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In this paper, the third in a series, the Spectral Volume (SV) method is extended
to one-dimensional systems—the quasi-1D Euler equations. In addition, several
new partitions are identified which optimize a certain form of the Lebesgue
constant, and the performance of these partitions is assessed with the linear
wave equation. A major focus of this paper is to verify that the SV method is
capable of achieving high-order accuracy for hyperbolic systems of conservation
laws. Both steady state and time accurate problems are used to demonstrate the
overall capability of the SV method.
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1. INTRODUCTION

We continue the development of the Spectral (Finite) Volume (SV) method
for hyperbolic conservation laws on unstructured grids following the basic
formulation [19] and development for two-dimensional scalar conserva-
tion laws [20]. The ultimate goal of this research is to pursue a numerical



method for conservation laws which has all of the following properties:
(a) conservative, (b) high-order accuracy, i.e., the order of accuracy is
greater than second order, (c) geometrically flexible, i.e., applicable for
unstructured grids, and (d) computationally efficient. The SV method is
developed to hopefully satisfy these four requirements, in a relative sense
with respect to the current state-of-the-art numerical methods such as the
high-order k-exact finite volume (FV) method [2, 3], essentially non-oscil-
latory (ENO) and weighted ENO (WENO) methods [1, 9, 12, 13], and the
discontinuous Galerkin (DG) method [5–7], amongst many others.

Ultimately, the SV method is a Godunov-type finite volume method
[10], which has been under development for several decades, and has
become the-state-of-the-art for the numerical solution of hyperbolic con-
servation laws. For a more detailed review of the literature on the
Godunov-type method, refer to [19], and the references therein. Similar to
the Godunov method, the SV method has two key components. One is
data reconstruction, and the other is the (approximate) Riemann solver.
What distinguishes the SV method from the k-exact finite volume (FV)
method is the data reconstruction. Instead of using a (large) stencil of
neighboring cells to perform a high-order polynomial reconstruction, the
unstructured grid cell—called a spectral volume—is partitioned into a
‘‘structured’’ set of sub-cells called control volumes (CVs), and cell-averages
on these sub-cells are then the degrees-of-freedom (DOFs). These DOFs
are used to perform a high-order polynomial reconstruction inside the SV.
All the spectral volumes are partitioned in a geometrically similar manner,
and thus a single reconstruction is obtained. Next, the DOFs are updated
to high-order accuracy using the usual Godunov method. Numerical tests
with scalar conservation laws in both 1D and 2D have verified that the
SV method is indeed highly accurate, conservative, and geometrically
flexible [20].

In this paper, we further extend the SV method to one-dimensional
systems. In the next section, we present the SV method for the quasi-1D
Euler equations. In Sec. 3, several convergent new partitions are devel-
oped by minimizing some approximate forms of the Lebesgue constant,
and they are compared with the partition using the Gauss–Lobatto
points. In Sec. 4, numerical tests with both steady state and time accurate
unsteady problems are used to assess the performance of the SV method.
In addition, the TVD and TVB limiters are tested with problems with
discontinuities and complex smooth features. Furthermore, the perfor-
mance of the various partitions is assessed in an accuracy study. Finally, con-
clusions and recommendations for further investigations are summarized
in Sec. 5.
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2. SPECTRAL VOLUME METHOD FOR THE QUASI-1D EULER
EQUATIONS

The unsteady quasi-1D Euler equation in conservative form can be
written as

“Q
“t
+
“F
“x
=G, (2.1a)

where Q is the vector of conserved variables, F is the inviscid flux vector,
and G is the vector for the source terms given below:

Q=˛
r

ru
E

ˇ, F=˛
ru
ru2+p
u(E+p)

ˇ, G=˛ −ru
1
A
“A
“x

−ru2
1
A
“A
“x

−u(E+p)
1
A
“A
“x

ˇ . (2.1b)

Here r is the density, u is the velocity, p is the pressure, E is the total
energy, and A is the area of the cross section. If A=1, the above equations
degenerate into the 1D Euler equations. The pressure is related to the total
energy by

E=
p
c−1
+
1
2
ru2, (2.1c)

with c=1.4 for air. Given a partition of the domain [a, b], {xi+1/2}
N
i=0, the

domain is then divided into N non-overlapping spectral volumes (SVs)

[a, b]=0
N

i=1
Si, Si=[xi−1/2, xi+1/2], (2.2)

with x1/2=a, and xN+1/2=b. Let hi=xi+1/2−xi−1/2, and denote the quan-
tity max1 [ i [N hi by h. Given a desired order of accuracy k for (2.1), each
spectral volume Si is then partitioned into k control volumes (CVs) using
the following partitioning {xi, j+1/2}

k
j=0 with xi, 1/2=xi−1/2 and xi, k+1/2=

xi+1/2. The jth CV of Si is then Ci, j=(xi, j−1/2, xi, j+1/2). The solution
unknowns or degrees-of-freedom (DOFs) are the CV-averaged conserved
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variables. These DOFs are then used to form high-order polynomials inside
the SV. The integration of (2.1) in Ci, j gives

dQi, j
dt
hi, j+(F̂i, j+1/2−F̂i, j−1/2)=F

xi, j+1/2

xi, j−1/2
G dx, (2.3)

where Qi, j is the CV-averaged state vector, hi, j=xi, j−1/2−xi, j+1/2, F̂i, j+1/2 is
the Riemann flux computed using either the Roe [15] or Lax–Friedrichs
solvers. The volume integral is carried out with a Gauss quadrature
formula of appropriate order of accuracy. For time integration, we employ
the third-order TVD Runge–Kutta scheme from [16].

3. OPTIMIZATION OF SPECTRAL VOLUME PARTITION

It has been found in [19, 20] that the stability and convergence of the
SV method hinge on the partition of the SVs into CVs. It was shown that
high-order ( > 3rd) accurate SV schemes are not grid convergent if the SV
is partitioned into uniform CVs. This is believed similar to the so-called
Runge phenomenon in Lagrange interpolation using equidistant grid
points. An intuitive explanation given in [19] is that the basis functions
using equidistant CVs are highly oscillatory near the two end points. As a
result, instabilities are generated in the numerical solution, which become
more pronounced when the grid is refined. To remedy this problem, the
Gauss–Lobatto points were used to partition a SV [19], and the resultant
‘‘shape’’ functions were shown to be much less oscillatory than those
employing uniform CVs. Numerical experiments did verify that uniform
high-order accuracy was achieved with grid refinement. Although the par-
tition using the Gauss–Lobatto points is grid-convergent, the question we
raise here is whether we can do even better. It has never been shown that
the Gauss–Lobatto points are the optimal choice in any sense.

For this purpose, we consider the standard interval D=[−1, 1] as the
SV since each SV can be linearly transformed into D. This interval is then
divided into k CVs with the following k+1 grid points:

−1=xi, 1/2 < xi, 3/2 < · · · < xi, k+1/2=1,

which is called a partition denoted by P of D. For each u(x) ¥ C(D) (the
space of all continuous functions), we can reconstruct a polynomial
pi(x) ¥ Pk−1(D) from the CV-averaged solution ūi, j, which satisfies

pi(x)=C
k

j=1
L j(x) ūi, j . (3.1)
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Denote pi=CP(u), where CP is an operator which maps C(D) onto
Pk−1(D). It is obvious that CP is a linear projection operator. When both
spaces C(D) and Pk−1(D) are equipped with the supremum or uniform
norm, i.e., ||•||=||•||.=max |•|, the norm of this projection operator can be
defined as

||CP ||=sup
u ] 0

||CPu||
||u||

. (3.2)

Therefore we can easily see that

||CP ||=max
x ¥ D

C
k

j=1
|L j(x)|. (3.3)

The function l(x)=;k
j=1 |L j(x)| is usually referred to as the Lebesgue

function of the interpolation, and ||CP || is called the Lebesgue constant [4],
which is of interest because

• If pgi is the best uniform approximation to u on E, then

||u−CPu|| [ (1+||CP ||) ||u−p
g
i ||. (3.4)

Thus ||CP || gives a simple method of bounding the interpolation polyno-
mial. It is obvious from (3.4) that the smaller the Lebesgue constant, the
better the interpolation polynomial is to be expected in the uniform norm.
Therefore the partition optimization problem becomes finding the partition
with the smallest Lebesgue constant. Because the Lebesgue function is a
non-differential function, it is very difficult to find the optimum partition.
However, given any partition, the Lebesgue constant can be computed
numerically. In [19], it has been shown that the Gauss–Lobatto points
defined by

xi, j+1/2=−cos 1 jp
k
2 , j=0,..., k, (3.5)

result in convergent SV schemes. The Lebesgue constants for both equidis-
tant and the Gauss–Lobatto points are given in Table I. Note that the
Lebesgue constants for the uniform CVs increase super-linearly with
respect to k, while the Lebesgue constant for the Gauss–Lobatto points
increase slowly with increasing k. In fact, the Lebesgue constant for k=4
with uniform CVs is larger than that for k=8 with Gauss–Lobatto points.
The partition using the Gauss–Lobatto points is denoted by PGL, and the
optimum partition with the minimum Lebesgue constant is denoted by P..
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Table I. Lebesgue Constants for Several Partitions

k Uniform Grid PGL P2 Pm,.

2 2.000 2.000 2.000 2.000
3 3.333 2.667 2.215 1.685
4 5.333 3.172 2.475 1.823
5 8.533 3.578 2.662 2.141
6 13.87 3.917 2.817 2.534
7 23.01 4.208 2.945 2.790
8 39.01 4.463 3.055 3.192

Because of the difficulty in computing P., we instead attempt to find the
following partition (called P2) by minimizing [4]

||CP ||2==C
k

j=1
F
1

−1
L2j (x) dx . (3.6)

Obviously, the partitions P. and P2 are not expected to be the same, but
they should not differ dramatically. Since ||CP ||2 is differentiable with
respect to the partitioning nodes, many standard minimization algorithms
can be used to compute P2. The numerically computed P2 with k=3−8
are presented in Table II.

Table II. Node Sets Which Minimize ||CP ||2=
`;k

j=1 >1−1 L2j (x) dx

k xi

3 0.62392259

4 0.79174292

5
0.86971298
0.32686243

6
0.91060472
0.52380525

0.93493530
7 0.64667784

0.23314423

0.95052305
8 0.72820167

0.39718507
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In [19], it was suggested that the following one-parameter family of
nodes be used to partition the standard interval

xi, j+1/2=
tanh 12mj

k
−m2

tanh(m)
, j=0,..., k, (3.7)

where m is a constant, which controls the degree of grid clustering near the
two end grid points. The larger the value of m is, the stronger the grid clus-
tering near −1 and 1. Numerical means can be easily used to find the
approximate parameter m, which gives the minimum Lebesgue constant in
this family. The results are tabulated in Table III for k=3−8. This parti-
tion is called Pm,.. Test cases will be presented using the three different
partitions (PGL, P2, Pm,.) to see how they perform in a SV scheme. Just to
give the readers a visual impression, the equidistant partition, PGL, P2,
Pm,. and their corresponding basis functions are plotted in Fig. 1. In
addition, the Lebesgue constants for the partitions are compared in Table I.
Obviously the equidistant partition has the most oscillatory basis functions.
Note that PGL is the most ‘‘uniform’’ (except the equidistant partition),
followed by P2 and Pm,.. Among the three partitions (PGL, P2, Pm,.),
PGL has the largest Lebesgue constants, and Pm,. has the smallest
Lebesgue constant except k=8, for which the P2 partition has the smallest
Lebesgue constant.

Table III. Node Sets Pm,.

k xi

3 0.78077641

4 0.87915287

5
0.90385565
0.44634975

6
0.91726962
0.63249867

0.93284494
7 0.73841123

0.30039009

0.94056849
8 0.79369782

0.48327169
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Fig. 1. The basis functions and grid points of the three different partitions with k=6.

4. NUMERICAL TESTS

4.1. Partition Evaluation

In this test, the performance of the three different partitions (PGL, P2,
Pm,.) is evaluated with the following scalar conservation law

“u
“t
+
“u
“x
=0, −1 [ x [ 1

u(x, 0)=sin(px), periodic boundary condition.
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The L1 and L. errors using the third-order and sixth-order SV schemes
with the three partitions are presented in Table IV. For the third-order SV
scheme, PGL yielded the least L. error, followed by P2, while Pm,.
produced the largest L. error, although Pm,. has the minimum Lebesgue
constant. The minimum L1 error was produced by P2, followed by PGL
and Pm,.. For the third-order scheme, the partition with the minimum
Lebesgue constant produced the largest errors. This may indicate that the
Lebesgue constant cannot accurately predict the performance of the parti-
tion. For the sixth-order SV scheme, the Lebesgue constant turns out to be
a more accurate indicator. Pm,. yielded the least L. and L1 errors,
followed by P2, while PGL produced the largest L. and L1 errors, exactly
following the prediction by the Lebesgue constant. Note that all three

Table IV. Accuracy Study of SV Schemes with Three Different Partitions

Order of
Partition Accuracy NDOF L. error L. order L1 error L1 order

PGL

3

30 2.67e − 3 – 1.24e − 3 –
60 3.65e − 4 2.87 1.61e − 4 2.95

120 4.67e − 5 2.97 2.05e − 5 2.97
240 5.91e − 6 2.98 2.59e − 6 2.98

6

30 1.28e − 5 – 2.57e − 6 –
60 1.88e − 7 6.09 4.08e − 8 5.98

120 2.98e − 9 5.98 6.47e − 10 5.97
240 4.61e − 11 6.05 9.114e − 12 5.96

P2

3

30 2.56e − 3 – 1.19e − 3 –
60 3.57e − 4 2.84 1.47e − 4 3.02

120 4.71e − 5 2.92 1.84e − 5 3.00
240 6.04e − 6 2.96 2.31e − 6 2.99

6

30 8.10e − 6 – 2.19e − 6 –
60 1.57e − 7 5.69 3.70e − 8 5.89

120 2.42e − 9 6.02 5.71e − 10 6.02
240 3.81e − 11 6.01 8.99e − 12 6.04

Pm,.

3

30 4.83e − 3 – 2.99e − 3 –
60 6.52e − 4 2.89 3.83e − 4 2.96

120 8.45e − 5 2.95 4.86e − 5 2.98
240 1.07e − 5 2.98 6.11e − 6 3.99

6

30 6.16e − 6 – 2.89e − 6 –
60 1.01e − 7 5.93 3.56e − 8 6.34

120 1.67e − 9 5.92 5.77e − 10 5.95
240 2.54e − 11 6.04 8.33e − 12 6.11
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partitions achieved the expected order of accuracy, and the differences
between the results computed with the different partitions are quite small.
From here on, we will use partition PGL.

4.2. Accuracy Study with a Steady 1D Flow through a Nozzle

In this accuracy study, we compute the numerical order of accuracy of
the SV method using a steady subsonic quasi-1D flow through a converg-
ing nozzle with the following area variation

A(x)=1.5−0.5 tanh(x) −5 [ x [ 5.

The flow condition is so defined that an exit Mach number of 0.8 is
produced. An analytical solution can be computed based on the isentropic
flow assumption. The inflow and outflow conditions of the analytical solu-
tion are given below:

{rin, uin, pin}={1.2949245, 0.30891936, 1.0256854}

{rout, uout, pout}={1, 0.8, 0.71428571}.

In the accuracy study, uniform SV grids were used first. To compute
the errors in the numerical solution, the CV-averaged densities are used to
reconstruct the densities at the SV boundaries, which are then compared
with the analytical solutions to determine the L1 and L. error norms. The
SVs were partitioned with the Gauss–Lobatto points. In the first test, Roe’s
flux splitting was used to compute the numerical flux. The computed L1
and L. errors with SV schemes of various orders of accuracy on different
grids are given in Table V. Note that the expected orders of accuracy for all
the SV schemes are achieved in both the L1 and L. norms in this case.

Next, the performance of the local Lax–Friedrichs flux is tested, and
the L1 and L. errors are summarized in Table VI. Again it is obvious that
the expected orders of accuracy for all the SV schemes are achieved in both
the L1 and L. norms. It can be observed that Roe’s approximate Riemann
solver produced more accurate numerical results on coarse grids for all the
schemes tested. For the lower order schemes (2nd and 3rd order), Roe flux
is consistently more accurate than the local Lax–Friedrichs flux on all the
grids. However, it is interesting to note that the local Lax–Friedrichs flux
produced slightly more accurate results using the 4th and 6th order
schemes on the two finest meshes although the difference is quite small.
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Table V. Accuracy of SV Schemes for Steady 1D Flow Through a Converging Nozzle Roe
Splitting, Gauss–Lobatto Points, Uniform SVs

Order of
Accuracy NDOF L. error L. order L1 error L1 order

24 1.40e − 2 – 2.78e − 3 –
48 3.24e − 3 2.11 5.42e − 4 2.36

2 96 7.18e − 4 2.17 1.15e − 4 2.24
192 1.57e − 4 2.19 2.63e − 5 2.13
384 3.72e − 5 2.08 6.25e − 6 2.07

24 8.69e − 3 – 7.21e − 4 –
48 1.10e − 3 2.98 9.77e − 5 2.88

3 96 1.79e − 4 2.62 1.39e − 5 2.81
192 2.64e − 5 2.76 1.85e − 6 2.91
384 3.48e − 6 2.92 2.36e − 7 2.97

24 5.66e − 3 – 5.13e − 4 –
48 3.47e − 4 4.03 2.56e − 5 4.32

4 96 3.94e − 5 3.14 1.55e − 6 4.05
192 1.88e − 6 4.39 7.78e − 8 4.32
384 1.02e − 7 4.20 4.09e − 9 4.25

24 1.75e − 3 – 1.35e − 4 –
48 8.30e − 5 4.39 3.66e − 6 5.20

6 96 1.73e − 6 5.58 5.77e − 8 5.99
192 4.80e − 8 5.17 8.67e − 10 6.06
384 5.86e − 10 6.36 1.10e − 11 6.30

Finally the performance of the SV method with non-uniform SVs is
assessed. The SVs were generated by perturbing the uniform grid 10% at
each grid point. Therefore, the size of the largest SV is 50% bigger than the
size of the smallest one. Roe’s flux splitting and PGL were employed in the
simulation, and the results are presented in Table VII. Note again that the
designed orders of accuracy have been achieved by all the schemes in both
the L1 and L. norms. It is obvious that the magnitudes of the errors are
higher on the non-uniform grids than those on the uniform grids.

4.3. Blast Wave Interaction Problem

This problem was suggested by Colella and Woodward [8], and has
been widely used to assess high-order accurate shock-capturing methods. It
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Table VI. Accuracy of SV Schemes for Steady 1D Flow Through a Converging Nozzle
Local Lax–Friedrichs Flux, Gauss–Lobatto Points, Uniform SVs

Order of
Accuracy NDOF L. error L. order L1 error L1 order

24 1.89e − 2 – 3.33e − 3 –
48 3.26e − 3 2.54 4.93e − 4 2.76

2 96 6.65e − 4 2.29 1.07e − 4 2.20
192 1.51e − 4 2.14 2.50e − 5 2.10
384 3.65e − 5 2.05 6.08e − 6 2.04

24 1.19e − 2 – 1.60e − 3 –
48 2.06e − 3 2.53 1.73e − 4 3.21

3 96 3.83e − 4 2.43 4.09e − 5 2.08
192 5.76e − 5 2.73 5.48e − 6 2.90
384 8.00e − 6 2.85 7.20e − 7 2.93

24 1.61e − 2 – 4.19e − 3 –
48 6.00e − 4 4.74 1.12e − 4 5.23

4 96 3.97e − 5 3.92 1.60e − 6 6.13
192 1.81e − 6 4.46 7.08e − 8 4.50
384 9.32e − 8 4.28 3.84e − 9 4.20

24 3.63e − 3 – 7.41e − 4 –
48 1.64e − 4 4.47 4.33e − 5 4.10

6 96 3.59e − 6 5.51 4.78e − 7 6.50
192 5.30e − 8 6.08 8.09e − 10 9.20
384 5.31e − 10 6.64 9.72e − 12 6.38

is selected here to test the shock capturing capability of the SV method.
The initial conditions are

Q(x, 0)=˛QL, 0 [ x [ 0.1,
QM, 0.1 [ x [ 0.9
QR, 0.9 [ x [ 1,

where

{rL, uL, pL}={1, 0, 1000}

{rM, uM, pM}={1, 0, 0.01}

{rR, uR, pR}={1, 0, 100}.

The boundaries at x=0 and x=1 are solid walls. The simulation was
carried out until t=0.038. For comparison purposes, a converged solution
using a second-order MUSCL scheme on a grid of 3,200 cells is used as the

148 Wang and Liu



Table VII. Accuracy of SV Schemes for Steady 1D Flow Through a Converging Nozzle Roe
Splitting, Gauss–Lobatto Points, Non-Uniform SVs

Order of
Accuracy NDOF L. error L. order L1 error L1 order

24 2.16e − 2 – 3.68e − 3 –
48 4.71e − 3 2.20 5.93e − 4 2.63

2 96 1.06e − 3 2.15 1.30e − 4 2.19
192 2.66e − 4 1.99 2.92e − 5 2.15
384 6.52e − 5 2.03 6.93e − 6 2.08

24 5.68e − 3 – 7.07e − 4 –
48 1.05e − 3 2.44 8.48e − 5 3.06

3 96 2.89e − 4 1.86 1.64e − 5 2.37
192 3.60e − 5 3.01 2.17e − 6 2.92
384 4.75e − 6 2.92 2.76e − 7 2.97

24 9.84e − 3 – 8.49e − 4 –
48 6.46e − 4 3.93 4.03e − 5 4.40

4 96 4.66e − 5 3.79 2.36e − 6 4.09
192 2.88e − 6 4.02 1.24e − 7 4.25
384 1.89e − 7 3.93 7.06e − 9 4.17

24 2.14e − 3 – 1.98e − 4 –
48 5.33e − 5 5.32 4.09e − 6 5.60

6 96 4.13e − 6 3.69 9.68e − 8 5.40
192 6.61e − 8 5.97 1.53e − 9 5.98
384 1.18e − 9 5.81 2.51e − 11 5.93

‘‘exact’’ solution. Component-wise TVD limiters and Roe flux splitting
were used in the computations. Gauss–Lobatto points were used to parti-
tion the SVs. The computed density profiles on two grids with 200 and
400 SVs using SV schemes of second to fourth orders are presented in
Figs. 2 and 3. Obviously, the second-order scheme with 200 SVs was not
able to capture the peak density, while the third and fourth order schemes
did a far better job. Even with 400 SVs, the second-order scheme still failed
to capture the density maximum, but the third and fourth-order schemes
produced excellent results. Note that again the results computed with the
SV method compare favorably to the results computed with the DG
method presented in [6].

4.4. Shock-Acoustic Wave Interaction Problem

This case was suggested by Shu and Osher [18] to demonstrate the
advantages of high-order schemes in capturing both discontinuities and
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Fig. 2. Density profiles computed with second to fourth order SV schemes on 200 SVs with
TVD Limiters. One data point from a SV is shown.
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Fig. 3. Density profiles computed with second to fourth order SV schemes on 400 SVs with
TVD limiters. One data point from a SV is shown.

Spectral Volume Method 151



complex smooth structures, such as those occurring in shock-acoustic wave
interactions. The initial conditions are

Q(x, 0)=3QL, x [ −4,
QR, x \ −4,

where

{rL, uL, pL}={3.857143, 2.629369, 10.333333}

{rR, uR, pR}={1+0.2 sin(5x), 0, 1}.

A converged solution using a second-order MUSCL scheme on a grid
of 3,200 cells is used as the ‘‘exact’’ solution. Roe’s flux splitting and PGL
were employed in the simulation. Two uniform grids with 200 and 400 SVs
were adopted. In the first set of tests, a TVD limiter was used, and the
results are plotted in Figs. 4–5. On the coarse mesh, the second-order SV
scheme heavily smeared the complex smooth structure, while the fourth-
order SV scheme gave excellent results. The solution computed with the
third-order SV scheme is between the results of second and fourth-order SV
schemes. On the fine mesh, both the third and fourth-order schemes yielded
excellent results, while the second-order scheme still smeared some of the
density waves. We also tested the SV schemes with the same DOFs, and a
TVB limiter using M=250, and the results are shown in Fig. 6. Note that
the smooth structures are much better resolved with the TVB limiter than
with a TVD limiter. The results computed with the third and fourth-order
SV schemes are excellent. A close-up view of the density profiles near the
complex structure with both TVD and TVB limiters are shown in Fig. 7.
Even with heavy limiting of the TVD limiter, the fourth-order scheme
produced the best solution, and the second-order scheme gave the worst
result. With a TVB limiter using a properly chosen M, both the third-order
and fourth schemes produced excellent results, though the second-order
scheme is still too dissipative.

5. CONCLUSIONS

The Spectral Volume method has been successfully extended to one-
dimensional hyperbolic systems of conservation laws. In addition, several dif-
ferent partitions have been identified, and tested with the scalar conservation
law. Although the Lebesgue constant is a good measure of partition quality, it
cannot be used to definitely predict which partition gives better numerical
solutions for a particular problem. All three partitions (PGL, P2, Pm,.)
achieved the expected order of accuracy, and are shown to be convergent.
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Fig. 4. Density profiles computed with second to fourth order SV schemes on 200 SVs with
TVD Limiters. One data point from a SV is shown.
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Fig. 5. Density profiles computed with second to fourth order SV schemes on 400 SVs with
TVD Limiters. One data point from a SV is shown.
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Fig. 6. Density profiles computed with second to fourth order SV schemes using 600 DOFs
and a TVB limiters (M=250).
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Fig. 7. Close-up view of the density profiles computed with second to fourth order SV
schemes using 600 DOFs and TVD and TVB Limiters.

An accuracy study with a steady subsonic flow through a converging
nozzle has verified that the designed high-order accuracy can be achieved in
the system setting. The SV method performed very well for the unsteady
cases with discontinuities, and both discontinuities and complex smooth
structures. In particular, TVB limiters performed better than TVD limiters
for smooth structures. The extension to 2D Euler equations is now under
way, and will be reported in a future publication.
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