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Abstract

A block lower–upper symmetric Gauss–Seidel (BLU-SGS) implicit dual time-stepping method is

developed for moving body problems with hybrid dynamic grids. To simulate flows over complex con-

figurations, a hybrid grid method is adopted in this paper. Body-fitted quadrilateral (quad) grids are

generated first near solid bodies. An adaptive Cartesian mesh is then generated to cover the entire com-

putational domain. Cartesian cells which overlap the quad grids are removed from the computational

domain, and a gap is produced between the quad grids and the adaptive Cartesian grid. Finally triangular

grids are used to fill this gap. With the motion of moving bodies, the quad grids move with the bodies, while
the adaptive Cartesian grid remains stationary. Meanwhile, the triangular grids are deformed according to

the motion of solid bodies with a �spring� analogy approach. If the triangular grids become too skewed,

or the adaptive Cartesian grid crosses into the quad grids, the triangular grids are regenerated. Then the

flow solution is interpolated from the old to the new grid. The fully implicit equation is solved using a dual

time-stepping solver. A Godunov-type scheme with Roe�s flux splitting is used to compute the inviscid flux.

Several sub-iteration schemes are investigated in this study. Both supersonic and transonic unsteady cases

are tested to demonstrate the accuracy and efficiency of the method.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The use of unstructured grids in computational fluid dynamics (CFD) has become widespread
during the last two decades due to their ability to discretize arbitrarily complex geometries and the
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flexibility in supporting solution-based grid adaptations to enhance the solution accuracy and
efficiency [1–7]. In the early days of unstructured grid development, triangular/tetrahedral grids
were employed primarily in dealing with complex geometries. Recently, mixed or hybrid grids
including many different cell types have gained popularity because of the improved efficiency and
accuracy over pure tetrahedral grids. For example, hybrid prism/tetrahedral grids [8], mixed grids
including tets/prism/pyramid/hex cells [9], and adaptive Cartesian grid methods [10–18] have been
used in many applications with complex configurations. In addition, solution algorithms for
computing steady flows on unstructured and hybrid grids have evolved to a high degree of
sophistication. The state-of-the-art spatial discretization algorithm is probably the second-order
Godunov-type finite volume method [19]. For time-integration, explicit algorithms such as multi-
stage Runge–Kutta schemes are the easiest to implement. Convergence acceleration techniques such
as local time-stepping and implicit residual smoothing [1] have also been employed in this context.
However, for large-scale problems and especially for the solution of viscous turbulent flows, implicit
schemes are required to speed up the convergence rate. In the last decade, significant progress has
been made in the development of implicit numerical algorithms for steady flow simulations on
unstructured grids [20–24]. For example, a block lower–upper symmetric Gauss–Seidel (BLU-SGS)
scheme [24] was shown to dramatically speed up the convergence of complex turbulent flow com-
putations with arbitrary grids, while its memory requirement is comparable to a point implicit
scheme. The idea of the BLU-SGS scheme was first suggested by van Leer and Mulder [25]. It
appears the idea was never implemented until Chen and Wang [24], and Jameson and Caughey [26]
independently rediscovered it, and showed excellent convergence rate either as an implicit solver [24]
or as a multi-grid smoother [26]. A unique feature of the BLU-SGS scheme is that it retains some of
the nonlinearities of the original implicit scheme, resulting in fast convergence.

The success demonstrated by unstructured grids for steady flow problems has prompted their
applications to unsteady moving boundary flow problems. For a moving boundary flow problem,
the computational grids must move with the moving boundaries. The most straightforward ap-
proach is to deform the computational grid locally using a spring-analogy type algorithm to
follow the motion of the moving boundaries [27]. The approach is very efficient because it does
not require solution interpolation. A disadvantage of the approach is that the grid integrity can be
destroyed by large motions or shear-type of boundary motions. To remedy this drawback, local
remeshing can be applied whenever the grid becomes too skewed. With local remeshing, solution
interpolations from the old to the new grid become necessary. The hybrid approach of combining
grid deformation with grid local remeshing seems to be the state-of-the-art in handling moving
boundary problems, and has been used successfully for a variety of applications [28]. Most of the
unstructured simulations for moving boundary problems are performed with triangular or tetra-
hedral grids only [27–29]. The use of adaptive Cartesian grid with cell-cutting for inviscid moving
boundary flow problems was pursued and demonstrated in both 2D [10] and 3D [18]. In this
paper, we advocate a hybrid adaptive Cartesian/quad/triangular grid approach for dynamic
moving boundary flow problems in 2D. In 3D, the approach becomes adaptive Cartesian/prism/
tetrahedral grid-based, which of course is much more complicated to implement because the
generation of prismatic grids around complex geometries can still fail. In the current study, we
focus on demonstrations in 2D only. There are several reasons why an adaptive Cartesian grid is
used for moving boundary problems: (1) Cartesian cells are more efficient in filling space given a
certain length scale than triangular/tetrahedral cells; (2) searching operations can be performed
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very efficiently with the quadtree data structure; (3) solution-based and geometry-based grid
adaptations are straightforward to carry out. The grid generation process is as follows. Body-
fitted quad grids are generated first near solid bodies to resolve viscous boundary layers. An
adaptive Cartesian grid is then generated to cover the outer domain. The Cartesian cells which
overlap the quad mesh are marked and removed from the computational domain. As a result, a
gap is generated between the Cartesian and quad grids. Triangular grids are then used to fill the
gap. If the bodies move, the quad grids move with the bodies, while the Cartesian grid remains
stationary. Meanwhile, the unstructured triangular grids are deformed according to the motions
of the bodies with a �spring� analogy approach. If the triangular grids become too skewed because
of the deformation, the triangular grids are then regenerated, and the solutions are also inter-
polated from the old to the new grids. The advantages of above hybrid grid method include: (1)
more efficient than the fully unstructured triangular grids, especially for viscous flow simulations;
(2) more accurate for viscous flow computations because of the high-quality grids in the boundary
layer; (3) only a small local region needs to be remeshed resulting in less data interpolation and
less errors caused by data interpolations.

The solution efficiency of the time-integration algorithm for a moving boundary flow problem
becomes more important than for a steady problem because the unsteady residual should be driven
close to zero at each time step. For viscous flow problems with highly clustered computational grids,
an explicit time-marching method is clearly out of the question because of the time-step limit im-
posed by an explicit scheme. Therefore, only implicit schemes are considered in this study. A very
popular and effective approach for unsteady flows is the dual time stepping algorithm of Jameson
[30]. In this approach a pseudo-time is added to the unsteady residual, and many algorithms
developed for accelerating the convergence rate of steady problems can be used directly for the
pseudo-time. As we mentioned earlier, one has to drive the unsteady residual to zero (or at least to
truncation error) at each time step when an implicit scheme is used to compute unsteady flows.
Many of the successful implicit solvers for steady flows problems can be used to converge the
unsteady residual, and there are successful examples in the literature. The convergence rate of this
�inner� solver determines the overall efficiency of the solution algorithm. In this study, we will extend
and test the successful BLU-SGS scheme [24–26] to hybrid dynamic grids for moving boundary
problems. Comparisons will also be made between explicit, point implicit and BLU-SGS solvers.

The paper is organized as follows. In the next section, the hybrid adaptive Cartesian/quad/
triangular grid generation approach will be presented, together with illustration examples. After
that, the finite volume, Godunov-type second-order dual time-stepping method for dynamic grids
is described. Details of the BLU-SGS inner iteration solver are presented. In Section 4, several
unsteady moving boundary problems are computed. Temporal and spatial refinement studies are
performed to ensure the computational solutions are time-step and grid-independent. Compu-
tational results are compared with experimental data whenever possible. Finally conclusions from
this study are summarized in Section 5.
2. Grid generation strategy

In this study, a hybrid adaptive Cartesian/quad/triangular grid approach is adopted to dis-
cretize a complex computational domain. Body-fitted quad grids are generated first near solid
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bodies with an advancing layer method [6,8] by marching in the surface normal direction. When
the aspect ratio of the quad cell reaches a pre-defined scale (for example, 0.6) or the width of
remaining gap between solid bodies is only one or two times of the local grid size, the local
advancing layer procedure stops. Then an adaptive Cartesian grid is generated to cover the outer
domain by a modified quadtree method [31]. This adaptive Cartesian grid is generated by
recursively subdividing a large root cell covering the entire computational domain. The grid
resolution of the adaptive Cartesian grid automatically matches that of the quad grids near the
outer layer of the quad grids. Of course, Cartesian cells close and inside the last advancing layer of
the quad grids are removed from the computational domain. Usually the gap width between the
quad grid and the adaptive Cartesian grid is set to several times of the local grid size (usually six
times or less). Then triangular grids are used to fill the gap using an advancing front method
(AFM) [32–34]. To control the grid distribution smoothly, a structured background grid [35] is
employed, and some controlling point or line sources are specified in the field according to the
configuration of interest. Finally, a �spring� analogy approach is employed to smooth the initial
grids generated with the AFM.

Due to the motion of the moving boundaries, the grids at time level n is different from that at
time level nþ 1. The grid at time nþ 1 is usually generated by deforming the grid at time n with
the grid connectivity or topology remaining the same. With our hybrid adaptive Cartesian/quad/
triangular grid approach, we adopt the following strategy. The quad grids around moving bodies
move (translate or rotate) with the moving bodies, while the adaptive Cartesian grid remains
stationary. Meanwhile, the unstructured triangular grids are deformed according to the motions
of the moving bodies with a �spring� analogy approach [27]. Because the quad grids are not de-
formed, the quality of the quad grids remains the same, which is obviously a benefit for computing
the viscous boundary layer. In addition, the outer adaptive Cartesian grid always remains sta-
tionary. When large motions occur, the quad grids may cross into the flow cells of the original
adaptive Cartesian grid, or the triangular grids become too skewed. In this case, a remeshing step
is undertaken. The holes in the adaptive Cartesian grid are regenerated-based on the new outer
boundary of the quad grids. New triangular grids are generated to fill the gap between the
adaptive Cartesian and quad grids. The flow solutions are also interpolated from the old to the
new grids at the time when the remeshing step is taken. The interpolation algorithm takes
the following steps:

• Compute the cell centroids of the new grids, and identify the cells in the old grids, which bound
the centroids of the new grids.

• Compute the solution variables at the cell centroids of the new grids assuming a linear distri-
bution of the solution in the bounding cell using the reconstructed solution gradients.

The interpolation has the property of linearity-preserving, i.e., any linear function is preserved in
the interpolation, which is compatible with the second-order accuracy of the flow solver. How-
ever, the interpolation does not strictly conserve mass, momentum or energy. It is believed that
these conservation errors are of the same order of truncation errors and do not affect the shock-
capturing ability of the flow solver since the solution interpolation is not performed across a time
step. Note that this remeshing step is always local, and occurs near the triangular grids. Therefore,
this approach is expected to be very efficient.
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Several examples are used here to illustrate the basic grid generation algorithm. The first
example is a 2D fighter aircraft with a store. The store separates from the fighter with a given
trajectory. Fig. 1(a) shows the initial hybrid grid over the configuration, while Figs. 1(b)–(d)
display the close-up views near the fighter body, the nose of the fighter, and the head of the store,
respectively. Note that the grids are very smooth in the entire computational domain, and the grid
quality is adequate even in the narrow gap between the fighter and the store. Figs. 1(e) and (f)
show the grids when the store is far away from the fighter. During the separation, the body-fitted
quad grid around the store moves with the store. The control sources on the store for the
background grid also move with the body, resulting a new smooth grid distribution. Note that the
grid quality is still satisfactory even after very large motions.

The second example is a double airfoil configuration, which is made up by the authors to
test the ability of present hybrid grid generation method in handling narrow gaps and shear-
type of grid motions. The main airfoil is a RAE2822 airfoil, and the small one is a NACA0012,
which is scaled to one-third of the main chord. Fig. 2(a) shows the hybrid grid over the
combined configuration. Figs. 2(b)–(d) display the close-up views of the same grid, while Figs.
2(e) and (f) present the hybrid grids when the small airfoil separates away from the cavity.
Once again, the present hybrid grid generator produces high-quality grids for this multi-body
geometry.

It may seem to some readers that a complex flow solver is needed to handle the quad, adaptive
Cartesian and triangular grid cells. In fact, the different grid cells are treated uniformly as arbi-
trary polygons using a face-based data structure, which is very efficient and can handle arbitrary
cells just as efficiently as cells of a particular type, e.g., quad cells. The grid generator and the flow
solver are two independent modules, which communicate through the use of files. Shell scripts are
employed to automate the simulation of moving boundary flow problems.
3. Numerical method

3.1. Finite volume method for dynamic grids

The time-dependent Reynolds-averaged Navier–Stokes equations for dynamic grids can be
expressed in the integral form as
o

ot

Z
V
QdV þ

I
S
ðF iðQÞ � Qvg � nÞdS ¼

I
S
F vðQÞdS; ð3:1Þ
where S is the surface surrounding the control volume V , n is the out-going unit normal of S, vg is
the velocity of S, and Q is the vector of conserved variables, F i is the inviscid and F v the viscous
flux vectors. The eddy viscosity for turbulent flow is calculated by the standard j–e turbulence
model with a wall function [36]. The governing equations for inviscid flow and for fixed control
volumes are only subsets of Eq. (3.1). If we integrate Eq. (3.1) in a polygonal control volume Vi ,
we obtain
o

ot
ðQViÞ þ

X
f

ðF iðQÞ � QvgnÞf dSf ¼
X
f

F v
f ðQÞdSf ; ð3:2Þ



Fig. 1. Hybrid grid for a store-separation problem at different times.
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where the summation index f represents all the faces surrounding control volume Vi , and
vgn ¼ vg � n. The inviscid flux is calculated using Roe�s approximate Riemann solver [37] with
reconstructed state variables at both sides of a face. A least square linear reconstruction scheme of
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the primitive variables is used. Venkatakrishnan�s limiter [38] is applied to the reconstruction of
the primitive variables to reduce spurious oscillations near discontinuities. This limiter has a better
convergence property than other limiters because small-scale oscillations are allowed. There is one
user specified parameter e in Venkatakrishnan�s limiter, which defines the small-scale oscillations.
This parameter is difficult to select because it depends not only on the solution variable but also
on the mesh size. In [14], Wang redefined the parameter as the following
e ¼ e0ðqmax � qminÞ;
where qmax and qmin are the maximum and minimum of the primitive variable over the entire
computational domain, and e0 is a nondimensional parameter in the range of [0.01, 0.2]. Unless
otherwise noted, the parameter e0 is chosen to be 0.15 for the inviscid simulations, and 0.1 for the
viscous simulations to be shown later. A e0 value of 0.025 caused the convergence to stall after 2
orders of magnitude. For the viscous terms, an efficient second-order centered scheme is em-
ployed. Details of the flow solver are contained in [14,15].

The conservation of a constant flow is a necessary condition for any viable numerical scheme.
Otherwise mass, momentum or energy would be produced unphysically by the numerical simu-
lation. If we examine Eq. (3.2), in order to preserve a uniform free stream, we must have:
oVi
ot

¼
X
f

vgn dSf : ð3:3Þ
This is the so-called Geometric Conservative Law [39,40] in its semi-discretized form. Assume that
the grid velocity is computed at time level nþ 1=2. Then we can use the following time discret-
ization to achieve second-order accuracy:
V nþ1
i � V n

i

Dt
¼

X
f

vgndSf : ð3:4Þ
Instead of having the grid velocity vgn satisfy Eq. (3.4), we utilize the equation to calculate vgn.
In this case, we are sure that GCL is guaranteed. To this end, we employ a simple fact: the volume
that a cell sweeps over is equal to the total of the volumes swept by its faces, i.e.,
V nþ1
i � V n

i ¼
X
f

DVf ; ð3:5Þ
where DVf represents the volume swept by face f . Comparing Eqs. (3.4) and (3.5), we arrive at the
following equation:
DVf ¼ DtvgndSf or vgn ¼
DVf
DtdSf

: ð3:6Þ
3.2. Time-integration algorithm

Once the fluxes are evaluated for each cell face using the preceding finite volume scheme, the
semi-discrete form of the governing equations is then integrated in time. For convenience, we
rewrite Eq. (3.2) as the following nonlinear system:
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oðQV Þi
ot

þ RiðQÞ ¼ 0; ð3:7Þ
where Ri is the residual given by
RiðQÞ ¼
X
f

ðF iðQÞ � Qvgn � F vðQÞÞf dSf : ð3:8Þ
The easiest time-integration algorithm for Eq. (3.7) is the explicit multi-stage Runge–Kutta
method. However for viscous flow computational, the heavily clustered mesh imposes a too severe
time step limit. We therefore employ the following family of implicit schemes
Qnþ1
i V nþ1

i � Qn
i V

n
i

Dt
þ ð1� hÞRiðQnþ1Þ þ hRiðQnÞ ¼ 0: ð3:9Þ
If h ¼ 0, the scheme is the backward Euler method. If h ¼ 1=2, the resulting scheme known as
the Crank–Nicolson method is second-order accurate in time. Eq. (3.9) represents a nonlinear
system of coupled equations, which has to be solved at each time step. It can be solved by
introducing a pseudo-time variable s,
oðQV Þi
os

þ R�
i ðQÞ ¼ 0 ð3:10Þ
and �time-marching� the solution using local pseudo-time Ds, until Q converges to Qnþ1. In (3.10),
Q is the approximation of Qnþ1 and the unsteady residual R�

i ðQÞ is defined as
R�
i ðQÞ ¼

QiV nþ1
i � Qn

i V
n
i

Dt
þ ð1� hÞRiðQÞ þ hRiðQnÞ: ð3:11Þ
Obviously, Eq. (3.11) can be solved by using a variety of numerical schemes including the
explicit multi-stage Runge–Kutta method [1]. Note that this dual time method with an explicit
inner iteration scheme should be many times faster than the explicit time-marching method be-
cause local time-stepping in the pseudo-time can be used to accelerate the convergence rate. Of
course the best efficiency is expected to be achieved by an implicit inner iteration schemes. The
following three inner iteration schemes are considered in the present study.
3.2.1. Explicit Runge–Kutta inner iteration scheme

Applying an explicit Runge–Kutta scheme for the pseudo-time in (3.11), we obtain:
Qð0Þ
i ¼ Qn

i ;

QðkÞ
i ¼ Qð0Þ

i � ak
Dt
V nþ1
i

R�
i ðQðk�1ÞÞ where ak ¼

1

m� k þ 1
k ¼ 1; 2; . . . ;m;

Qnþ1
i ¼ QðmÞ

i :

8>>><>>>: ð3:12Þ
The indices n, m, and k indicate the time level, the order of the Runge–Kutta method, and a
dummy index, respectively.
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3.2.2. Implicit BLU-SGS inner iteration scheme

For simplicity of presentation, we assume h ¼ 1. The extension to the case of h ¼ 1=2, which
has second-order in time, is straightforward. Discretizing the pseudo-time in (3.10) with a
backward Euler scheme, we obtain the following equation:
V nþ1
i ðQðmþ1Þ

i � QðmÞ
i Þ

Ds
þ V nþ1

i Qðmþ1Þ
i � V n

i Q
n
i

Dt
þ
X
f

½eF i
f ðQðmþ1ÞÞ � F v

f ðQðmþ1ÞÞ�dSf ¼ 0; ð3:13Þ
where indices n, m indicates the real time and the pseudo-time levels. Here we let Qð0Þ ¼ Qn and the
converged solution is then Qnþ1, and
eF iðQðmÞÞ ¼ F iðQðmÞÞ � QðmÞvgn: ð3:14Þ
Eq. (3.13) can be rewritten further in the following delta form:
V nþ1
i DQðmÞ

i

Ds
þ V nþ1

i DQðmÞ
i

Dt
þ
X
f

½DeF iðmÞ � DF vðmÞ�f dSf ¼ �R�
i ðQðmÞÞ; ð3:15Þ
where
DeF iðmÞ ¼ eF iðQðmþ1ÞÞ � eF iðQðmÞÞ;
DF vðmÞ ¼ F vðQðmþ1ÞÞ � F vðQðmÞÞ:

ð3:16Þ
If we assume that the inviscid and viscous fluxes depend only on the state variables at the two
cells sharing the face, the flux differences can be approximated with the following formula:
DeF iðmÞ ¼ ½eF iðQðmþ1Þ
i ;Qðmþ1Þ

j Þ � eF iðQðmÞ
i ;Qðmþ1Þ

j Þ� þ ½eF iðQðmÞ
i ;Qðmþ1Þ

j Þ � eF iðQðmÞ
i ;QðmÞ

j Þ� ð3:17Þ
and
DF vðmÞ ¼ ½F vðQðmþ1Þ
i ;Qðmþ1Þ

j Þ � F vðQðmÞ
i ;Qðmþ1Þ

j Þ� þ ½F vðQðmÞ
i ;Qðmþ1Þ

j Þ � F vðQðmÞ
i ;QðmÞ

j Þ�; ð3:18Þ
where the subscripts i and j denote the current cell under consideration and its neighbor cell that
shares face f , respectively. Linearizing the first terms on the right-hand sides of Eqs. (3.17) and
(3.18), we have
eF iðQðmþ1Þ
i ;Qðmþ1Þ

j Þ � eF iðQðmÞ
i ;Qðmþ1Þ

j Þ � oeF i

oQi
DQðmÞ

i ; ð3:19Þ

F vðQðmþ1Þ
i ;Qðmþ1Þ

j Þ � F vðQðmÞ
i ;Qðmþ1Þ

j Þ � oF v

oQi
DQðmÞ

i : ð3:20Þ
Substituting Eqs. (3.17)–(3.20) back to Eq. (3.15), we obtain:
DDQðmÞ
i þ

X
f

½eF iðQðmÞ
i ;QðmÞ

j þ DQðmÞ
j Þ � eF iðQðmÞ

i ;QðmÞ
j Þ�f dSf

�
X
f

½F vðQðmÞ
i ;QðmÞ

j þ DQðmÞ
j Þ � F vðQðmÞ

i ;QðmÞ
j Þ�f dSf ¼ �R�

i ðQðmÞÞ; ð3:21Þ
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where
D ¼ V nþ1
i

Dt

�
þ V nþ1

i

Ds

�
I þ

X
f

oeF iðmÞ
f

oQi

"
�
oF vðmÞ

f

oQi

#
dSf ð3:22Þ
and I is the identity matrix.
In the original LU-SGS approach [41], the first-order numerical flux vectors in the left-hand

side of Eq. (3.21) are chosen as
eF i � F v ¼ 1
2
ðeFi þ eFj � kijðQj � QiÞÞ; ð3:23Þ
where kij is the spectral radius of the flux Jacobean matrix at the cell face:
kij ¼ jv � nj þ aþ ð2lþ ltÞ
qjn � ðrj � riÞj

; ð3:24Þ
where ri and rj are the position vectors of cell centers of cell i and cell j, respectively, q is the
density, a is the speed of sound, l and lt are dynamic and turbulent viscosities, respectively. Then
matrix D changes into a diagonal matrix and Eq. (3.21) degenerates into a set of scalar equations.

In order to improve the convergence rate of the original LU-SGS, BLU-SGS keeps the diag-
onal block of the implicit system, and then use forward and backward sweeps to include the
implicit contributions from the off-diagonal blocks. The sweep procedure is as the following:

Forward sweep:
DDQð�Þ
i þ

X
f2LðiÞ

½eF iðQðmÞ
i ;QðmÞ

j þ DQ�
j Þ � eF iðQðmÞ

i ;QðmÞ
j Þ�f dSf

�
X
f2LðiÞ

½F vðQðmÞ
i ;QðmÞ

j þ DQð�Þ
j Þ � F vðQðmÞ

i ;QðmÞ
j Þ�f dSf

þ
X
f2UðiÞ

½eF iðQðmÞ
i ;QðmÞ

j þ DQðm�1Þ
j Þ � eF iðQðmÞ

i ;QðmÞ
j Þ�f dSf

�
X
f2UðiÞ

½F vðQðmÞ
i ;QðmÞ

j þ DQðm�1Þ
j Þ � F vðQðmÞ

i ;QðmÞ
j Þ�f dSf ¼ �R�

i ðQðmÞÞ: ð3:25Þ
Backward sweep:
DDQðmÞ
i þ

X
f2LðiÞ

½eF iðQðmÞ
i ;QðmÞ

j þ DQð�Þ
j Þ � eF iðQðmÞ

i ;QðmÞ
j Þ�f dSf

�
X
f2LðiÞ

½F vðQðmÞ
i ;QðmÞ

j þ DQð�Þ
j Þ � F vðQðmÞ

i ;QðmÞ
j Þ�f dSf

þ
X
f2UðiÞ

½eF iðQðmÞ
i ;QðmÞ

j þ DQðmÞ
j Þ � eF iðQðmÞ

i ;QðmÞ
j Þ�f dSf

�
X
f2UðiÞ

½F vðQðmÞ
i ;QðmÞ

j þ DQðmÞ
j Þ � F vðQðmÞ

i ;QðmÞ
j Þ�f dSf ¼ �R�

i ðQð�ÞÞ; ð3:26Þ
where LðiÞ and UðiÞ represent the lower and upper neighbor cells of cell i according to the cell
ordering. The initial state variables for the inner sweep are set to be the same as those at the last
time step, i.e., DQð0Þ ¼ 0. Eqs. (3.25) and (3.26) are then solved efficiently with an exact LU
decomposition method.
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3.2.3. Point implicit inner iteration scheme

In the point implicit, only the main diagonal block is retained, i.e.,
DDQðmÞ
i ¼ �R�

i ðQðmÞÞ: ð3:27Þ

In all of the above inner iteration schemes, it is desirable to drive the unsteady residual R�

i ðQÞ close
to zero. It is rarely necessary to drive R�

i ðQÞ to machine zero because of the inherent truncation
error. Through extensive numerical tests, it was found that one only needs to reduce the unsteady
residual by 2–3 orders. We therefore use both a convergence tolerance and the maximum number
of inner iterations to control the inner iteration scheme.
3.3. Boundary conditions

In order to treat the boundary cells as transparently as possible, a ghost cell is generated for
each boundary cell. Then the solution variables at the ghost cell are computed from the boundary
cell according to the physical boundary condition. For a steady inviscid flow, the velocity com-
ponents at the ghost cell for a solid wall boundary are computed as:
ughost ¼ u� 2nxvn vghost ¼ v� 2nyvn; ð3:28Þ

where vn is the normal velocity given by
vn ¼ unx þ vny: ð3:29Þ

Meanwhile, the density and pressure of the ghost cell are set to be the same as those of the
boundary cell.

For unsteady moving boundary problems, the condition must be adjusted since the boundary
face is moving. Then the normal velocity should be modified as
vn ¼ unx þ vny � vgn: ð3:30Þ

Similarly for an unsteady viscous surface boundary, the velocity components at the ghost cell

are computed using the following equation:
ughost ¼ �uþ 2nxvgn vghost ¼ �vþ 2nyvgn: ð3:31Þ

In the far field, a characteristic analysis based on Riemann invariants is used to determine the

values of the flow variables on the outer ghost cells. This analysis correctly accounts for wave
propagations in the far field, which is important for rapid convergence to steady-state and serves
as a �nonreflecting� boundary condition for unsteady applications.
4. Numerical results

Several moving boundary flow problems are simulated to demonstrate the developed grid
generation and solution methodology. All the CPU times were obtained on a single processor 2.8
GHz Pentium IV computer running the Linux operating system. From many numerical tests, it
was found that the unsteady residual must be reduced by 2–3 orders using the inner iteration
solver. More specifically, the inner iteration tolerance is set at 0.01 (i.e., 2 order reduction in the
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unsteady residual) for the inviscid flow simulations, while the tolerance is set at 0.001 for turbulent
flow simulations. The maximum number of inner iterations for the BLU-SGS solver is set at 30.
For the BLU-SGS solver, a maximum of three forward–backward sweeps are employed. The test
cases are presented next.
4.1. Moving cylinder with Mach 4

This case was selected as a validation case to test the dynamic grid implementation. A steady-
state problem of supersonic flow around a cylinder (with respect to a reference frame fixed on the
cylinder) was simulated as a moving boundary problem of a cylinder traveling at Mach 4 through
stationary air. After the initial transients, the flow field around the moving cylinder should settle
down, and should become �steady� with respect to the cylinder. A major feature of this flow
problem is a bow shock in front of the moving cylinder. For comparison purposes, this problem
was also run in the steady mode. For the moving body simulation, a sequence of hybrid com-
putational grids at different times are generated, and displayed in Fig. 3. These grids have
approximately a total of 11 K cells, with about 2.3 K quad cells, 3.7 K triangular cells and 5.0 K
Cartesian cells. The pressure contours at the corresponding times are also shown in Fig. 3. Note
that a bow shock is generated from the wall when the cylinder starts to move. Later the shock
moves ahead of the moving cylinder. Finally the bow shock remains at a fixed location relative to
the cylinder. In Fig. 4, an enlarged view of the computational grid is plotted to show the details.
The pressure distributions along the cylinder surface from both the steady state and moving body
simulations are compared in Fig. 5. It is obvious that the agreement is very good, indicating that
the implementation of the dynamic grid solver is successful.
4.2. Inviscid flow over an oscillating NACA0012 airfoil

This unsteady test case has been used extensively in the literature for validation and demon-
stration studies because of the availability of experimental data [42]. The geometry is the well-
known NACA0012 airfoil, which undergoes harmonic pitching motion about the quarter chord
with the following time-dependent angle of attack
a ¼ am þ Da sinxt; ð4:1Þ
where am is the mean angle of attack; and Da, the oscillation amplitude. The reduced frequency,
which is an important similarity parameter for this unsteady problem, is defined as
j ¼ xc
2U1

; ð4:2Þ
where U1 is the free stream velocity and c, the chord length of the airfoil. Since the flow is at-
tached, it is assumed inviscid. The following flow parameters are chosen: am ¼ 0:016�, Da ¼ 2:51�,
j ¼ 0:0814, andM1 ¼ 0:755. The unsteady calculation was started from a steady-state solution at
the same Mach number with the mean angle of attack. Several different views of the initial
computational grid are shown in Fig. 6. The hybrid grid has a total of 8373 cells, with 1384 quad
cells, 2877 triangular cells, and 4122 adaptive Cartesian cells. Even though the flow is assumed



Fig. 3. Computational grids and computed pressure contours at different times.
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Fig. 4. Close-up view of the hybrid computational grid near the cylinder.

Fig. 5. Comparison of surface pressure distribution computed from steady and moving body simulations.
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inviscid flow, the use of the quad cells near the moving body ensures that the computational grid
has high-quality near the wall and throughout the computational domain.

The computed pressure contours at several typical times are displayed in Fig. 7. Note that a
shock wave appears and disappears near the upper and lower surface of the airfoil with the
motion. The time history of the lift coefficient vs. the time-dependent angle of attack using 16, 32
and 64 time steps per cycle is displayed in Fig. 8. It is clear from this figure that the computational
solution is acceptable with only 16 time steps per cycle. The solutions are almost on top of each
other when 32 and 64 steps are taken during each cycle. Also shown is a comparison with the
experimental data of Landon [42]. Note that the difference between the computed and the



Fig. 6. Hybrid adaptive Cartesian/quad/triangular grids around the NACA0012 airfoil.
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experimental lift histories is quite small. In addition, the present computational results agree very
well with those in [21,28], although they are not shown here. A grid refinement study was also
performed to make sure that the computed solution is grid-independent. In Fig. 9, the lift coef-
ficient histories computed on two different grids are shown. The coarse grid has about 8.5 K cells,
while the fine grid has about 16.8 K cells. Note that the solutions on the coarse and fine grids are
on top of each other. The difference between the maximum and minimum CL on the two grids is
less than 1%.

To demonstrate the convergence property of the BLU-SGS inner iteration solver, we compare
the convergence histories of BLU-SGS with those of the point implicit method and explicit
Runge–Kutta method in Fig. 10. Fig. 10(a) shows the convergence in terms of the number of
inner-iterations at the first time step (starting from the initial steady-state solution with 16 time
steps per cycle), while Fig. 10(b) shows the convergence history in terms of the CPU time at the
same time step. Note that the BLU-SGS solver indeed converges much faster (more than an order
of magnitude) than the other two methods. Fig. 11(a) and (b) shows the convergence histories at



Fig. 7. Pressure contours at six different angles of attack.
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Fig. 8. Lift coefficient vs. angle of attack with different number of time steps per cycle.

Fig. 9. Lift coefficient vs. angle of attack computed on two different grids.
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the last time step (end of the fourth cycle). Once again, the same fast convergence rate is dem-
onstrated by the BLU-SGS solver.
4.3. Turbulent flow over oscillating NACA0012 airfoil

The last test case we considered was a viscous turbulent flow problem. The geometry is the
same, but the flow parameters are different than those in the last case. The new flow parameters
are: am ¼ 4:86�, Da ¼ 2:44�, j ¼ 0:0810, M1 ¼ 0:6, Re ¼ 4:8� 106. To capture the viscous



Fig. 10. Convergence histories in terms of number of sub-iterations and CPU time at the first time step.

Fig. 11. Convergence histories in terms of number of sub-iterations and CPU time at the last time step.
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boundary layer accurately, the quad grid is clustered near the airfoil surface to achieve an average
yþ of around 25 due to the use of the k-emodel with a wall function. For the solution of the initial
steady-state flow field, the hybrid grid has a total of 14,999 grid cells, with 7937 quad, 3254 tri-
angular and 3808 Cartesian cells. The unsteady moving body simulation started from the steady-
state solution. Then 50 time steps are used for each cycle to capture the unsteady features. Fig.
12(a) displays the computed Mach number contours at several different angles of attack. For
comparison purposes, an inviscid simulation was also carried out with the same flow conditions.
The computed Mach contours from this inviscid simulation are shown in Fig. 12(b) for the same
angles of attack. Note that the flow fields are quite different near the airfoil, especially at the
trailing edge. The turbulent boundary layer and the wake are visible in the viscous solutions. The
plot of the lift coefficient vs. the angle of attack is shown in Fig. 13. Results from both the inviscid
and viscous simulations are plotted in the figure. It is obvious that the viscous simulation agrees



Fig. 12. Computed Mach number contours at different times.
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Fig. 13. Lift coefficient vs. angle of attack for both inviscid and viscous simulations.
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much better with the experimental data [42] than the inviscid calculation at all angles of attack.
Fig. 14 shows the time history of the lift coefficient. This figure demonstrates that the present dual
time-stepping approach has a fast convergence rate, and the solution reaches a periodic steady-
state within the first two cycles. In Fig. 15, the pressure coefficient distributions along the airfoil
surface are displayed. It is clear that the viscous results are slightly better on the lower surface
than the inviscid results, and are much better near the trailing edge. Generally speaking, the
Fig. 14. Computed lift coefficient histories assuming inviscid and viscous flows.



Fig. 15. Pressure coefficient distributions at four typical angles of attack.
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viscous simulation produces better Cp distribution than its inviscid counterpart. To show the
adequacy of the inner iteration convergence tolerance, Fig. 16 displays the computed density
contours with two different convergence tolerances 1.e)3 and 1.e)6 at the last time step. These
contours are indistinguishable from each other. Finally the convergence histories are plotted for
the viscous simulation in Fig. 17. As expected, the BLU-SGS solver delivers orders of magnitude
faster convergence rate than the point implicit or the explicit Runge–Kutta solvers.

In order to verify that the solution is grid-independent, a grid refinement study was also carried
out. Two finer grids with about 30 and 55 K cells are generated, and used in the same simulation.
Fig. 18(a) shows the plots of lift coefficient vs. the angle of attack computed from the viscous
simulations using these three different grids. The minimum and maximum CL on the three grids
are (0.4114, 0.9342), (0.4081, 0.9275), (0.4051, 0.9230), respectively. The differences in CL between
the coarsest and finest meshes are less than 2%. Fig. 18(b) displays the corresponding plots from



Fig. 16. Density contours computed using two different inner iteration convergence tolerances 1.e)3 and 1.e)6 at the

last time step.

Fig. 17. Convergence histories in terms of number of iterations and CPU time assuming viscous flow.

Fig. 18. Lift coefficient vs. angle of attack computed on different grids.
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the inviscid simulations using two different grids with 8.2 and 16.4 K cells, respectively. Once
again, grid-independence is demonstrated for both the inviscid and viscous cases.

The total CPU time used in the viscous turbulent simulation using the BLU-SGS solver with
the baseline 15 K grid is estimated to give the readers some rough idea on the required computing
resources. The steady-state solution is obtained in about 600 CPU s with a 4 order reduction in
the density residual. Each cycle takes 50 time steps. Therefore a total of 200 time steps are re-
quired in 4 cycles. Each time step costs about 15 s to complete. Hence a total of 3000 s are needed
in the unsteady computation. In the simulation, 200 different computational grids were generated
either through spring analogy (180 steps) or local remeshing (20 steps), and the total grid gen-
eration and solution interpolation time is on the order of 400 s. Therefore, the total CPU time to
carry out a turbulent unsteady simulation is about 4000 s with the 15 K grid. Again these CPU
times were measured on a 2.8 GHz Pentium IV machine running Linux.
5. Conclusion

A fast block LU-SGS implicit method has been extended to solve two-dimensional com-
pressible unsteady flows on hybrid dynamic grids. The hybrid grid approach has been shown to be
accurate, efficient and capable of handling moving boundaries. The use of the hybrid adaptive
Cartesian/quad/triangular grids enables high resolution of viscous boundary layers, and allows
high-quality meshes to be generated throughout the computational domain. In addition, only the
triangular grids are regenerated when remeshing occurs, making the approach accurate and
efficient. Both inviscid and viscous calculations have been presented for flows over moving bodies,
including a cylinder, and an oscillating NACA0012 airfoil. The computational results have shown
good agreement with experimental data. The block LU-SGS solver demonstrated much higher
convergence rate than the point implicit or explicit solvers.
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