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Abstract

In this paper, the fourth in a series, the spectral volume (SV) method is extended to multi-dimensional systems – the

2D Euler equations. The focus of this paper is to study the performance of the SV method on multidimensional non-

linear systems, and to verify that high order solution accuracy up to fourth-order can be achieved for the systems of

conservation laws. Implementation details including total variation diminishing (TVD) and total variation bounded

(TVB) limiters are presented. An accuracy study is performed first to numerically verify that the designed order of

accuracy can be obtained for smooth flow solutions. Then, solutions with both smooth features and discontinuities are

utilized to demonstrate the overall capability of the SV method.
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1. Introduction

We continue the development of the spectral (finite) volume (SV)method for hyperbolic conservation laws

on unstructured grids following the basic formulation [21], development for two-dimensional (2D) scalar

conservation laws [22], and one-dimensional (1D) systems and partition optimization [23]. The ultimate goal
of this research is to pursue anumericalmethod for conservation lawswhichhas all of the followingproperties:

(a) conservative; (b) high-order accuracy; (c) geometrically flexible; (d) computationally efficient. Such a

method is sought after in many ‘‘real world’’ problems with complex geometries in computational aero-
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acoustics (CAA), large-eddy-simulation (LES) and direct numerical simulation (DNS) of turbulence, and

computational electromagnetics (CEM), to name just a few. Preliminary demonstrations have indeed shown

that the SVmethod hasmany advantages comparingwith the current state-of-the-art numericalmethods such
as the high-order k-exact finite volume (FV) method [2,3], essentially non-oscillatory (ENO) and weighted

ENO (WENO)methods [1,10,12,18,19], and the discontinuousGalerkin (DG)method [5–8]. For example, the

SV method is more efficient than the k-exact and WENO method (with the same number of unknowns) be-

cause the reconstruction problem can be solved analytically with no memory penalty. The SV method has

higher resolution for discontinuities than the DG method because of the sub-element resolution in the SV

method enables limiters to be designed for the sub-cells (or control volumes (CVs)).

Ultimately, the SV method is a Godunov-type FV method [9], which has been under development for

several decades, and has become the-state-of-the-art for the numerical solution of hyperbolic conservation
laws. For a more detailed review of the literature on the Godunov-type method, refer to [21], and the

references therein. Similar to the Godunov-type method, the SV method has two key components. One is

data reconstruction, and the other is the (approximate) Riemann solver. What distinguishes the SV method

from the k-exact FV method is in the data reconstruction. Instead of using a (large) stencil of neighboring

cells to perform a high-order polynomial reconstruction, the unstructured grid cell – called a SV – is

partitioned into a ‘‘structured’’ set of sub-cells called CVs, and cell-averages on these sub-cells are then the

degrees-of-freedom (DOFs). These DOFs are used to perform a high-order polynomial reconstruction

inside the SV. All the SVs are partitioned in a geometrically similar manner in a simplex, and thus a single
reconstruction is obtained. Next, the DOFs are updated to high-order accuracy using the usual Godunov

method. Numerical tests with scalar conservation laws in both 1D and 2D and 1D systems have verified

that the SV method is indeed highly accurate, conservative, and geometrically flexible [22]. It is important

to point out that the total computational cost of the SV method is proportional to the number of CVs in the

computational grid, which corresponds to the total number of DOFs. Therefore when the FV method is

compared with the SV method, we should compare their accuracies with the same number of CVs or DOFs.

In many 3D aerodynamic computations, tens of millions of CVs are required to achieve a desired order of

accuracy in a second-order FV method. It is hoped that with higher order SV schemes the number of CVs
can be dramatically reduced to achieve the same accuracy with much reduced cost.

In this paper, we further extend the SV method to multi-dimensional systems. In the following section,

we present the basic SV method for the 2D Euler equations. In Section 3, multi-dimensional total variation

diminishing (TVD) and total variation bounded (TVB) limiters are discussed in detail. In particular, a

limiter which guarantees the positivity of pressure and density is presented. In Section 4, several numerical

tests are used to assess the performance of the SV method. In addition, the TVD and TVB limiters are

tested with problems with discontinuities. Finally, conclusions and recommendations for further investi-

gations are summarized in Section 5.
2. Spectral volume method for the 2D Euler equations

The unsteady 2D Euler equation in conservative form can be written as

oQ
ot

þ oE
ox

þ oF
oy

¼ 0; ð2:1aÞ

where Q is the vector of conserved variables, E and F are the inviscid flux vectors given below:
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Here q is the density, u and v are the velocity components in x and y directions, p is the pressure, and E is the

total energy. The pressure is related to the total energy by

E ¼ p
c� 1

þ 1

2
qðu2 þ v2Þ ð2:1cÞ

with ratio of specific heats c. In all the simulations in this paper, c is taken to be 1.4. The Jacobian matrix of

the flux vector for a face with unit normal n ¼ ðnx; nyÞ can be written as

B ¼ nx
oE
oQ

þ ny
oF
oQ

;

where B has 4 real eigenvalues k1;2 ¼ vn, k3 ¼ vn þ c, k4 ¼ vn � c, and a complete set of (right column) ei-

genvectors {r1; r2; r3; r4}, where vn ¼ unx þ vny and c is the speed of sound. Let R be the matrix composed of

these right eigenvectors, then the Jacobian matrix B can be diagonalized as

R�1BR ¼ K; ð2:2Þ

where K is the diagonal matrix containing the eigenvalues, i.e.,

K ¼ diagðvn; vn; vn þ c; vn � cÞ: ð2:3Þ

Assume that we solve (2.1a)–(2.1c) in the computational domain X subject to proper initial and

boundary conditions. The domain X is discretized into N non-overlapping triangular volumes (or cells).

These volumes are called SVs in the SV method, i.e.,

X ¼
[N
i¼1

Si: ð2:4Þ

Given a desired order of accuracy k for (2.1a)–(2.1c), each SV Si is then partitioned into m ¼ kðk þ 1Þ=2
subcells called CVs, and the jth CV of Si is then denoted by Ci;j. Let q denote any of the conservative

variables in Q. The cell-averaged conservative variable q at time t for CV Ci;j is defined as

�qi;jðtÞ ¼
R
Ci;j

qðx; y; tÞdxdy
Vi;j

; j ¼ 1; . . . ;m; i ¼ 1; . . . ;N ; ð2:5Þ

where Vi;j is the volume of Ci;j. Given the cell-averaged conservative variables for all the CVs in Si, a
polynomial piðx; yÞ 2 Pk�1 (the space of polynomials of degree at most k � 1) can be reconstructed such that

it is a kth order accurate approximation to the function qðx; yÞ inside Si:

piðx; yÞ ¼ qðx; yÞ þOðhkÞ; ðx; yÞ 2 Si; i ¼ 1; . . . ;N : ð2:6Þ

This reconstruction can be solved analytically by satisfying the following conditions:R
Ci;j

piðx; yÞdxdy
Vi;j

¼ �qi;j; j ¼ 1; . . . ;m: ð2:7Þ

This polynomial piðx; yÞ is the kth order approximation we are looking for as long as the function qðx; yÞ is
smooth in the region covered by Si. The reconstruction can be more conveniently expressed as

piðx; yÞ ¼
Xm
j¼1

Ljðx; yÞ�qi;j; ð2:8Þ
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where Ljðx; yÞ 2 Pk�1 are the ‘‘shape’’ functions [22] which satisfyR
Ci;j

Llðx; yÞdxdy
Vi;j

¼ djl: ð2:9Þ

Once the basis is given, the shape functions can be obtained analytically with any software capable of

symbolic manipulation such as Mathematica [25]. The values of the shape functions at the Gauss quad-

rature points for several partitions used in this paper are given in Appendix A. The high-order recon-

struction is then used to generate high-order updates for the cell-averaged state variable on the CVs.

Integrating (2.1a)–(2.1c) in Ci;j, we obtain the following integral equation for the CV-averaged mean

d �Qi;j

dt
þ 1

Vi;j

XK
r¼1

Z
Ar

ðf � nÞdA ¼ 0; ð2:10Þ

where �Qi;j is the vector of the CV-averaged conservative variables in Ci;j, f ¼ ðE; F Þ, K is the number of

faces in Ci;j, and Ar represents the rth face of Ci;j. The surface integration on each face can be performed

with a kth order accurate Gauss quadrature formula, i.e.Z
Ar

ðf � nÞdA ¼
XJ

q¼1

wrqf ðQðxrq;yrqÞÞ � nrAr þOðArhkÞ; ð2:11Þ

where J ¼ integer½ðk þ 1Þ=2� is the number of quadrature points on the rth face, wrq are the Gauss quad-

rature weights, ðxrq; yrqÞ are the Gauss quadrature points, and h is the maximum edge length of all the CVs.

Time t is omitted whenever there is no confusion. If f ¼ constant, the following identity exists:

XK
r¼1

Z
Ar

ðf � nÞdA ¼ 0: ð2:12Þ

Therefore, we will gain an extra order of accuracy if we sum up the surface integrals for the faces of Ci;j, i.e.,

XK
r¼1

Z
Ar

ðf � nÞdA ¼
XK
r¼1

XJ

q¼1

wrqf ðQðxrq;yrqÞÞ � nrAr þOðArhkþ1Þ: ð2:13Þ

Since OðViÞ ¼ OðArhÞ, we therefore have

1

Vi;j

XK
r¼1

I
Ar

ðf � nÞdA ¼ 1

Vi;j

XK
r¼1

XJ

q¼1

wrqf ðQðxrq;yrqÞÞ � nrAr þOðhkÞ: ð2:14Þ

With the polynomial distribution on each SV, the state variable is most likely discontinuous across the

SV boundaries. Therefore, the flux integration involves two discontinuous state variables just to the left and

right of a face on the SV boundary. This flux integration is carried out using one of the Lipschitz con-

tinuous approximate Riemann solvers or flux splitting procedures, i.e.,

f ðQðxrq; yrqÞÞ � nr � fRiemðQLðxrq; yrqÞ;QRðxrq; yrqÞ; nrÞ; ð2:15Þ

where QL and QR are the vector of conservative variables just to the left and right of a face. Substituting

(2.15) into (2.11), we obtain

Z
Ar

ðf � nÞdA ¼
XJ

q¼1

wrqfRiemðQLðxrq; yrqÞ;QRðxrq; yrqÞ; nrÞAr þOðArhkÞ: ð2:16Þ
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It is the Riemann solver which introduces the ‘‘upwinding’’, and dissipation into the SV method such

that the SV method is not only high-order accurate, but also stable. In this paper, we employ and evaluate

the following two Riemann solvers:
• Roe�s Approximate Riemann Solver [14]

fROEðQL;QR; nÞ ¼
1

2
f ðQLÞ

h
þ f ðQRÞ � j �BjðQR � QLÞ

i
; ð2:17Þ

where j �Bj is the dissipation matrix computed from

j �Bj ¼ Rj�KjR�1: ð2:18Þ

Here j�Kj is the diagonal matrix composed of the absolute values of the eigenvalues of the Jacobian

matrix evaluated at the so-called Roe-averages, i.e.,

�B ¼ BðQAÞ ð2:19Þ

and R is also evaluated at the Roe averages [14].

• Rusanov Flux 2 [15]

fRUSANOVðQL;QR; nÞ ¼
1

2
f ðQLÞ½ þ f ðQRÞ � aðQR � QLÞ�; ð2:20aÞ

where a is the maximum absolute eigenvalue computed from

a ¼ j�vnj þ �c; ð2:20bÞ

where �vn and �c are the averaged normal velocity and speed of sound computed from QL and QR. Both the

Roe and Rusanov fluxes will be evaluated to assess their performances. Finally we obtain the following

semi-discrete SV scheme for Ci;j

d �Qi;j

dt
þ 1

Vi;j

XK
r¼1

XJ

q¼1

wrqfRiemðQLðxrq; yrqÞ;QRðxrq; yrqÞ; nrÞAr ¼ 0: ð2:21Þ

Note that the sub-cell-averages over the CVs are updated independently. That�s why the cost of the SV

method is proportional to the total number of CVs. For time integration, we use either the second or the

third-order TVD Runge–Kutta scheme from [16].
3. Multi-dimensional TVD and TVB limiters

For the non-linear Euler equations, it is necessary to perform data limiting to maintain stability if the
solution contains discontinuities. TVD limiters enforce strict monotonicity by sacrificing solution accuracy

at local extrema, while TVB limiters relax the monotonicity requirement to achieve uniform accuracy away

from discontinuities. In this paper, both limiters are presented in a uniform TVB limiter form, with TVD

being a special case. There are two different ways of applying limiters in the system setting. One way is to

apply a limiter to each characteristic variable. The other is to apply a limiter to each component of the

vector of the conservative variables. The former has the nice property of naturally degenerating to the

scalar case if the hyperbolic system is linear, but the latter is much more efficient. In this paper, we choose
2 This flux has been called the local Lax-Friedrichs flux by many researchers and the current authors in previous publications.

Thanks are due to Professor van Leer for pointing out that Rusanov published the flux first in [15].
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the component-wise approach because of its efficiency. To this end, we first establish the following nu-

merical monotonicity criterion for each CV

�qmin
i;j 6 qi;jðxrq; yyqÞ6 �qmax

i;j ; ð3:1Þ

where �qmin
i;j and �qmax

i;j are the minimum and maximum cell-averaged solutions among all the neighboring CVs

sharing a face (called face neighbors) or a node (called node neighbors) with Ci;j, and qi;jðxrq; yyqÞ is the

reconstructed solution at any of the quadrature points of the CV under consideration. Obviously, the face

neighbors are included in the node neighbors as shown in Fig. 1. The face neighbors are used to define �qmin
i;j

and �qmax
i;j for the limiter in the second-order SV scheme, while the node neighbors are used to define �qmin

i;j and
�qmax
i;j for the limiter in the third- and fourth-order SV schemes. This choice is due to the fact that one

quadrature point is used for the second-order SV scheme, but two quadrature points are required for the

third- and fourth-order SV schemes. The use of face neighbors in the third- and fourth-order SV schemes

causes too many cells to be limited, essentially degrading the schemes to a second-order FV scheme. Note

that the definition of �qmin
i;j and �qmax

i;j for the third-order SV scheme is different from that of an earlier

publication [24]. Numerical experiments have shown that the new definition produces dramatically better

resolution for discontinuities and complex flow features than the previous one. It was proven by Liu [13] in
the scalar case that if (3.1) is satisfied by the reconstruction, the numerical solution satisfies a maximum

principle, i.e., the solution is monotonic. If (3.1) is strictly enforced, the resultant numerical scheme for the

scalar case is TVD. However, it is well known that TVD schemes are locally first-order at extrema, and may

pollute the global accuracy of the solution. In order to maintain the order of accuracy away from dis-

continuities, the TVB idea [17] is followed here, i.e., small oscillations are allowed in the solution. If we

express the reconstruction for the quadrature points in the following form

Dqrq ¼ piðxrq; yrqÞ � �qi;j; ð3:2Þ

then no data limiting is necessary if

Dqrq
�� ��6 4Mqh2rq; ð3:3Þ
(a) (b)

Fig. 1. Face and node neighbors for the CV with a circular dot: (a) face neighbours; (b) node neighbors.
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where hrq ¼ jri;j � rrqj is the distance from the CV centroid to the quadrature point. In other words, no data

limiting is necessary if (3.3) is satisfied, even if (3.1) is not. Usually the constant Mq is chosen to be the

maximum second derivative of the solution. However Mq is a user chosen parameter if there is a discon-
tinuity in the solution. Note that a different Mq should be used for a different conservative variable because

the conservative variables generally have very different scales. In this paper, Mq is scaled according to the

minimum and maximum of the component, i.e.,

Mq ¼ Mð�qmax � �qminÞ; ð3:4Þ

where M is a constant independent of the component, and �qmax and �qmin are the maximum and minimum of

the CV-averaged solution over the entire computational domain. If (3.3) and (3.1) are violated for any

quadrature point, then it is assumed that the CV is close to a discontinuity, and the solution in the CV is

locally linear, i.e.,

qi;jðx; yÞ ¼ �qi;j þrqi;j � ðr � ri;jÞ; 8r 2 Ci;j: ð3:5Þ

In addition the solutions are assumed linear for all the CVs inside a SV if any of the CVs is limited. The
magnitude of the solution gradient is maximized subject to the monotonicity condition given in (3.3). The

initial guess of the gradient rqi;j for each CV is computed with the cell-averaged solution at its face

neighbors using a least squares linear reconstruction algorithm [20]. This gradient may not satisfy (3.3).

Therefore it is limited by multiplying a scalar u 2 ½0; 1� so that the following solution satisfies (3.3)

qi;jðx; yÞ ¼ �qi;j þ urqi;j � ðr� ri;jÞ: ð3:6Þ

The scalar is computed from

u ¼
min 1;

Dqrq
�qmax
i;j ��qi;j

� �
if Dqrq > 0;

min 1;
Dqrq

�qmin
i;j ��qi;j

� �
if Dqrq < 0;

1 otherwise:

8>>>><
>>>>:

ð3:7Þ

In the case of M ¼ 0, the limiter becomes TVD. The availability of cell-averaged data on the CVs inside a
SV makes this CV-based data limiting possible, whereas in the DG method, one can only do an element

based data limiting. Due to the increased local resolution, the SV method was shown to have better res-

olutions for discontinuities than the DG method in one dimension [23]. This advantage should also carry

over to the multi-dimensional systems case.

Note that at the interior CV boundaries inside a SV, the reconstructed conservative variables are con-

tinuous if no limiter is imposed. Then the flux is just the analytical flux, which is cheaper to compute than

the Riemann flux. When the flux is to be computed, the differences between the left and right state variables

are first evaluated. If they are all zero, then the analytical flux is computed. Otherwise, the Riemann flux is
calculated.

For problems with strong discontinuities, even if the monotonicity condition (3.1) is strictly enforced for

each component of the conserved variables, the positivity of pressure is not guaranteed although the density

is always positive. This is because the pressure is computed from the reconstructed conserved variables. To

ensure that the pressure is always positive near a discontinuity, the pressure is limited instead of the total

energy if it is necessary to limit the reconstruction. In this case, the pressure is assumed linear, and should

satisfy the monotonicity condition (3.1). Then the total energy at the quadrature points is computed using

the reconstructed density, momentums and pressure. This positivity-guaranteeing limiting has been found
to be very robust.
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4. Numerical tests

In this section, SV schemes of various orders of accuracy are evaluated for the 2D Euler equations.

Based on the study performed for 2D scalar conservation laws [22], one particular partition for a given

order of accuracy is selected. The partitions for the second–fourth-order SV schemes are shown in Fig. 2.

The reconstruction coefficients for these partitions are presented in Appendix A. Note that these parti-

tions are by no means optimal. Numerical tests have shown that these partitions yield accurate and

convergent SV schemes for the 2D scalar conservation laws. They are tested for 2D Euler equations in
this paper. The optimization of partitions for various orders of interpolations in a triangle will be studied

in a future publication by following ideas presented by Chen and Babuska [4] and by Hesthaven and

Teng [11].

4.1. Accuracy study with vortex evolution problem

This is an idealized problem for the Euler equations in 2D used by Shu [18]. The mean flow is

fq; u; v; pg ¼ f1; 1; 1; 1g. An isotropic vortex is then added to the mean flow, i.e., with perturbations in u, v,
and temperature T ¼ p=q, and no perturbation in entropy S ¼ p=qc:

ðdu; dvÞ ¼ e
2p

e0:5ð1�r2Þð��y;�xÞ;
dT ¼ �ðc� 1Þe2
8cp2

e1�r2 ;
dS ¼ 0;

where r2 ¼ �x2 þ �y2, �x ¼ x� 5, �y ¼ y � 5, and the vortex strength e ¼ 5. If the computational domain is

infinitely big, the exact solution of the Euler equations with the above initial conditions is just the passive

convection of the isotropic vortex with the mean velocity (1, 1). In the following accuracy study, the

computational domain is taken to be [0, 10]� [0, 10], with characteristic inflow and outflow boundary

conditions imposed on the boundaries.

The numerical simulations were carried out until t ¼ 2 on two different grids, one regular and one ir-

regular as shown in Fig. 3. The finer grids are generated recursively by cutting each coarser grid cell into

four finer grid cells. No limiters were employed in this study since the problem is smooth, and the Rusanov
1/4 1/15 

Fig. 2. Partitions of various orders in a triangular SV: (a) linear; (b) quadratic; (c) cubic.



Table 1

Accuracy study of SV schemes with propagating vortex problem regular grid

Order of accuracy Grid L1 error L1 order L1 error L1 order

2 10� 10� 2 1.1910e) 1 – 7.4323e) 3 –

20� 20� 2 4.5718e) 2 1.38 1.7502e) 3 2.09

40� 40� 2 1.0832e) 2 2.07 4.2363e) 4 2.05

80� 80� 2 2.3293e) 3 2.22 9.9231e) 5 2.09

3 10� 10� 2 5.2871e) 2 – 2.6626e) 3 –

20� 20� 2 8.2271e) 3 2.68 3.4387e) 4 3.07

40� 40� 2 1.3659e) 3 2.59 5.3779e) 5 2.49

80� 80� 2 2.1575e) 4 2.66 8.3061e) 6 2.88

4 10� 10� 2 1.0647e) 2 – 5.4272e) 4 –

20� 20� 2 1.1254e) 3 3.24 5.0390e) 5 3.43

40� 40� 2 1.1051e) 4 3.35 3.0832e) 6 4.03

80� 80� 2 7.2922e) 6 3.92 1.9354e) 7 3.99

Table 2

Accuracy study of SV schemes with propagating vortex problem irregular grid

Order of accuracy Grid L1 error L1 order L1 error L1 order

2 10� 10� 2 8.4826e) 2 – 5.4913e) 3 –

20� 20� 2 2.7206e) 2 1.64 1.3843e) 3 1.99

40� 40� 2 7.3694e) 3 1.88 3.7917e) 4 1.87

80� 80� 2 2.2179e) 3 1.73 9.9125e) 5 1.94

3 10� 10� 2 2.7389e) 2 – 1.5259e) 3 –

20� 20� 2 6.0315e) 3 2.18 2.7834e) 4 2.46

40� 40� 2 8.5093e) 4 2.83 4.3581e) 5 2.68

80� 80� 2 1.6079e) 4 2.40 6.7872e) 6 2.68

4 10� 10� 2 7.8981e) 3 – 3.4651e) 4 –

20� 20� 2 4.5335e) 4 4.12 3.0005e) 5 3.53

40� 40� 2 4.7422e) 5 3.26 2.1245e) 6 3.82

80� 80� 2 3.8195e) 6 3.63 1.4503e) 7 3.87

Fig. 3. Regular and irregular grids for the vortex case: (a) regular (10� 10� 2); (b) irregular (10� 10� 2).
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flux was used in all simulations. In Tables 1 and 2, the L1 and L1 norms in the CV-averaged density are

presented for the regular and irregular grids respectively, for SV schemes of second–fourth order. The

errors presented in the tables were made time step independent by using sufficiently small time steps. Note
that all the simulations have reached the desired order of accuracy in the L1 norm. The L1 norms degrade

about half an order on the irregular mesh probably because the mesh is not smooth.

In order to compare the SV method with a second-order FV method [20], simulations were also per-

formed on the sub-cell CV grids generated by the various SV partitions, as shown in Fig. 4. These grids are

named SV2, SV3 and SV4 grids respectively. In other words, the numbers of unknowns in the FV simu-

lations are the same as those of the corresponding SV simulations. The L1 and L1 errors computed using a

second-order FV method on the sub-cell grids are presented in Table 3. It is obvious that second-order

accuracy was achieved in both the L1 and L1 norms by the FV solver on all the grids. Note that the solution
errors on the SV3 grids are only slightly lower than those on the SV2 grids although the SV3 grids have

twice as many CVs as the SV2 grids. Furthermore, the errors on the SV4 grids are larger than those on the

SV2 grids although the former have more than three times the number of control volumes. This can be
Fig. 4. Control volumes for the second–fourth-order SV schemes: (a) SV2 grid; (b) SV3 grid; (c) SV4 grid.

Table 3

Accuracy study of a second-order FV scheme on the CVs generated using various SV partitions with the propagating vortex problem

on the irregular grid

Grid DOFs L1 error L1 order L1 error L1 order

SV2 10� 10� 2� 3 7.16e) 2 – 3.79e) 3 –

20� 20� 2� 3 1.80e) 2 1.99 8.84e) 4 2.10

40� 40� 2� 3 4.57e) 3 1.98 1.94e) 4 2.19

80� 80� 2� 3 1.15e) 3 1.99 4.41e) 5 2.14

SV3 10� 10� 2� 6 3.51e) 2 – 2.05e) 3 –

20� 20� 2� 6 1.20e) 2 1.55 4.66e) 4 2.14

40� 40� 2� 6 2.76e) 3 2.12 1.03e) 4 2.18

80� 80� 2� 6 1.06e) 3 1.38 2.59e) 5 1.99

SV4 10� 10� 2� 10 1.06e) 1 – 3.95e) 3 –

20� 20� 2� 10 2.82e) 2 1.91 9.54e) 4 2.05

40� 40� 2� 10 7.27e) 3 1.96 2.14e) 4 2.16

80� 80� 2� 10 1.93e) 3 1.91 6.31e) 5 1.76
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attributed to the non-smoothness of the control volumes in the SV4 grid. It is interesting to see that the

second-order FV method is more accurate than the second-order SV method with the same number of

DOFs. This is because the linear reconstruction is for the macro-cell in the SV method, but for the sub-cell
in the FV method. The third- and fourth-order SV schemes are more accurate than the second-order FV

scheme with the same DOFs. For example, the third-order SV method is a factor of 3.81 more accurate (in

terms of L1 error) than the second-order FV scheme on the finest mesh, while the fourth-order SV scheme is

a factor of 435 more accurate than the second-order FV scheme with the same number of DOFs (on the

finest mesh).

It is also interesting to compare the relative cost of the SV and FV schemes. In this paper, the relative

cost is defined roughly as the relative CPU times needed to achieve the same solution L1 error. The

following CPU times were measured on a 2.0 GHz Intel Pentium 4 computer running the Linux oper-
ating system. One residual computation on the finest mesh with a second-order SV scheme took 106
Fig. 5. Density profiles along x ¼ 5 at t ¼ 0, 10, 50 and 100 for the second-, third- and fourth-order SV schemes: (a) second order;

(b) third order (c) fourth order.
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microseconds. The second-order FV scheme took 128 microseconds, the third-order SV scheme took 370

microseconds and the fourth-order SV scheme took 880 microseconds. For a second-order FV scheme in

2D, the error should decrease linearly with the increase in the number of cells. The relative cost is es-
timated assuming that the SV2 grid is chosen for the second-order FV scheme because it gives the

minimum error with a fixed number of control volumes. Therefore, the second-order SV scheme has a

cost of 1.86 (106/128*9.91e) 5/4.41e) 5) relative to the second-order FV scheme (i.e., takes 1.86 times the

CPU time to achieve the same error). The third-order SV scheme has a relative cost of 0.44 (370/

128*6.79e) 6/4.41e) 5), and the fourth-order SV has a relative cost of 0.023 (880/128*1.45e) 7/4.41e) 5).

Clearly the high-order SV schemes are much more efficient than the second-order FV scheme in achieving

the same solution quality.

Next we test the SV schemes for handling the long time evolution of the vortex. For this purpose, pe-
riodic boundary conditions were employed at all the boundaries. The simulation was performed on the

medium regular grid with 20� 20� 2 SVs. Fig. 5 shows the density profiles along x ¼ 0 at t ¼ 0, t ¼ 10, 50

and 100 for the second-, third- and fourth-order SV schemes. Note that the second-order SV scheme

displays significant dispersion and dissipation errors, especially for the long term simulations. In contrast,

both the third- and fourth-order schemes give excellent results.

4.2. Mach 3 wind tunnel with a step

This problem was studied extensively by Woodward and Colella [26], and has been widely used to assess

the performance of shock-capturing methods. The 2D wind tunnel is 3 units long and 1 unit wide, with a

step of 0.2 units high located at 0.6 units from the tunnel inlet. The initial condition is a Mach 3 right-going

uniform flow. Inviscid wall boundary conditions (reflective) are used for tunnel wall boundaries, while

inflow and outflow boundary conditions are used at the inlet and exit of the wind tunnel. It is well known

that the corner of the step is a singularity, and often leads to a spurious Mach stem at the downstream

bottom wall, and an erroneous entropy layer at the bottom wall. In [26], various numerical treatments were

used to remedy these artifacts. In the present study, no special treatments were used for the singularity to
see how the singularity affects the numerical solutions.

In the first test, we focus on comparing the various schemes with different orders of accuracy, and the

Riemann solvers. For this purpose, a very coarse mesh with h ¼ 1=20 was used to illustrate the differences,

and is shown in Fig. 6. The mesh has 1763 triangles. Therefore the number of unknowns is 5289 for the

second-order SV scheme, 10,578 for the third-order SV scheme and 17,630 for the fourth-order SV scheme.

All the simulations were carried out until t ¼ 4. The ‘‘baseline’’ simulation was computed with the Rusanov

flux and the TVD limiter, i.e., M ¼ 0 in (3.4). The computed density contours using the second–fourth-
Fig. 6. A coarse mesh for the supersonic wind tunnel problem with size 1/20.
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order SV schemes are displayed in Fig. 7. Clearly the third-order SV scheme performed the best for this case

since the spurious Mach stem is the weakest. The fourth-order SV scheme performed worse than the third-

order SV scheme because many reconstructions are CV-wise linear due to data limiting, and the non-
uniform subcell mesh produced large errors. For comparison purposes, the computed density contours

using Roe�s approximate Riemann solver and TVD limiter are presented in Fig. 8. Obviously, Roe�s flux
splitting produced weaker Mach stems than the Rusanov flux, which confirms that it has smaller numerical

dissipation. In addition, it appears that the third-order SV again produced the best result. Next, the density

contours computed using the Rusanov flux and a TVB limiter with M ¼ 10 are displayed in Fig. 9.
Fig. 7. Density contours computed on the coarse mesh using the Rusanov flux and TVD limiter. Thirty even contour lines between

0.09 and 4.53: (a) second-order SV scheme; (b) third-order SV scheme; (c) fourth-order SV scheme.



Fig. 8. Density contours computed on the coarse mesh using the Roe flux and TVD limiter. Thirty even contour lines between 0.09 and

4.53: (a) second-order SV scheme; (b) third-order SV scheme; (c) fourth-order SV scheme.
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Comparing Figs. 7 and 9, we can see that they are very similar except that the TVB limiter produced slightly

more oscillations.

Next we compare the FV and SV methods, again using the coarse mesh shown in Fig. 6. The density

contours computed with a second-order FV scheme on the SV2 and SV3 grids are displayed in Fig. 10.

Therefore, the same numbers of unknowns are used to obtain the contours in Figs. 7(a) and 10(a), 7(b) and
10(b). Note that the second-order FV scheme produced a weaker Mach stem than the second-order SV

scheme, while the third-order SV scheme generated a slightly weaker Mach stem and entropy layers, and

sharper shock waves and contact than the second-order FV scheme.



Fig. 9. Density contours computed on the coarse mesh using the Rusanov flux and TVB limiter withM ¼ 10. Thirty even contour lines

between 0.09 and 4.53: (a) second-order SV scheme; (b) third-order SV scheme; (c) fourth-order SV scheme.
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A grid refinement study is then carried out using the ‘‘baseline’’ solver (Rusanov flux and M ¼ 0). Two

finer grids with mesh sizes of h ¼ 1=40 (medium), 1/80 (fine) were employed in the simulations. The

medium and fine meshes have 8746 and 37,146 triangles respectively. Therefore, the medium mesh has

26,238 and 52,476 unknowns for the second- and third-order SV schemes, and the fine mesh has 111,438

and 222,876 unknowns for the second- and third-order SV schemes, respectively. The computed density

contours with the second-order SV scheme are shown in Fig. 11, and the results computed with the third-

order SV scheme are presented in Fig. 12. Obviously, the resolution of the third-order results is better

than that of the second-order results while the third-order results are more oscillatory than the second-



Fig. 11. Density contours computed using a second-order SV scheme with the Rusanov flux and TVD limiter. Thirty even contour

lines between 0.09 and 4.53: (a) h ¼ 1=40 (26,238 DOFs); (b) h ¼ 1=80 (111,438 DOFs).

Fig. 10.Density contours computed on the sub-cell grids using a second-order FV schemewith the Rusanov flux and TVD limiter. Thirty

even contour lines between 0.09 and 4.53: (a) second-order FV scheme on the SV2 grid; (b) second-order FV scheme on the SV3 grid.
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Fig. 12. Density contours computed using a third-order SV scheme with the Rusanov flux and TVD limiter. Thirty even contour lines

between 0.09 and 4.53: (a) h ¼ 1=40 (52,476 DOFs); (b) h ¼ 1=80 (222,876 DOFs).
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order results. For example, the spurious Mach stems in the third-order results are visibly weaker than

those in the second-order results. The instability generated by the slip line is visible in the third-order

results on the fine mesh. It seems the third-order SV scheme produced a much weaker spurious Mach

stem and higher resolution for the slip line than published results computed with the third-order DG

scheme on comparable grids [8].

Finally to demonstrate that indeed the singular corner point is the cause of the spurious Mach stem,

we employed computational grids refined only near the corner point. The first grid is nearly uniform
with a mesh size of h ¼ 1=40. The other two grids are successively refined by halving the grid size near

the corner. The three grids are shown in Fig. 13. The computed density distributions at t ¼ 4 with the

second order SV scheme with the Rusanov flux and TVD limiter is shown in Fig. 14, and the cor-

responding third-order results are displayed in Fig. 15. First it is evident that the spurious Mach stem

weakened considerably with increased grid resolution near the corner point in both the second- and

third-order results. In addition, the entropy layer downstream the shock reflection point is also

weakened. Note that the third-order results have higher resolutions for the shock waves and the

contact, as expected.

4.3. Double Mach reflection

This problem is also a standard test case for high-resolution schemes [26], and has been studied

extensively by many researchers [8,18]. The computational domain for this problem is chosen to be [0,

4]� [0, 1]. The reflecting wall lies at the bottom of the computational domain starting from x ¼ 1=6.
Initially a right-moving Mach 10 shock is positioned at x ¼ 1=6, y ¼ 0 and makes a 60� angle with the



Fig. 13. Three computational grids with different degrees of refinement near the singular corner point.
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x-axis. For the bottom boundary, the exact post-shock condition is imposed for the region from x ¼ 0

to x ¼ 1=6 and a solid wall boundary condition is used for the rest. For the top boundary of the

computational domain, the solution is set to describe the exact motion of the Mach 10 shock. The left

boundary is set as the exact post-shock condition, while the right boundary is set as outflow boundary.

Three unstructured triangular grids were generated with approximate mesh sizes of 1/30, 1/60 and 1/

120. These meshes have 8,200, 32,936 and 130,828 triangular cells respectively, corresponding to 24,600,

98,808, and 392,484 unknowns for the second-order SV scheme, and 49,200, 197,616 and 784,968
unknowns for the third-order SV scheme. The coarsest mesh is displayed in Fig. 16. All the simulations

were carried until t ¼ 0:2 using the Rusanov flux and TVD limiter. Fig. 17 shows the density contours



Fig. 14. Computed density contours with the second-order SV scheme using the Rusanov flux and TVD limiter.
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computed with the second-order SV scheme on the coarse, medium and fine grids. The corresponding

results for the third-order SV scheme are shown in Fig. 18. It is obvious that the third-order SV scheme

has much higher resolution than the second-order SV scheme for the complex flow structures near the

double Mach stem. In fact, the density contours computed with the third-order scheme on the medium

mesh display finer structures than those computed with the second-order scheme on the fine mesh, as

shown in Fig. 19. The present results also compare favorably with published results computed with the

DG method [8]. It appears that the results computed with the third-order SV scheme on a mesh of size
1/120 have a better resolution for the complex structures near the double Mach stem than the results

computed with the third-order DG scheme on a finer mesh of size 1/240 [8].



Fig. 15. Computed density contours with the third-order SV scheme using the Rusanov flux and TVD limiter.

Fig. 16. A coarse mesh for the double Mach reflection problem with size 1/30.
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Fig. 17. Density contours computed using a second-order SV scheme with the Rusanov flux and TVD limiter. Thirty even contours

between 1.25 and 21.5. (a) h ¼ 1=30 (24,600 DOFs) (b) h ¼ 1=60 (98,808 DOFs) (c) h ¼ 1=120 (392,484 DOFs).
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5. Conclusions

The spectral volume method has been successfully extended to two-dimensional hyperbolic systems of

conservation laws. The extension to the system has been performed in a component-wise manner.

Therefore, the mean conservative variables at the CVs (sub-cells) are used in the polynomial recon-

struction. Both TVD and TVB limiters are also implemented in a component-wise manner. In addition, a

limiter guaranteeing the positivity of pressure and density has been developed, and shown to be very

robust. The limiter for the third-order SV method has been improved to achieve much higher resolution

for smooth flow features. An accuracy study has been carried out, and the expected numerical orders of
accuracy of the SV schemes have been achieved in both the L1 and L1 norms. The SV method has also



Fig. 18. Density contours computed using a third-order SV scheme with the Rusanov flux and TVD limiter. Thirty even contours

between 1.25 and 21.5: (a) h ¼ 1=30 (49,200 DOFs); (b) h ¼ 1=60 (197,616 DOFs); (c) h ¼ 1=120 (784,968 DOFs).
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been compared with a second-order FV method, and the advantage of high-order SV schemes has been

demonstrated. The extension to 2D Navier–Stokes equations is now under way, and will be reported in a

future publication.
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Fig. 19. Close-up view of the density contours near the double Mach stem: (a) second-order SV scheme, h ¼ 1=120 (392,384 DOFs);

(b) third-order SV scheme, h ¼ 1=60 (197,616 DOFs); (c) third-order SV scheme, h ¼ 1=120 (784,968 DOFs).
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Appendix A. Reconstruction coefficients

A.1. Linear partition

The CVs (sub-cells) inside a spectral volume (the macro-cell) are numbered based on the local node

numbering as shown in Fig. 20. Due to the symmetry in a triangle, the reconstruction coefficients at two

quadrature points (a and b) are required. The coefficients for point a and b are

Ca ¼ f4=3; 2=15;�7=15g;
Cb ¼ f8=15; 8=15;�1=15g:

The solution at any quadrature point a can be computed with
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A.2. Quadratic partition

The CVs are numbered as shown in Fig. 21. The reconstruction coefficients at five quadrature points are

required. The coefficients for these points are
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A.3. Cubic partition

The CVs are numbered as shown in Fig. 22. The reconstruction coefficients at ten quadrature points are
required. Since these coefficients are not easy to express, they are not listed here. Interested readers can send

the first author an e-mail to request a text file containing these coefficients.

Fig. 22.
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