can be performed using any shape of triangle. Although matrix R may
be ill-conditioned, we avoid numerically inverting the matrix by using Mathematica [39] to
derive the reconstruction coefficients analytically using exact arithmetic. These coefficients
are identical for all triangles. The exact integrations of polynomials over arbitrary polygons
can be found in [28].

Note that one of the subtle differences between a FV and a SV method is that all the CVs
in a SV use the same data reconstruction. As a result, it is not necessary to use a Riemann
flux or flux splitting for the interior boundaries between the CVs inside a particular SV
because the state variable is continuous across the interior CV boundaries. Riemann fluxes
are only necessary at the boundaries of the SV. The most significant advantage of the SV
method, compared with the FV method, is that the reconstruction for a particular cell type
(e.g., triangles) with a certain CV subdivision (e.g., those shown in Figs. 2–4) is exactly
the same. Therefore, the memory- and CPU-intensive reconstructions used in a FV method
are solved analytically without taking any extra memory in the SV method. Furthermore,
exact fluxes rather than Riemann fluxes are used at the interior boundaries of the CVs,
resulting again in significant savings because the Riemann flux is usually several times
more expensive to compute than the exact flux.

4. CONVERGENT LINEAR, QUADRATIC, AND CUBIC TRIANGULAR

SPECTRAL VOLUMES

Based on the discussions in the last section, it is clear that the reconstruction problem is
equivalent for all triangles. We therefore focus our attention on the reconstruction problem
in an equilateral triangle E , as shown in Fig. 5b. In partitioning E into N nonoverlapping
CVs, we further require the CVs to satisfy the following three conditions:

1. The CVs are “symmetric” with respect to all symmetries of the triangle.
2. All CVs are convex.
3. All CVs have straight sides; i.e., the CVs are polygons.
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We believe the symmetry and convexity requirement is important for achieving the best
possible accuracy and robustness. The requirement of polygons simplifies the formulation
of the SV method. To handle curved boundaries, isoparametric SVs will be used. The curved
boundary will be represented using high-order polynomials compatible with the polynomial
interpolation inside the SV. Then the isoparametric SVs will be transformed to the standard
triangle, which will be partitioned in the usual manner. Surface integrals will be performed
with respect to the standard triangle. It is obvious that a CV containing the centroid of E
must be symmetric with respect to the three edges and vertices, and at most one such CV
can exist. This CV, if it exists, is thus said to possess degree 1 symmetry (or 1 symmetry,
in short). Similarly, CVs with degree 3 and 6 symmetries can also be defined. For example,
if a CV is said to possess degree 3 symmetry, then two other symmetric CVs must exist in
the same partition. We denote by n1, n3, and n6 the degree 1, 3, and 6 symmetry groups in a
partition with n1 = 0 or 1. Then the total number of CVs in the partition is n1 + 3n3 + 6n6.
In order to support the unique reconstruction of degree m polynomial, the total number of
CVs must be identical to the dimension of the polynomial space; i.e.,

n1 + 3n3 + 6n6 = (m + 1)(m + 2)

2
. (4.1)

The solutions of (4.1) can be used to guide the partition of E once m is given. For example, for
m = 1, . . . , 5, all possible solutions are summarized in Table I. Some possible partitions of
the standard triangle corresponding to these solutions for m = 1, 2, 3 are shown in Figs. 2–
4. Next the question of how these partitions perform in a data reconstruction needs to be
answered.

Given any partition, the reconstruction matrix R in (3.5) must be nonsingular. In this case,
the expansion coefficients can be solved from (3.6). Note that once the polynomial basis is
given, the matrix is solely determined by the partition 	m of E . For a linear reconstruction
using three CVs, it is well-known that the reconstruction is nonsingular as long as the
centroids of the CVs are not colinear. Unfortunately no such simple criteria are known
for higher order reconstructions in E . We therefore have to compute the determinant of the
reconstruction matrix to determine whether it is singular. As a matter of fact, straightforward

TABLE I

Solutions for m = 1, . . . , 5

m n1 n3 n6

1 0 1 0
2 0 2 0

0 0 1
3 1 3 0

1 1 1
4 0 5 0

0 3 1
0 1 2

5 0 7 0
0 5 1
0 3 2
0 1 3



2D SPECTRAL VOLUME METHOD 677

computations indicated that several partitions shown in Figs. 3 and 4 are singular. For
example, the quadratic SV in Fig. 3b and the cubic SV in Fig. 4d are verified to be singular,
and they are excluded from further considerations.

In [38], the first paper on the SV method, it was shown that not all nonsingular recon-
structions are convergent. For example, high-order polynomial reconstructions based on
equidistant CVs in one dimension are not convergent although the reconstructions are non-
singular. We believe this is the direct consequence of the Runge phenomenon. Therefore
some means to quantify the quality of the reconstructions needs to be identified.

Assume that we have a nonsingular partition 	m of E . For u ∈ C(E), we then have

pm(�,�) =
N∑

j=1

L j (�,�)ū, j . (4.2)

The cardinal basis function has the following property:

1

V, j

∫
C, j

L j (�,�) d� d� = �i, j , 1 ≤ i, j ≤ N . (4.3)

Denote pm = �	(u), where �	 is an operator which maps C(E) onto Pm(E). It is obvious
that �	 is a linear projection operator because

• �	(u + �) = �	(u) + �	(�), ∀u ∈ C(E), � ∈ C(E);
• �	(cu) = c�	(u) for any real constant c;
• �	 p = p for p ∈ Pm .

When both spaces C(E) and Pm(E) are equipped with the supremum or uniform norm, i.e.,
‖•‖ = ‖•‖∞ = max|•|, the norm of this projection operator can be defined as

‖�	‖ = sup
u �=0

‖�	u‖
‖u‖ . (4.4)

Because ū, j ≤ ‖u‖, j = 1, . . . , N , it is obvious that

‖�	u‖
‖u‖ =

∥∥∥∥∑N

j=1
L j (�,�)ū j

∥∥∥∥
‖u‖ ≤

∥∥∥∥∑N

j=1
|L j (�,�)ū j |

∥∥∥∥
‖u‖ ≤

∥∥∥∥∑N

j=1
|L j (�,�)|‖u‖

∥∥∥∥
‖u‖

=
∥∥∥∥∥∥

N∑
j=1

|L j (�,�)|
∥∥∥∥∥∥. (4.5)

Therefore we can easily see that

‖�	‖ = max
�∈E

N∑
j=1

|L j (�,�)|. (4.6)

The function �(�,�) =∑N
j=1 |L j (�,�)| is usually referred to as the Lebesgue function

of the interpolation, and ‖�	‖ is called the Lebesgue constant, which is of interest for the
following two reasons [8]:
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(i) If p∗
m is the best uniform approximation to u on E , then

‖u − �	u‖ ≤ (1 + ‖�	‖)‖u − p∗
m‖, (4.7)

because

‖u − �	u‖ = ‖u − p∗
m − (�	u − p∗

m)‖
= ‖u − p∗

m − �	(u − p∗
m)‖

≤ ‖u − p∗
m‖ + ‖�	(u − p∗

m)‖
≤ ‖u − p∗

m‖ + ‖�	‖‖(u − p∗
m)‖

= (1 + ‖�	‖)‖u − p∗
m‖.

(ii) For p ∈ Pm ,

‖p‖ ≤ ‖�	‖ max
1≤ j≤N

ū, j , (4.8)

which is obvious from (4.2). Thus ‖�	‖ gives a simple method of bounding the interpolation
polynomial. It is obvious from (4.7) that the smaller the Lebesgue constant, the better the
interpolation polynomial. Therefore the problem becomes finding the partition with a small
Lebesgue constant, if not the smallest one possible. In this paper, our focus is to construct
good enough SV partitions so that the interpolation polynomial is convergent when the
computational grid is refined. The Lebesgue constant is used as the criterion to judge the
quality of the partitions. The optimization of the partitions will be the subject of a future
publication.

The problem of partitioning the equilateral triangle E into N symmetric CVs which can
support nonsingular polynomial interpolations is not trivial and is much more complex than
the problem of determining a set of points in E which support Lagrange interpolations
[8, 11]. What we are trying to accomplish in the paper is to identify partitions of E which
support linear-to-cubic reconstructions with relatively small Lebesgue constants.

Linear Spectral Volume (m = 1)

Based on the solution of (4.1), it is obvious that two partitions are possible, as shown in
Figs. 2a and 2b, which are named Type 1 and Type 2 partitions. Since the centroids of the
CVs are noncolinear, both partitions are admissible. Note that the CVs in both partitions
possess a degree 3 symmetry. The cardinal basis functions L j (�,�) are plotted in Fig. 6
for both Type 1 and 2 partitions. Furthermore, the Lebesgue constants are 13/3 (4.3333)
and 43/15 (2.8667) for Type 1 and 2 partitions, respectively. Note that the Type 2 SV has a
much smaller Lebesgue constant than the Type 1 SV, indicating that the L∞ error with the
Type 2 SV should be smaller than the error with the Type 1 SV.

For a linear reconstruction, only one Gauss quadrature point is required for a surface
integral. This quadrature point is located at the center of an edge. Due to the symmetry, we
therefore only need to compute and store the functional values of the cardinal bases at two
quadrature points, a total of six coefficients. These coefficients are the same for all triangles
with similar partitions.
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FIG. 6. Shape functions for linear spectral volumes. (a) Type 1; (b) Type 2.

Quadratic Spectral Volume (m = 2)

Equation (4.1) has two solutions for m = 2, and the possible partitions are shown in
Fig. 3. As mentioned earlier, the partition shown in Fig. 3b is singular and is therefore not
admissible. The partition presented in Fig. 3a is not unique in the sense that the position of
one of the two vertices on an edge of the triangle can change; i.e., the length d shown in
Fig. 3a can be any real number in (0, 0.5) assuming the length of the edge is 1. It seems
that with any d , the partition is admissible. In our numerical studies, two different values
of d were tested, namely d = 1/3 and 1/4 (corresponding to the Gauss–Lobatto points on
the edge), which are called Type 1 and 2 partitions, respectively. The Lebesgue constant
for the Type 1 partition is 9.3333, and for the Type 2 partition is 8. Therefore, the Type 2
partition is expected to yield more-accurate numerical results. The cardinal basis functions
L j (�,�) are plotted in Fig. 7 for the Type 2 partition. For a quadratic reconstruction, two

FIG. 7. Shape functions for the Type 2 quadratic spectral volume.
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TABLE II

Lebesgue Constants for the Partition

Shown in Fig. 4b

d Lebesgue constant

1/6 8.21499
1/7 6.71178
1/8 5.71904

1/10 4.49231
1/15 3.44485
1/20 3.57595
1/25 3.65981

1/100 3.93353

Gauss quadrature points are required for a surface integral. Due to the symmetry, there are
30 coefficients, corresponding the functional values of the cardinal bases at five quadrature
points, which need to be computed and stored.

Cubic Spectral Volume (m = 3)

Equation (4.1) has two different solutions for m = 3, and several possible partitions are
shown in Fig. 4. As mentioned earlier, the partition shown in Fig. 4d is singular and is
not admissible. Although the partitions presented in Figs. 4a–4c look quite different, the
first two partitions can be viewed as the limiting cases of the partition shown in Fig. 4c.
Therefore we can claim that all three partitions (4a–4c) have the same general topology.
The partition requires the locations of three vertices, I, II, and III, as shown in Fig. 4c. The
optimization of these points will be the topic of a future paper. In this paper, our focus is
the partition shown in Fig. 4b, in which one parameter d can be changed to obtain different
partitions. In fact, the Lebesgue constants for partitions with a set of d values are presented
in Table II. It is interesting to note that among this set of d values, the Lebesgue constant
reaches a smallest value of 3.44485 at d = 1/15 from a value of 8.21499 at d = 1/6. When
d is smaller than 1/15, the Lebesgue constant starts to increase. For presentation purposes,
we call the partition shown in Fig. 4a the Type 1 partition. The partition shown in Fig. 4b
with d = 1/6 is called the Type 2 partition, and with d = 1/15 the Type 3 partition. It is
expected that the Type 3 partition should give the most accurate numerical solution in the
uniform norm. The Lebesgue constant for the Type 1 partition is 167/12 (13.9), which
is significantly larger than those for the Type 2 and 3 partitions. Numerical results to be
presented later confirm that the Type 1 partition is not convergent with grid refinement.
Several of the cardinal basis functions for the Type 1 partition are plotted in Fig. 8, and
for the Type 3 partition are plotted in Fig. 9. For a cubic reconstruction, still two Gauss
quadrature points are required for a surface integral. Again, due to the symmetry, we only
need to compute and store the cardinal basis functional values at 10 quadrature points, a
total of 100 coefficients.

5. MULTIDIMENSIONAL LIMITERS

The Gibbs phenomenon associated with high-order schemes in the presence of disconti-
nuities causes loss of monotonicity in the solution of hyperbolic conservation laws. Godunov
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FIG. 8. Shape functions for the Type 1 cubic spectral volume.
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FIG. 9. Shape functions for the Type 3 cubic spectral volume.
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[18] first proved that there are no linear second-order or higher schemes which guarantee
monotonicity. Therefore high-order monotonic schemes, if they exist, must be nonlinear.
One effective approach to achieve monotonicity is to limit the reconstructed solution so
that a monotonicity constraint is satisfied. As pointed out by many researchers, strict mono-
tonicity seems to conflict with a uniform high order of accuracy [12]. In order to recover
a uniform order of accuracy away from discontinuities, the TVB (total variation bounded)
idea [33] is employed here.

We again consider a SV Si with N CVs. Given cell-averaged state variables for all the CVs
{ūi, j }, a polynomial reconstruction pi (x, y) of at most order k − 1 exists which satisfies

∫
Ci, j

pi (x, y) dV = ūi, j Vi, j , j = 1, . . . , N . (5.1)

Recall that this polynomial reconstruction is then used to compute the state variables at the
CV boundaries, which are, in turn, used in the update of the solution at the next time level:

dūi, j

dt
+ 1

Vi, j

K∑
r=1

J∑
q=1

wrq FRiem(pi (xrq , yrq ), pi,r (xrq , yrq ), nr )Ar = 0 (5.2)

Denote

�urq = pi (xrq , yrq ) − ūi, j , r = 1, . . . , K ; q = 1, . . . , J.

Following the TVB idea, if

|�urq | ≤ 4Mh2
rq , r = 1, . . . , K ; q = 1, . . . , J, (5.3)

it is not necessary to do any data limiting. In (5.3), M represents some measure of the second
derivative of the solution, and hrq is the distance from point (xrq ,yrq ) to the centroid of Ci, j .
It is obvious that this multidimensional TVB limiter degenerates into the one-dimensional
TVB limiter. Using the fact that in two dimensions 4h2

rq ∝ Vi, j , we can further simplify
(5.3) by replacing 4Mh2

rq with MVi, j . With the new formula, we do not need to compute or
store the distances from the cell centroid to the quadrature points. In this paper, we select M
to be close to the maximum absolute value of the second derivative over the computational
domain. If for any value of r and q (5.3) is violated, it is assumed that Ci, j is near a steep
gradient and data limiting is necessary. Instead of using the polynomial pi (x, y) in Ci, j , we
assume that data is linear in Ci, j ; i.e,

ui, j (x, y) = ūi, j + ∇ui, j · (r − r i, j ), ∀r ∈ Ci, j , (5.4)

where r i, j is the position vector of the centroid of Ci, j . In order to achieve the highest
resolution, we need to maximize the magnitude of the solution gradient ∇ui, j in Ci, j . At
the same time, we require that the reconstructed solutions at the quadrature points of Ci, j

satisfy the monotonicity constraint

ūmin
i, j ≤ ui, j (xrq , yrq ) ≤ ūmax

i, j ; r = 1, . . . , K , q = 1, . . . , J, (5.5)
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where ūmin
i, j and ūmax

i, j are the minimum and maximum cell-averaged solutions among all its
neighboring CVs sharing a face with Ci, j ; i.e.,

ūmax
i, j = max

(
ūi, j , max

1≤r≤K
ūi, j,r

)
,

(5.6)
ūmin

i, j = min
(

ūi, j , min
1≤r≤K

ūi, j,r

)
,

where ūi, j,r denotes the cell-averaged solution at the neighboring CV of Ci, j sharing face r .
If the solution is linear, it is obvious that the solution value at the centroid of Ci, j is the same
as ūi, j , the cell-average solution. Several different approaches are possible in estimating
∇ui, j , depending on the computational complexity. Three approaches are outlined here.

Approach 1. Consider a CV with K faces. Using cell-averaged data at Ci, j and its
neighbors, we can usually construct K different gradients. For example, the gradient re-
constructed from (ūi, j , ūi, j,r , ūi, j,r+1) is denoted ∇ui, j,r with ūi, j,K+1 = ūi, j,1. In addition,
another gradient can be constructed through a least-squares reconstruction algorithm using
the cell-averaged data at all the face-neighbor cells. This gradient is denoted by ∇ui, j,K+1.
Using any of the gradients, the state variable at the quadrature points of Ci, j can be computed.
If any of the reconstructed variable at the quadrature points is out of the range [ūmin

i, j , ūmax
i, j ],

the gradient is limited; i.e.,

∇ui, j,r ⇐ �∇ui, j,r , (5.7)

where � ∈ [0, 1] is calculated from

� =




min
(

1,
�urq

ūmax
i, j − ūi, j

)
if �urq > 0

min
(

1,
�urq

ūmin
i, j − ūi, j

)
if �urq < 0

1 otherwise.

(5.8)

After this limiting step, we have K + 1 gradients which all satisfy the monotonicity con-
straint given in (5.5). Then the gradient with the largest magnitude is selected to maximize
the gradient; i.e.,

∇ui, j = max
r

|∇ui, j,r |. (5.9)

This limiter is similar to the maximum limited gradient (MLG) limiter developed by Batten
et al. [7]. It was proven by Liu [26] that the above limiter satisfies a maximum principle for
triangular grids. The MLG limiter is an analog of the Superbee limiter in one dimension.
This limiter is therefore called Superbee limiter in this paper. This limiter has the advantage
of minimum numerical dissipation but is expensive to compute. A more efficient limiter is
given next.

Approach 2. Only one gradient is computed, i.e., ∇ui, j,K+1, given in approach 1, which
is computed with data at all face-neighbor cells using a least-squares linear reconstruction
algorithm. Again this gradient is limited using (5.8), so the reconstructed solutions at all
the quadrature points satisfy the monotonicity constraint (5.5). This limiter is similar to the
minmod limiter in one dimension and is called the Minmod limiter here.
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Approach 3. Note that in both approaches 1 and 2 the gradients of the solution for each
CV must be reconstructed using data in a neighborhood of the CV. This reconstruction can be
quite memory and CPU intensive. In this approach, we avoid a separate data reconstruction
by reusing the polynomial reconstruction already available for the SV. For each CV, we use
the gradient of the reconstructed polynomial at the CV centroid; i.e.,

∇ui, j =
(

∂pm

∂x
,
∂pm

∂y

)∣∣∣∣
ri, j

=
(

∂pm

∂�

∂�

∂x
+ ∂pm

∂�

∂�

∂x
,
∂pm

∂�

∂�

∂y
+ ∂pm

∂�

∂�

∂y

)∣∣∣∣
ri, j

. (5.10)

For the transformation given in (3.10), it is obvious that

(
∂pm

∂x

∂pm

∂y

)
=
(

�x � x

�y � y

)(
∂pm

∂�

∂pm

∂�

)
= 1

x1 y2 − x2 y1

(
y2 −y1

−x2 x1

)( ∂pm

∂�

∂pm

∂�

)
(5.11)

Because

pm(�,�) =
N∑

j=1

L j (�,�)ūi, j ,

we have

∂pm(�,�)

∂�
=

N∑
j=1

∂L j (�,�)

∂�
ūi, j , (5.12a)

∂pm(�,�)

∂�
=

N∑
j=1

∂L j (�,�)

∂�
ūi, j . (5.12b)

The first derivatives of the shape function can be obtained analytically. The gradient for
each CV is then limited if necessary with the same approach outlined in approach 1.
Obviously this is the most efficient among the three limiters. This limiter is named CV
limiter.

For comparison purposes, we also used another simple limiter, which is called the Clip
limiter. In this limiter, zero gradient (piecewise constant distribution) is used in CVs wher-
ever limiting is necessary.

Note that if parameter M = 0, the TVB limiters are similar to TVD (total variation
diminishing) limiters, which strictly enforce monotonicity by sacrificing accuracy near
extrema.

The availability of cell-averaged data on the CVs inside a SV makes this CV-based
data limiting possible, whereas in the DG method, one can only do an element-based data
limiting. Due to the increased local resolution, the SV method is expected to have higher
resolutions for discontinuities than the DG method. The improved resolution has been
demonstrated in one dimension [38].
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FIG. 10. Regular and irregular “10 × 10 × 2” computational grids.
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6. NUMERICAL TESTS

6.1. Accuracy Study with 2D Linear Wave Equation

Time-Accurate Problem

In this case, we test the accuracy of the SV method on the two-dimensional linear equation

∂u

∂t
+ ∂u

∂x
+ ∂u

∂y
= 0, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1,

(6.1)
u(x, y, 0) = u0(x, y), periodic boundary condition.

The initial condition is u0(x, y) = sin �(x + y). A fourth-order-accurate Gauss quadrature
formula [28] is used to compute the CV-averaged initial solutions. These CV-averaged
solutions are then updated at each time step using the third-order TVD Runge–Kutta scheme
presented earlier. The numerical simulation is carried until t = 1 on two different triangular
grids, as shown in Fig. 10. One gird is generated from a uniform Cartesian grid by cutting
each Cartesian cell into two triangles and is called the regular grid. The other grid is generated
with an unstructured grid generator and is called the irregular grid. The finer irregular grids
are generated recursively by cutting each coarser grid cell into four finer grid cells. Note
that the cells in the irregular grid have quite different sizes. In Table III, we present the L1

and L∞ errors in the CV-averaged solutions produced using second- to fourth-order SV
method schemes with SVs shown in Figs. 2–4 on the regular grid. The errors presented in
the table are time-step independent because the time step �t was made small enough so
that the errors are dominated by the spatial discretization. In this test, all SVs except the
Type 1 cubic SV (shown in Fig. 4a) are convergent with grid refinement on this regular
grid. It is obvious that the expected order of accuracy is achieved by all the convergent SVs.
It is not surprising that the Type 1 cubic SV is not convergent because of its rather large
Lebesgue constant of 13.9. In contrast, the Type 2 and 3 cubic SVs have Lebesgue constants
of 8.21 and 3.44, respectively. It is interesting to note that the Type 1 linear SV gives more-
accurate results in both the L1 and L∞ norms than the Type 2 linear SV even if the Type
1 SV has the larger Lebesgue constant of 4.33 versus that of 2.87 of the Type 2 SV. This
indicates that the Lebesgue constant cannot serve as an absolute error estimate but rather is
an estimate of the upper bound of the error. For the quadratic and cubic SVs, the partitions
with smaller Lebesgue constants do give more-accurate numerical solutions, as shown in
Table III.

Next, the L1 and L∞ errors in the numerical results computed on the irregular grid using
second- to fourth-order SVs are shown in Table IV. This should be a much tougher test
case because of the truly unstructured nature of the computational grid. What is striking is
that the Type 1 linear SV failed to achieve second-order accuracy on this grid. As a matter
of fact, it is only first-order accurate. This may be contributed to the acute angles of the
CVs in the partition. Note that both quadratic SVs are convergent and give similar results.
Third-order accuracy is achieved by both types of quadratic SVs in the L1 norm although
the numerical order of accuracy in the L∞ norm is only slightly over second order. We
believe this is due to the nonsmoothness of the computational grid. As expected, the Type 1
cubic SV is not convergent on this grid. In addition, the Type 2 cubic SV also showed a
nonconvergent behavior in the L∞ norm on the finest grid. It is nice to see that the Type 3
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cubic SV is not only convergent but also fourth-order accurate in both the L1 and L∞
norms.

Steady State Problem

One steady state solution for the wave equation (6.1) is u(x, y) = sin �(x − y). In order to
test the performance of the SV method for steady state problems, the steady boundary value
problem is also studied. Because the wave is traveling in positive x and y directions, inflow
boundary conditions are employed at y = −1 and x = −1, while extrapolation boundary
conditions are used at x = 1 and y = 1. On the inflow boundaries, the exact solutions at the
quadrature points are used to evaluate the flux integrals. The simulation is carried out on the

TABLE III

Accuracy of ut + ux + uy = 0, with u0(x, y) = sin �(x + y), at t = 1 (Regular Grids)

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

2 (Type 1 SV) 10 × 10 × 2 3.04e-2 — 4.97e-2 —
20 × 20 × 2 7.68e-3 1.98 1.24e-2 2.00
40 × 40 × 2 1.92e-3 2.00 3.10e-3 2.00
80 × 80 × 2 4.81e-4 2.00 7.75e-4 2.00

160 × 160 × 2 1.20e-4 2.00 1.93e-4 2.00
2 (Type 2 SV) 10 × 10 × 2 4.03e-2 — 6.68e-2 —

20 × 20 × 2 1.06e-2 1.93 1.78e-2 1.91
40 × 40 × 2 2.71e-3 1.97 4.54e-3 1.97
80 × 80 × 2 6.83e-4 1.99 1.14e-3 1.99

160 × 160 × 2 1.71e-4 2.00 2.87e-4 1.99
3 (Type 1, d = 1/3) 10 × 10 × 2 4.18e-3 — 7.76e-3 —

20 × 20 × 2 5.33e-4 2.97 1.01e-3 2.94
40 × 40 × 2 6.73e-5 2.99 1.25e-4 3.01
80 × 80 × 2 8.45e-6 2.99 1.55e-5 3.01

160 × 160 × 2 1.06e-6 2.99 1.93e-6 3.00
3 (Type 2, d = 1/4) 10 × 10 × 2 4.73e-3 — 7.88e-3 —

20 × 20 × 2 4.77e-4 3.31 9.83e-4 3.00
40 × 40 × 2 6.04e-5 2.98 1.23e-4 3.00
80 × 80 × 2 7.58e-6 2.99 1.53e-5 3.01

160 × 160 × 2 9.57e-7 2.99 1.91e-6 3.00
4 (Type 1 SV) 10 × 10 × 2 1.38e-4 — 4.86e-4 —

20 × 20 × 2 8.64e-6 4.00 1.98e-5 4.62
40 × 40 × 2 5.47e-7 3.98 1.51e-6 3.71
80 × 80 × 2 3.46e-8 3.98 1.17e-7 3.69

160 × 160 × 2 4.19e-8 Negative 5.15e-7 Negative
4 (Type 2, d = 1/6) 10 × 10 × 2 9.33e-5 — 3.17e-4 —

20 × 20 × 2 5.86e-6 3.99 1.94e-5 4.03
40 × 40 × 2 3.70e-7 3.99 1.24e-6 3.95
80 × 80 × 2 2.32e-8 4.00 7.78e-8 3.99

160 × 160 × 2 1.45e-9 4.00 4.84e-9 4.01
4 (Type 3, d = 1/15) 10 × 10 × 2 7.36e-5 — 2.51e-4 —

20 × 20 × 2 4.52e-6 4.03 1.61e-5 3.96
40 × 40 × 2 2.81e-7 4.01 1.01e-6 3.99
80 × 80 × 2 1.75e-8 4.01 6.30e-8 4.00

160 × 160 × 2 1.10e-9 3.99 3.94e-9 4.01
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TABLE IV

Accuracy on ut + ux + uy = 0, with u0(x, y) = sin �(x + y), at t = 1 (Irregular Grids)

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

2 (Type 1 SV) 10 × 10 × 2 1.30e-1 — 3.60e-1 —
20 × 20 × 2 6.66e-2 0.96 1.91e-1 0.91
40 × 40 × 2 3.51e-2 0.92 9.84e-2 0.96
80 × 80 × 2 1.85e-2 0.92 4.91e-2 1.00

160 × 160 × 2 9.74e-3 0.93 2.86e-2 0.78
2 (Type 2 SV) 10 × 10 × 2 6.71e-2 — 1.36e-1 —

20 × 20 × 2 1.83e-2 1.87 4.42e-2 1.62
40 × 40 × 2 4.71e-3 1.96 1.15e-2 1.94
80 × 80 × 2 1.19e-3 1.98 2.94e-3 1.97

160 × 160 × 2 3.00e-4 1.99 8.85e-4 1.73
3 (Type 1, d = 1/3) 10 × 10 × 2 9.17e-3 — 3.67e-2 —

20 × 20 × 2 1.25e-3 2.87 5.28e-3 2.80
40 × 40 × 2 1.64e-4 2.93 8.32e-4 2.67
80 × 80 × 2 2.15e-5 2.93 1.84e-4 2.18

160 × 160 × 2 2.79e-6 2.95 4.05e-5 2.18
3 (Type 2, d = 1/4) 10 × 10 × 2 8.36e-3 — 3.76e-2 —

20 × 20 × 2 1.15e-3 2.86 5.63e-3 2.74
40 × 40 × 2 1.52e-4 2.92 1.00e-3 2.49
80 × 80 × 2 2.01e-5 2.92 2.14e-4 2.22

160 × 180 × 2 2.64e-6 2.93 5.31e-5 2.01
4 (Type 1 SV) 10 × 10 × 2 4.43e-4 — 3.32e-3 —

20 × 20 × 2 3.08e-5 3.85 2.56e-4 3.70
40 × 40 × 2 2.15e-6 3.84 2.12e-5 3.59
80 × 80 × 2 2.48e-7 3.12 5.06e-6 2.07

160 × 160 × 2 5.19e-7 Negative 4.49e-5 Negative
4 (Type 2, d = 1/6) 10 × 10 × 2 3.04e-4 — 2.58e-3 —

20 × 20 × 2 2.02e-5 3.91 1.73e-4 3.90
40 × 40 × 2 1.34e-6 3.91 1.42e-5 3.61
80 × 80 × 2 9.61e-8 3.80 1.03e-6 3.79

160 × 160 × 2 2.30e-8 2.06 1.23e-6 Negative
4 (Type 3, d = 1/15) 10 × 10 × 2 2.71e-4 — 1.51e-3 —

20 × 20 × 2 1.61e-5 4.07 1.14e-4 3.73
40 × 40 × 2 9.91e-7 4.02 8.28e-6 3.78
80 × 80 × 2 6.17e-8 4.01 5.40e-7 3.94

160 × 160 × 2 3.87e-9 3.99 3.79e-8 3.83

irregular grid until a steady state is reached. In all the simulations, the residuals were reduced
to machine zero. In Table V, the L1 and L∞ errors are presented for second- to fourth-order
schemes. It is surprising to see that the Type 1 linear SV gives a more accurate solution in
both norms than the Type 2 linear SV on this irregular grid. Recall that in the time-accurate
simulation presented earlier on this irregular grid, the Type 1 linear SV failed to achieve
second-order accuracy. This may indicate that there is significant error accumulation in the
time-accurate simulation with the Type 1 linear SV. Other than that, there are no major
surprises. Both quadratic SVs gave reasonable results, while the Type 1 and 2 cubic SVs
showed convergence problems on the finest mesh. Once again, the performance of the
Type 3 cubic SV is excellent. It is convergent and achieves fourth-order accuracy in both
norms.
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TABLE V

Accuracy on ux + uy = 0, with u(x, y) = sin �(x − y) (Irregular Grids)

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

2 (Type 1 SV) 10 × 10 × 2 8.91e-3 — 4.65e-2 —
20 × 20 × 2 2.26e-3 1.98 1.27e-2 1.87
40 × 40 × 2 5.78e-4 1.97 3.37e-3 1.91
80 × 80 × 2 1.48e-4 1.97 9.03e-4 1.90

160 × 160 × 2 3.77e-5 1.97 2.37e-4 1.93
2 (Type 2 SV) 10 × 10 × 2 1.57e-2 — 6.58e-2 —

20 × 20 × 2 3.94e-3 1.99 2.14e-2 1.62
40 × 40 × 2 9.99e-4 1.99 5.58e-3 1.94
80 × 80 × 2 2.52e-4 1.99 1.47e-3 1.92

160 × 160 × 2 6.32e-5 2.00 3.83e-4 1.94
3 (Type 1, d = 1/3) 10 × 10 × 2 1.51e-3 — 1.33e-2 —

20 × 20 × 2 2.20e-4 2.78 1.82e-3 2.87
40 × 40 × 2 3.07e-5 2.84 2.64e-4 2.75
80 × 80 × 2 4.08e-6 2.91 3.93e-5 2.75

160 × 160 × 2 5.24e-7 2.96 5.25e-6 2.90
3 (Type 2, d = 1/4) 10 × 10 × 2 1.48e-3 — 1.26e-2 —

20 × 20 × 2 2.11e-4 2.81 1.72e-3 2.87
40 × 40 × 2 2.88e-5 2.87 2.71e-4 2.67
80 × 80 × 2 3.76e-6 2.94 3.83e-5 2.82

160 × 160 × 2 4.69e-7 3.00 5.11e-6 2.91
4 (Type 1 SV) 10 × 10 × 2 9.11e-5 — 1.28e-3 —

20 × 20 × 2 6.80e-6 3.74 1.04e-4 3.62
40 × 40 × 2 4.21e-7 4.01 7.60e-6 3.77
80 × 80 × 2 2.97e-8 3.83 8.75e-7 3.12

160 × 160 × 2 3.73e-9 2.99 7.21e-7 0.28
4 (Type 2, d = 1/6) 10 × 10 × 2 9.27e-5 — 1.26e-3 —

20 × 20 × 2 6.34e-6 3.87 1.02e-4 3.63
40 × 40 × 2 3.93e-7 4.01 7.36e-6 3.79
80 × 80 × 2 2.56e-8 3.94 4.83e-7 3.93

160 × 160 × 2 1.76e-9 3.86 6.25e-8 2.95
4 (Type 3, d = 1/15) 10 × 10 × 2 1.59e-4 — 9.21e-4 —

20 × 20 × 2 9.98e-6 3.99 9.12e-5 3.34
40 × 40 × 2 6.26e-7 3.99 6.58e-6 3.79
80 × 80 × 2 3.75e-8 4.06 4.49e-7 3.87

160 × 160 × 2 2.26e-9 4.05 2.68e-8 4.07

6.2. Accuracy Study with 2D Burgers Equation

In this case, we test the accuracy of the SV method on the two-dimensional nonlinear
wave equation:

∂u

∂t
+ ∂u2/2

∂x
+ ∂u2/2

∂y
= 0, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1,

(6.2)

u(x, y, 0) = 1

4
+ 1

2
sin �(x + y), periodic boundary condition.

The initial solution is smooth. Due to the nonlinearity of Burger’s equation, discontinuities
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TABLE VI

Accuracy on ut + uux + uuy = 0, with u0(x, y) = 1
4 + 1

2 sin �(x + y), at t = 0.1 with Regular Grid

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

2 (Type 1 SV) 10 × 10 × 2 2.05e-3 — 7.20e-3 —
20 × 20 × 2 5.31e-4 1.95 2.17e-3 1.73
40 × 40 × 2 1.42e-4 1.90 6.63e-4 1.71
80 × 80 × 2 3.79e-5 1.91 1.96e-4 1.76

160 × 160 × 2 1.03e-5 1.88 5.86e-5 1.74
2 (Type 2 SV) 10 × 10 × 2 3.35e-3 — 1.18e-2 —

20 × 20 × 2 8.07e-4 2.05 3.82e-3 1.63
40 × 40 × 2 2.01e-4 2.01 1.02e-3 1.91
80 × 80 × 2 5.06e-5 1.99 2.64e-4 1.95

160 × 160 × 2 1.27e-5 1.99 6.71e-5 1.98
3 (Type 1, d = 1/3) 10 × 10 × 2 4.44e-4 — 1.93e-3 —

20 × 20 × 2 7.81e-5 2.51 4.29e-4 2.17
40 × 40 × 2 1.30e-5 2.59 8.84e-5 2.28
80 × 80 × 2 2.09e-6 2.64 1.51e-5 2.55

160 × 160 × 2 3.24e-7 2.69 2.57e-6 2.55
3 (Type 2, d = 1/4) 10 × 10 × 2 4.31e-4 — 1.91e-3 —

20 × 20 × 2 7.44e-5 2.53 4.22e-4 2.18
40 × 40 × 2 1.23e-5 2.60 7.93e-5 2.41
80 × 80 × 2 1.96e-6 2.65 1.45e-5 2.45

160 × 160 × 2 3.00e-7 2.71 2.42e-6 2.58
4 (Type 2, d = 1/6) 10 × 10 × 2 3.26e-5 — 2.40e-4 —

20 × 20 × 2 2.22e-6 3.88 2.15e-5 3.48
40 × 40 × 2 1.58e-7 3.81 1.74e-6 3.63
80 × 80 × 2 1.02e-8 3.95 1.18e-7 3.88

160 × 160 × 2 6.54e-10 3.96 7.68e-9 3.94
4 (Type 3, d = 1/15) 10 × 10 × 2 4.10e-5 — 3.12e-4 —

20 × 20 × 2 2.69e-6 3.93 2.82e-5 3.47
40 × 40 × 2 1.85e-7 3.86 2.23e-6 3.66
80 × 80 × 2 1.24e-8 3.90 1.60e-7 3.80

160 × 160 × 2 8.21e-10 3.92 1.09e-8 3.88

FIG. 11. Exact and computational solutions of Burger’s equation at t = 0.1. (a) Exact solution at t = 0.1;
(b) Numerical solution on the 20 × 20 × 2 irregular grid using the Type 1 quadratic SV.



692 WANG AND LIU

will develop in the solution. Therefore we also test the capability of the SV method to achieve
uniform high-order accuracy away from discontinuities. At t = 0.1, the exact solution is
still smooth, as shown in Fig. 11a. The numerical simulation is therefore carried out until
t = 0.1 without the use of limiters on both the regular and irregular grids, as shown in
Fig. 10. The numerical solution on the 20 × 20 × 2 irregular grid computed with the Type 1
quadratic SV (third-order accurate) is displayed in Fig. 11b. Notice that the visual agreement
between the numerical and exact solutions is excellent. In Table VI, we present the L1 and
L∞ errors produced using various SVs on the regular grid, while in Table VII the errors
on the irregular grids are presented. The Type 1 cubic SV is now excluded because it is
nonconvergent on any grids. The performance of the SV method on the nonlinear Burger
equation is quite similar to the performance on the linear wave equation, although there
is a slight loss of accuracy (from 0.1 to 0.6 orders), especially on the irregular grid in
the L∞ norm, probably due to the nonlinear nature of Burger’s equation. Once again, the
Type 1 linear SV has difficulty in achieving second-order accuracy on the irregular grid in
both norms.

TABLE VII

Accuracy on ut + uux + uuy = 0, with u0(x, y) = 1
4 + 1

2 sin �(x + y), at t = 0.1 with Irregular Grid

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

2 (Type 1 SV) 10 × 10 × 2 4.26e-3 — 4.32e-2 —
20 × 20 × 2 1.52e-3 1.49 2.34e-2 0.88
40 × 40 × 2 5.82e-4 1.38 1.22e-2 0.94
80 × 80 × 2 2.42e-4 1.27 6.09e-3 1.00

160 × 160 × 2 1.06e-4 1.19 2.99e-3 1.03
2 (Type 2 SV) 10 × 10 × 2 5.79e-3 — 2.96e-2 —

20 × 20 × 2 1.46e-3 1.99 9.15e-3 1.69
40 × 40 × 2 3.67e-4 1.99 2.87e-3 1.67
80 × 80 × 2 9.40e-5 1.97 8.78e-4 1.71

160 × 160 × 2 2.39e-5 1.98 3.54e-4 1.31
3 (Type 1, d = 1/3) 10 × 10 × 2 6.37e-4 — 4.71e-3 —

20 × 20 × 2 1.21e-4 2.40 1.26e-3 1.90
40 × 40 × 2 2.02e-5 2.58 3.52e-4 1.84
80 × 80 × 2 3.22e-6 2.65 8.21e-5 2.10

160 × 160 × 2 5.02e-7 2.68 1.66e-5 2.31
3 (Type 2, d = 1/4) 10 × 10 × 2 6.28e-4 — 3.93e-3 —

20 × 20 × 2 1.17e-4 2.42 1.09e-3 1.85
40 × 40 × 2 1.91e-5 2.61 3.05e-4 1.84
80 × 80 × 2 3.01e-6 2.67 7.16e-5 2.09

160 × 160 × 2 4.63e-7 2.70 1.43e-5 2.32
4 (Type 2, d = 1/6) 10 × 10 × 2 7.87e-5 — 1.02e-3 —

20 × 20 × 2 6.07e-6 3.70 1.00e-4 3.35
40 × 40 × 2 4.55e-7 3.74 9.62e-6 3.38
80 × 80 × 2 3.44e-8 3.73 8.55e-7 3.49

160 × 160 × 2 2.79e-9 3.62 8.75e-8 3.29
4 (Type 3, d = 1/15) 10 × 10 × 2 9.71e-5 — 1.29e-3 —

20 × 20 × 2 7.17e-6 3.76 1.24e-4 3.38
40 × 40 × 2 5.20e-7 3.79 1.07e-5 3.53
80 × 80 × 2 3.79e-8 3.79 9.34e-7 3.52

160 × 160 × 2 2.88e-9 3.72 8.34e-8 3.49
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FIG. 12. Exact and computational solutions of Burger’s equation at t = 0.45 on the 40 × 40 × 2 irregular
grid using the Type 2 quadratic SV (third-order accurate), M = 0.

At t = 0.45, the exact solution has developed two shock waves, as shown in Fig. 12a.
Limiters are necessary to handle the discontinuities. All the limiters (Clip, CV, Superbee,
and Minmod limiters) are evaluated. Shown in Fig. 12 are the exact solutions, and the
computed numerical solutions with the Type 2 quadratic SV (third-order accurate) on the
40 × 40 × 2 irregular grid using all limiters with M = 0, i.e., TVD limiters. The use of
M = 0 was designed to highlight the differences between the limiters. Note that all the TVD
limiters gave reasonable solutions, including the Clip limiter. In terms of shock resolution,
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FIG. 13. Exact and computational solutions of Burger’s equation at t = 0.45 on the 40 × 40 × 2 irregular
grid using the Type 2 quadratic SV (third-order accurate), M = 400.

the Clip limiter is the most dissipative, followed by the CV limiter. The Minmod and
Superbee limiters, which are difficult to distinguish from each other, gave the best solutions.
Figure 13 displays the solutions with the same grid and SV scheme with M = 400, i.e.,
TVB limiters. The most striking difference between the results shown in Figs. 12 and 13
is that the solutions away from the shock waves are much smoother with the TVB limiters
than with the TVD limiters. This indicates that high-order accuracy is achieved away from
the discontinuities with the TVB limiters. However, the price one must pay to achieve this
is that some oscillations near the shock waves must be tolerated, as shown in Fig. 13.
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TABLE VIII

Accuracy on ut + uux + uuy = 0, with u0(x, y) = 1
4 + 1

2 sin �(x + y), at t = 0.45

in [−0.2, 0.4] × [−0.2, 0.4] on Irregular Grid

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

2 (Type 2 SV) 10 × 10 × 2 1.68e-4 — 5.33e-3 —
20 × 20 × 2 3.92e-5 2.10 1.65e-3 1.69
40 × 40 × 2 9.66e-6 2.02 4.83e-4 1.77
80 × 80 × 2 2.43e-6 1.99 1.58e-4 1.61

160 × 160 × 2 6.01e-7 2.02 3.49e-5 2.18
3 (Type 2 SV) 10 × 10 × 2 6.23e-5 — 6.57e-3 —

20 × 20 × 2 6.25e-6 3.32 5.86e-4 3.49
40 × 40 × 2 6.06e-7 3.37 7.21e-5 3.02
80 × 80 × 2 7.40e-8 3.03 1.29e-5 2.48

160 × 160 × 2 9.47e-9 2.97 2.68e-6 2.27
4 (Type 3 SV) 10 × 10 × 2 7.81e-5 — 4.39e-2 —

20 × 20 × 2 6.78e-7 6.85 1.31e-3 5.07
40 × 40 × 2 6.38e-9 6.73 2.97e-6 8.78
80 × 80 × 2 3.85e-10 4.05 6.65e-8 5.48

160 × 160 × 2 2.84e-11 3.76 4.36e-9 3.93

Note. Minmod limiter with M = 400.

In order to estimate the numerical order of accuracy for the solution away from the discon-
tinuities, L1 and L∞ errors in the smooth region [−0.2, 0.4] × [−0.2, 0.4] are computed.
Computations were carried out on the irregular grid only with the Minmod limiter. Without
the use of the limiter, the solution quickly diverged after shock waves were developed in
the solution. The parameter M was set to be 400 in the computation. If M is too small, the
accuracy in the smooth region is degraded, probably because limiting was carried out in the
smooth region as well as near the shock. The L1 and L∞ errors with one type of SV for a
given order of accuracy are presented in Table VIII. Obviously, with this choice of M , the
designed order of accuracy was achieved away from discontinuities.

7. CONCLUSIONS

The spectral volume method [38] has been successfully extended to two-dimensional
scalar conservation laws using unstructured triangular meshes. Each mesh cell forms a
spectral volume, and the spectral volume is further partitioned into polygonal control vol-
umes. High-order schemes are then built based on the CV-averaged solutions. It is shown that
a universal reconstruction can be obtained if all spectral volumes are partitioned in a similar
manner. However, as in the one-dimensional case, the way in which a SV is partitioned
into CVs affects the convergence property of the resultant numerical scheme. A criterion
based on the Lebesgue constant has been developed and used successfully to determine the
quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic
SVs have been obtained, and many different types of partitions are evaluated based on the
Lebesgue constants and their performance on model test problems.

Accuracy studies with 2D linear and nonlinear scalar conservation laws have been carried
out, and the order-of-accuracy claim has been numerically verified on both smooth and
nonsmooth triangular grids for convergent SVs. Several TVD and TVB limiters have been



696 WANG AND LIU

developed for nonoscillatory capturing of discontinuities and found to perform well. The
TVB limiters with a properly selected parameter (M) are capable of maintaining uniformly
high-order accuracy away from discontinuities. The extension of the method to one- and two-
dimensional hyperbolic systems is under way and will be reported in future publications.
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