
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Progress in Aerospace Sciences 43 (2007) 1–41

High-order methods for the Euler and Navier–Stokes
equations on unstructured grids

Z.J. Wang�

Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Ames, IA 50011, USA

Available online 19 July 2007

Abstract

This article reviews several unstructured grid-based high-order methods for the compressible Euler and Navier–Stokes

equations. We treat the spatial and temporal discretizations separately, hoping that it is easier to spot the similarities and

differences of various types of methods. Our main focus is to present the basic design principles of each method, and

highlight its pros and cons when appropriate. Sample computational results are shown to illustrate the capability of

selected methods. These high-order methods are expected to be more efficient than low-order methods for problems

requiring high accuracy, such as wave propagation problems, vortex-dominated flows including high-lift configuration,

helicopter blade vortex interaction, as well as large eddy simulation and direct numerical simulation of turbulence. We

conclude the paper with several current challenges in the proliferation of high-order methods in the aerospace community.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Computational fluid dynamics (CFD) has under-
gone tremendous development as a discipline for
three decades, and is used routinely to complement
the wind tunnel in the design of aircraft [1,2]. This
has been made possible by progresses in many
fronts, including numerical algorithms for the
Navier–Stokes equations, grid generation and
adaptation, turbulence modeling, flow visualization,
as well as the dramatic increase in computer CPU
and network speeds. Nearly all production flow
solvers are based on second-order numerical meth-
ods, either finite volume (FV) [3–8], finite difference
(FD) [9–11] or finite element (FE) [12–17,163]. They
are capable of delivering design-quality Reynolds
Averaged Navier–Stokes (RANS) results with
several million cells (degrees of freedom or DOFs)
on commercial Beowulf clusters within a few hours.

As impressive as these second-order codes are,
there are still many flow problems considered out of
reach, e.g., vortex-dominated flows including heli-
copter blade vortex interaction, and flow over high-
lift configurations [2]. Unsteady propagating vortices
are the main features of these flow problems, and
second-order methods are too dissipative to resolve
those unsteady vortices. High-order methods (order
of accuracy 42) have shown promise in handling
such flows. For example, high-order compact meth-
ods were demonstrated to produce much better
results than low-order ones [18,19]. In order to limit
the scope of the present paper, we only discuss
unstructured grid-based high-order methods. Inter-
ested readers can refer to a comprehensive review
article by Ekaterinaris [20] published in this journal
for high-order methods on structured grids.

The advantage of high-order methods is well
known. The error of a numerical method is said to
be order k þ 1 if the solution error e decreases with

mesh size h according to

e / hkþ1.

For a fourth order scheme, if the grid size halves,
the error should be 1

16
of that on the coarse mesh.

The number of solution unknowns or DOFs in a
simulation is of course closely related to the mesh
size and the order of accuracy of the numerical
method. These DOFs can be the solutions at certain
grid locations (e.g., for FD and FE methods), or the
averaged solutions in control volumes (e.g., for FV
method), or the expansion coefficients of the
solution with respect to a basis set (e.g., for mode-
based spectral and spectral element methods). In
FD and FV methods, each grid point or cell has one
DOF. Then the total number of solution unknowns
is related to the mesh size according to

NDOFs /
1

hd
,

where d is the physical dimension (1, 2 or 3). In the
discontinuous Galerkin (DG) [21] and spectral
volume (SV) [22,23] methods, for example, each
simplex element or cell has multiple DOFs, depend-
ing on the order of accuracy k þ 1 (with a degree k

polynomial reconstruction). The total number of
DOFs is then

NDOFs /
mk;d

hd
,

where mk;d is the number of unknowns in an
element sufficient to reconstruct a degree k poly-
nomial and is given by

mk;d ¼

Qd
i¼1ðk þ iÞ

d!
. (1)

The subscripts in mk;d will be often omitted if there
is no confusion. In this paper, we assume an optimal
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order of accuracy k þ 1 whenever the reconstruction
polynomial is of degree k.

When comparing the cost and accuracy between
different methods, it is important to ‘‘level the
playing field’. It is obvious that the mesh size is not
the only parameter deciding the total cost. For
example, on a given mesh, a second-order DG
scheme should produce a much more accurate
solution than a second-order accurate FV scheme
because there are multiple DOFs in a single element
in the DG method. On the other hand, the cost of
the DG method on the same mesh should be much
higher than that of the FV method for the same
reason. Therefore, it is much fairer to compare the

DG and FV methods in terms of the cost and
accuracy for the same number of DOFs.

In order to decide which method should be used
for a particular application, a generic plot showing
the rate of convergence in terms of NDOFs is
helpful. For a fixed order of accuracy k þ 1, h-
refinement (mesh size refinement) produces a con-
stant rate of convergence as shown in Fig. 1a, which
is called ‘‘algebraic convergence’’. The order of
accuracy is the ‘‘constant’’ slope of logðeÞ vs.
½logðNDOFsÞ�=d. On a fixed mesh, p-refinement
(polynomial order refinement) produces a variable
rate of convergence, which increases with the
NDOFs. This is called ‘‘exponential convergence’’
or ‘‘spectral convergence’’, as shown in the same
figure. The convergence rate is obviously much
faster than algebraic convergence with increasing
NDOFs. If these figures are plotted in a linear–log
scale, one obtains Fig. 1b. In this scale, exponential
convergence is a straight line, while algebraic
convergence displays a deteriorating rate with
increasing NDOFs. We want to point out that
exponential convergence can be achieved only when
the solution is very smooth with continuous high-
order derivatives. Otherwise, algebraic convergence
is expected even with p-refinement.

It is obvious that with the same NDOFs, higher-
order methods should produce less solution errors
than lower-order ones. Then why are they not used
as widely as lower-order methods in the CFD
community? There are several reasons. First, high-
er-order methods are generally not as robust as
lower-order ones. Convergence to steady state can
stall or in the worst case diverge. In transonic and
supersonic flows with discontinuities, high-order
methods usually lack the robust and versatile shock-
capturing capability expected and found in lower-
order ones. Second, the spatial operators in high-
order methods are much stiffer than lower-order
ones. As a result, it is much more challenging to
converge a high-order simulation to steady state. If
simple explicit methods are used for high-order
operators, the allowable CFL number is much
smaller than for low order ones. Given the fact
that computational grids are highly clustered near
solid boundaries to resolve the viscous boundary
layer, explicit high-order methods are usually not
competitive against well established implicit lower-
order methods in terms of the error and cost ratio.
Third, for certain types of design problems, lower-
order methods are capable of meeting the accuracy
requirement with a reasonable cost in human and
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computer resources. For example, the lift and drag
of commercial airplanes under cruise conditions can
often be accurately predicted using RANS simula-
tions on low cost Beowulf clusters. In this case, the
need is simply not there to invest in developing the
capability and revising the design process to
accommodate high-order simulations. Many years
of experience in grid generation, validation and the
CFD process would need to be re-examined and
updated.

Ultimately, the deciding factor in choosing one
method over another is the ratio of accuracy over
cost. For example, if an error of 5 drag counts is
acceptable, then whichever method costs the least
CPU time will be the choice. Let us simplify our
discussion by considering steady problems only.
The cost of converging a flow simulation to steady
state is related to the NDOFs in the following
expression:

Cost / ðNDOFsÞcðkÞ,

where c is larger than 1 and usually dependent on k.
When c ¼ 1, the method is optimum and is said to
be OðNÞ (costing OðNDOFsÞ operations). Although
it is possible to achieve OðNÞ cost with advanced
solution methods (such as multigrid) for relatively
simple problems, general OðNÞ methods for the
compressible Navier–Stokes equations for complex
configurations are yet to be developed. Usually
higher-order solvers have slower convergence rate.
If we combine Fig. 1 with this cost estimate, we
obtain a generic error vs. cost plot, shown in Fig. 2.

Based on the error requirement, one can then
choose the most cost effective method. It is very
clear from the figure that the higher the accuracy
requirement, the more high-order methods are
favored. It is no wonder in the computational
aeroacoustics (CAA) community, low-order meth-
ods are rarely used for wave propagation problems
because of the stringent requirement on the dissipa-
tion and dispersion characteristics.

Given a fixed number of DOFs, the highest
accuracy is achieved with the spectral method
[24,25,161] on one single element. The obvious
drawback of the spectral method is the difficulty in
mapping a complex computational domain into a
single element. To alleviate this difficulty, spectral
element or multidomain spectral methods have been
developed by various researchers [26–28], for
various cell types including simplexes [29,30]. These
methods strike a good compromise between accu-
racy and geometric flexibility. In fact, all methods
discussed in this paper share this compromise.

The paper is organized as follows. In the next
session, we present the governing equations. After
that, spatial discretization methods are discussed.
Main features of the k-exact FV, essentially non-
oscillatory (ENO), weighted ENO (WENO), con-
tinuous FE, DG, residual distribution (RD), SV and
spectral difference (SD) methods are reviewed,
followed by some example computational results.
Next, time integration and iterative solution meth-
ods are described, starting from explicit Runge–
Kutta method, then various implicit solution
approaches and finally hp-multigrid methods. We
conclude the paper by presenting several current
challenges in high-order methods.

2. Governing equations

Consider the unsteady compressible Navier–
Stokes equations written in conservative form

qQ

qt
þ r � ~F ðQ;rQÞ

�
qQ

qt
þ r � ½~F iðQÞ � ~FvðQ;rQÞ� ¼ 0, ð2Þ

where Q is the vector of conserved variables
Q ¼ fr;r~v;Etg

T, ~F is the total flux vector including
both the inviscid flux vector ~F i and viscous flux
vector ~Fv. Let the computational domain be
O � Rd , with the dimension d ¼ 1; 2; 3. The bound-
ary of O is qO and its outward unit normal is ~n.
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The weighted residual form of the governing
equations can be easily derived by multiplying (2)
with an arbitrary weighting function W and
integrating over the computational domain to
obtain

Z
O

qQ

qt
þ r � ~F ðQ;rQÞ

� �
W dV

¼

Z
O

qQ

qt
W dV þ

Z
qO

W ~F ðQ;rQÞ �~ndS

�

Z
O
rW � ~F ðQ;rQÞdV ¼ 0. ð3Þ

In the special case of W ¼ 1, the following integral
form of the governing equations is obtained:

Z
O

qQ

qt
dV þ

Z
qO

~F ðQ;rQÞ �~n dS ¼ 0. (4)

This easy to understand, yet elegant form must have
contributed to the popularity of the FV method in
the CFD community! The convective and diffusive
parts of the governing equations have very different
physical behavior and are often treated differently
[31]. For example, during the development of shock-
capturing methods, the most attention was paid to
the discretization of inviscid fluxes, as shock waves
are characteristics of hyperbolic equations. There-
fore it is often fruitful to consider a subset of the
Navier–Stokes equations, i.e., the Euler equations,
especially in the initial stage of new method
development. The Euler equations are obtained if
we drop the viscous fluxes. If we use the notation
~F ðQÞ instead of ~F ðQ;rQÞ, we assume the Euler
equations.

In the implementation of many numerical meth-
ods, it is often more efficient to map a physical
element (or cell) into a standard element. The
governing equations should also be transformed
from the physical domain to the computational
domain. Consider the following transformation:

x ¼ xðx; Z; zÞ,

y ¼ yðx; Z; zÞ,

z ¼ zðx; Z; zÞ, (5)

with a non-singular Jacobian

J ¼
qðx; y; zÞ
qðx; Z; zÞ

¼

xx xZ xz

yx yZ yz

zx zZ zz

2
64

3
75.

Its inverse transformation exists, and relates to the
Jacobian according to

qðx; Z; zÞ
qðx; y; zÞ

¼

xx xy xz

Zx Zy Zz

zx zy zz

2
64

3
75 ¼ J�1.

Hence the metrics can be computed using

xx ¼ ðyZzz � yzzZÞ=jJj; xy ¼ ðxzzZ � xZzzÞ=jJj,

xz ¼ ðxZyz � xzyZÞ=jJj,

Zx ¼ ðyzzx � yxzzÞ=jJj; Zy ¼ ðxxzz � xzzxÞ=jJj,

Zz ¼ ðxzyx � xxyzÞ=jJj,

zx ¼ ðyxzZ � yZzxÞ=jJj; zy ¼ ðxZzx � xxzZÞ=jJj,

zz ¼ ðxxyZ � xZyxÞ=jJj.

The governing equations in the computational
domain take the following form:

q ~Q
qt
þrx �

~~F ¼ 0, (6)

where ~Q ¼ jJj �Q and ~~F ¼ jJjJ�1 � ~F .
In order to present basic ideas in the easiest way

to understand fashion, the following scalar wave
equation is often considered:

qu

qt
þ r � ðu~aÞ �

qu

qt
þ~a � ru ¼ 0, (7)

where u is a (scalar) state variable, and ~a is the wave
velocity vector. The viscous effects can be included
by adding a scalar diffusion term

qu

qt
þ~a � ru ¼ mr2u, (8)

where m is the viscosity. In one dimension, (8)
degenerates to

qu

qt
þ a

qu

qx
¼ m

q2u
qx2

; a40; mX0. (9)

When m ¼ 0, (9) becomes

qu

qt
þ a

qu

qx
¼ 0, (10)

which is perhaps the most popular model equation
in CFD – the 1D scalar wave equation.

3. Space discretization methods

In this section, the basic formulations of several
numerical methods on unstructured grids are
described. For simplicity, we consider 2D problems.
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The computational domain O is discretized into N

non-overlapping polygonal elements (cells) V i, with
volume jV ij. In most cases, we consider triangular
elements in 2D.

3.1. K-Exact FV and ENO/WENO methods

The high-order k-exact method was developed by
Barth and Frederickson [32]. It belongs to a general
class of Godunov-type FV methods. This type of FV
methods can trace its root to the first-order Godunov
method [33], which was later extended to second-order
by van Leer [34,35], third order by Colella and
Woodward [36], and to arbitrary order of accuracy by
Harten et al. [37], all on structured grids. With the
explosive adoption of unstructured grids in the CFD
community, the Godunov-type method was extended
to unstructured grids [3,4,6,38–45]. In fact, most of the
unstructured grid-based production CFD codes and
commercial codes use the second-order version.
Furthermore, ideas from the ENO [37,162] methods
were also extended to unstructured grids by many
researchers [46–49]. WENO schemes were developed
later to improve upon ENO schemes, in Liu et al. [50]
and Jiang and Shu [51], and also extended to
unstructured grids by Friedrich [52], and Hu and
Shu [53]. Advantages of WENO schemes over ENO
include the smoothness of numerical fluxes, better
steady-state convergence, and better accuracy using
the same stencils. For a review of ENO and WENO
schemes, see [54]. Since these methods differ only in
solution reconstruction, they are described together.

Applying the integral form of the Euler equations
to control volume Vi, we obtain the following semi-
discrete FV scheme:

dQi

dt
jVij þ

Z
qVi

~F ðQÞ �~ndS ¼
dQi

dt
jV ij

þ
X

f2qVi

Z
f

~F ðQÞ �~ndS ¼ 0, ð11Þ

where Qi � ð1=jVijÞ
R

Vi
QdV is the volume aver-

aged state variable. Define the face averaged normal
flux to be

Ff ¼

R
f
~F ðQÞ �~ndS

jf j
, (12)

where jf j is the area of face f . Then (11) can be
further written as

dQi

dt
jV ij þ

X
f2qVi

Ff jf j ¼ 0. (13)

Mathematically (13) is equivalent to (2) if the
solution is sufficiently smooth. In a numerical
approximation, however, Ff can rarely be com-
puted exactly even if Qi is known. For simplicity, we
use polynomials to approximate the solution. In
spite of this, the normal flux is usually not a
polynomial. Instead, a Gaussian quadrature for-
mula is employed to compute the face integral

Ff �
X

q

wq
~F ð~rf ;qÞ �~nf , (14)

where ~rf ;q is the Gauss quadrature point and wq the
quadrature weight. The total number of quadrature
points is determined based on the desired quad-
rature precision. For example, one point is used for
linear reconstruction, but two points are needed for
quadratic and cubic reconstructions. Because state
variables are approximated by piece-wise polyno-
mials, the solution is discontinuous across cell
interfaces. According to Godunov, the interface
normal flux is replaced by a Riemann flux

~F ð~rf ;qÞ �~nf � F̂ ðQ�ð~rf ;qÞ;Q
þð~rf ;qÞ;~nf Þ, (15)

where Q� and Qþ are the reconstructed solutions
inside element V i and outside V i (or inside the
neighboring cell). The simplest Riemann flux is the
Rusanov flux [55]

F̂ ðQ�ð~rÞ;Qþð~rÞ;~nÞ � 1
2
½~F ðQ�ð~rÞÞ �~nþ ~F ðQþð~rÞÞ �~n

� lðQþð~rÞ �Q�ð~rÞÞ�, ð16Þ

where l is the maximum absolute wave speed
in direction ~n, evaluated at an average state of Q�

and Qþ. Other more sophisticated approximate
Riemann solvers can also be used [56–58,165]. All
FV- type methods (k-exact, ENO and WENO) are
identical up to now, and they differ only in how the
solution is reconstructed given the cell averaged state
variables. The reconstruction problem reads: con-
struct a degree k polynomial pið~rÞ given the cell
averaged means at a local stencil SifQjgj2Si

such that
pð~rÞ is a ðk þ 1Þth order approximation of Q, i.e.,

pið~rÞ ¼ Qð~rÞ þOðhkþ1
Þ. (17)

3.1.1. k-Exact reconstruction

The k-exactness property means that if the
solution is a degree k or lower polynomial, the
solution is reconstructed exactly. Another property
which any reconstruction must satisfy is conserva-
tion, i.e., the mean of the reconstructed polynomial
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on V i must be QiR
Vi

pið~rÞdV

jV ij
¼

R
Vi

Qð~rÞ

jV ij
� Qi. (18)

Let the centroid of V i be ~ri ¼ ðxi; yiÞ. The mean
preserving property can be easily satisfied using the
following Taylor expansion:

pið~rÞ ¼ Qi þ
qQi

qx
ðx� xiÞ þ

qQi

qy
ðy� yiÞ

þ
q2Qi

qxqy
½ðx� xiÞðy� yiÞ � xiyi�

þ
1

2

q2Qi

qx2
½ðx� xiÞ

2
� x2

i �

þ
1

2

q2Qi

qy2
½ðy� yiÞ

2
� y2

i � þ � � � , ð19Þ

where

xiyi ¼
1

jV ij

Z
V i

ðx� xiÞðy� yiÞdV ,

x2
i ¼

1

jV ij

Z
Vi

ðx� xiÞ
2 dV ,

y2
i ¼

1

jV ij

Z
V i

ðy� yiÞ
2 dV . ð20Þ

The above equation can be viewed as an ex-
pansion with respect to a set of zero mean basis
functions (except the first term) for degree k

polynomials fjlð~rÞg
m�1
l¼1

pið~rÞ �Qi ¼
Xm�1
l¼1

bljlð~rÞ, (21)

where bl is the expansion coefficient. We need at
least m� 1 neighboring cells in the local stencil to
compute the coefficients. To determine these coeffi-
cients, we again require that the polynomial also is
mean preserving in the local stencil

R
Vj

pið~rÞdV

jV jj
¼

Pm�1
l¼1 bl

R
Vj

jlð~rÞdV

jV jj
þQi ¼ Qj,

8j 2 Si. ð22Þ

A compact form of (22) is

Ab ¼ Q, (23)

where matrix A has elements aj;l ¼
R

Vj
jlð~rÞdV=jV jj,

b ¼ fblg
m�1
l¼1 and Q ¼ fQj �Qigj2Si

. For (23) to

have a solution, there must be at least m� 1
neighboring cells in Si. Generally speaking, the
larger the stencil, the more stable the reconstruction
is. In practice, in order to prevent singular stencils,
more than m� 1 neighboring cells are included in
the stencil. Therefore (23) is solved in the least-
squares sense, which can be expressed using the
following pseudo-inverse:

b ¼ Aþ1Q. (24)

Substituting (24) into (21), we obtain

pið~rÞ �Qi ¼ Yð~rÞb ¼ Yð~rÞAþQ, (25)

where Yð~rÞ ¼ fj1ð~rÞ; . . . ;jm�1ð~rÞg. Denote Lð~rÞ ¼
Yð~rÞAþ. Finally the reconstruction can be written as

pið~rÞ �Qi ¼ Lð~rÞQ. (26)

In an actual numerical implementation, it is the most

efficient to store the values of ~Lð~rÞ at the Gauss

quadrature points. Lð~rÞ is dependent only on the grid
and the local stencil, and can be pre-computed and
stored. However, since a set of coefficients must be
stored for every quadrature point, and each element
has different sets of coefficients, the memory
requirement in 3D for a high-order k-exact scheme
may be large [59].

For flow problems involving discontinuities, the
high-order reconstruction is oscillatory due to the so-
called Gibbs phenomenon. Data limiting becomes
necessary to avoid non-physical state such as negative
pressure or density. A popular approach developed
by Barth and Jespersen [5] is to limit the reconstructed
polynomial to satisfy a local maximum principle

minfQi;Qjjj2Si
gppið~rÞpmaxfQi;Qjjj2Si

g; ~r 2 V i.

(27)

If pið~rÞ is linear, it is relatively easy to guarantee (27)
because the minimum and maximum occur at the
cell vertices. Otherwise, the extremes can occur any
where in the cell. If the maximum principle (27) is
violated, the solution is assumed locally linear

pið~rÞ ¼ Qi þ rQi � ð~r�~riÞ, (28)

where rQi can be computed using a linear least
squares reconstruction including only the immediate
face neighbors. If (28) still violates the maximum
principle, the solution gradient is reduced until (27)
is satisfied by introducing a scalar limiter function

pið~rÞ ¼ Qi þCirQi � ð~r�~riÞ, (29)
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with Ci 2 ½0; 1�. A weaker condition than (27) is that
the solutions at all the quadrature points are
bounded by the minimum and maximum mean.
This condition is very easy to enforce, but does not
guarantee (27).

3.1.2. ENO and WENO reconstruction

The basic idea in an ENO reconstruction is to
adaptively select the ‘‘smoothest’’ one from a set of
candidate reconstructions built from several differ-
ent local stencils. For a degree k ENO reconstruc-
tion, there must exist at least two different stencils
supporting a degree k polynomial reconstruction.
After that, the smoothest reconstruction is selected
based on a smoothness criterion. Finally this
polynomial is used to compute the state variables
at the Gauss quadrature points, which are employed
to compute the Riemann fluxes for a FV update of
the DOFs. Refer to Fig. 3. For cell i, the following
three candidate stencils can be identified:

Si;1 ¼ fVi;V 1a;V 1b;V 1cg,

Si;2 ¼ fVi;V 2a;V 2b;V 2cg,

Si;3 ¼ fVi;V 3a;V 3b;V 3cg.

Each stencil can be used to produce a unique linear
polynomial resulting in a total of three reconstructions
fpi;jð~rÞg

3
j¼1. A possible measure of solution smooth-

ness is the norm of the reconstruction polynomial
gradient jrpi;jð~rÞj. One can select the polynomial
with the minimum norm. Since the reconstruction is
linear, the resultant ENO scheme is only second-
order accurate although a total of nine neighboring
cells are used.

In a WENO reconstruction developed by Hu and
Shu [53], a key step in building a high-order WENO
scheme based on lower-order polynomials is carried
out in the following. We want to construct several
linear polynomials whose weighted average will give
the same result as the quadratic reconstruction p2

i ð~rÞ
at each quadrature point (the weights are different
for different quadrature points). More specifically,
the following nine linear polynomials are built by
agreeing with the cell averages of the solution on the
following stencils: pi;1 (on triangles: i; 1a; 2a), pi;2

(on triangles: i; 2a; 3a), pi;3 (on triangles:
i; 3a; 1a), pi;4 (on triangles: i; 1a; 1b), pi;5 (on
triangles: i; 1a; 1c), pi;6 (on triangles: i; 2a; 2b), pi;7

(on triangles: i; 2a; 2c), pi;8 (on triangles: i; 3a; 3b),
pi;9 (on triangles: i; 3a; 3c). For each quadrature
point ~rq, linear weights gj are found, which are
constants depending only on the local geometry of
the mesh, such that the linear polynomial obtained
from a linear combination of these pi;jð~rÞ:

pið~rÞ ¼
X9
j¼1

gjpi;jð~rÞ (30)

satisfies

pið~rqÞ ¼ p2
i ð~rqÞ, (31)

where p2
i ð~rÞ is the quadratic k-exact reconstruction

using the cell averages on all nine neighboring cells,
as shown in Fig. 3. Obviously, for degree 0 and 1
polynomials, any weights satisfying

X9
j¼1

gj ¼ 1 (32)

are solutions of (31). More details on how these
weights are determined are contained in [53].

Another major step in the WENO reconstruction
is to find positive non-linear weights, which return
the high-order weights in smooth region. For
stencils containing a shock wave, the non-linear
weights for those stencils should be very small. To
ensure stability near shocks, we need non-negative
weights, and thus we need non-negative linear
weights to start with. A grouping of polynomials
is used by Hu and Shu [53] to achieve positivity. For
example, the nine linear polynomials are combined
into three groups

X9
j¼1

gjpi;jð~rÞ ¼
X3
j¼1

~gj ~pi;jð~rÞ. (33)
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Each ~pi;jð~rÞ is still a linear polynomial with positive
coefficients ~gj. Finally the smoothness indicator due
to Jiang and Shu [51] is used. For a polynomial pð~rÞ
with degree up to k, we define the following
measurement for smoothness:

X ¼
X

1pjfjpk

Z
V i

jVij
jfj�1½Dfpð~rÞ�2 dV , (34)

where f is a multi-index and D is the derivative
operator. The non-linear weights are then defined as

$j ¼
~$jP
l ~$l

; ~$l ¼
~gl

ðeþ XlÞ
2
, (35)

where Xl is the smoothness indicator for polynomial
~pi;lð~rÞ, and e is a small positive number [53].
To demonstrate the capability of the WENO

method, a sample computational example of double
Mach reflection by Hu and Shu [53] is shown here.
This problem is originally from [60]. The computa-
tional domain for this problem is chosen to be
½0; 4� � ½0; 1�. The reflecting wall lies at the bottom of
the computational domain starting from x ¼ 1

6.
Initially a right-moving Mach 10 shock is positioned
at x ¼ 1

6
; y ¼ 0 and makes a 60	 angle with the

x-axis. For the bottom boundary, the exact post-
shock condition is imposed for the region from x ¼

0 to 1
6
and a solid wall boundary condition is used

for the rest. For the top boundary of the computa-
tional domain, the solution is set to describe the
exact motion of the Mach 10 shock. The left
boundary is set as the exact post-shock condition,
while the right boundary is set as outflow boundary.
The computed density contours using the third- and
fourth-order WENO scheme on a mesh with h ¼ 1

400

are displayed in Fig. 4, and enlarged views of the
same plots around the double Mach stems are
shown in Fig. 5. In both computations, regular
triangular grids were used. Since each cell has one
DOF, the total number of DOFs is 1.28 million for
both simulations. We can clearly see that the fourth-
order scheme resolved the complicated flow struc-
ture under the triple Mach stem much better than
the third-order scheme, and the discontinuities are
captured with high resolution.

3.2. Continuous FE methods

In this subsection, high-order FE methods
employing continuous polynomials across element
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Fig. 4. Computed density contours using WENO schemes for the double Mach reflection problem (courtesy of Hu and Shu [53]).

(a) Third-order WENO (1.28M DOFs), (b) fourth-order WENO (1.28M DOFs).
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interfaces are briefly discussed. There is a vast
literature on these methods, and interested readers
should consult many well-known books and review
articles [14,61–66,160] for more details. It is well
known that the continuous Galerkin method is not
stable for the wave equation, similar to the fact that
the central FD scheme is unstable. To illustrate this
point, consider the 1D wave equation on domain
½0;X � with uniform mesh size h ¼ X=N and a
periodic boundary condition. The DOFs are the
solutions at the grid points fuig

N
i¼1. The approximate

solution in the computational domain is piece-wise
linear with the following hat basis function:

ji ¼

½x� ði � 1Þh�=h ði � 1Þhpxoih;

½ði þ 1Þh� x�=h; ihpxoði þ 1Þh;

0 otherwise:

8><
>: (36)

The solution can be written as

uh ¼
XN

i¼1

jiui. (37)

The Galerkin weighted residual statement for the
wave equation is then

d

dt

XN

i¼1

ui

Z X

0

jijj dxþ ðjjauÞjX0

�

Z X

0

djj

dx
a
XN

i¼1

jiui dx ¼ 0; 8j ¼ 1; . . . ;N.

ð38Þ

A simplification of (38) gives

1

6

duj�1

dt
þ

2

3

duj

dt
þ

1

6

dujþ1

dt
þ a

ujþ1 � uj�1

2h
¼ 0,

8j ¼ 1; . . . ;N. ð39Þ

A coupled tri-diagonal system with central differ-
ence for the space derivative is obtained, which has
no numerical dissipation. Many types of stabilizing
techniques have been developed in the FE commu-
nity to remedy the stability problem. Examples
include the streamline upwind Petrov–Galerkin
(SUPG) [14], Galerkin/least squares [15,65–67],
Taylor Galerkin method [17] amongst many others.
To understand the basic idea, we present the SUPG
here. Consider the FD upwind scheme for the wave
equation

dui

dt
¼ �a

ui � ui�1

h
. (40)

The modified equation for (40) is simply

qui

qt
þ a

qui

qx
¼

ah

2

q2ui

qx2
þ � � � . (41)

To mimic this upwind idea in the Galerkin FE
method, one can apply the Galerkin approach to
solve qu=qtþ aqu=qx� ðah=2Þq2u=qx2 ¼ 0 instead
of the original wave equation, i.e.,

Z X

0

W
qu

qt
þ a

qu

qx
�

ah

2

q2u
qx2

� �
dx

¼

Z X

0

W
qu

qt
þ

Z X

0

a W þ
h

2

dW

dx

� �
qu

qx
dx

�
ahW

2

qu

qx

����
X

0

¼ 0. ð42Þ

If we ignore the unsteady and boundary terms (for
the wave equation, qu=qx is usually not given at
boundaries and can be safely assumed 0), (42) can
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Fig. 5. Close-up view of the density contours for the double
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be interpreted as using a new weighting function

W 0 ¼W þ
h

2

dW

dx
. (43)

for the original wave equation. This is the basic idea
of the SUPG [14]. An equivalent interpretation is
adding the following stabilization term to the
Galerkin formulation:

Z X

0

ah

2

dW

dx

qu

qx
dx. (44)

One can also adjust the amount of artificial
dissipation by introducing a parameter a 2 ½0; 1�.
For the 2D wave equation, the corresponding
weight and stabilization terms including a are

W 0 ¼W þ
ah

2j~aj
ð~a � rW Þ, (45)

Z
O

ah

2j~aj
ð~a � rW Þr � ð~auÞdV , (46)

where h is the approximate local mesh size in the flow
direction. Eq. (45) can be further simplified by
defining t ¼ ah=2j~aj, which is a time scale related to
the wave speed and local mesh size. For the Euler and
Navier–Stokes equations, they can be generalized as

W 0 ¼W þ tð~J � rW Þ, (47)

Z
O
tð~J � rW Þr � ~F dV , (48)

where ~J ¼ q~F=qQ, and t is a time-scale matrix.
Many different ways exist in the literature on how
to choose t [14,63,68].

It is obvious that for the 2D wave equation, the
SUPG scheme is linear in the DOFs. The scheme may
not be stable for discontinuities. In practice, ad hoc
shock-capturing terms must be added for stability for
strong shock waves. As noted by Venkatakrishnan
et al. [69], no shock-capturing terms can guarantee
stability in SUPG for general cases.

3.3. DG methods

The DG FE method was originally developed by
Reed and Hill [70] to solve the neutron transport
equation. The development of the DG method for

hyperbolic conservation laws was pioneered by
Cockburn, Shu and their collaborators in a series of
papers on the Runge–Kutta DG (RKDG) method
[21,71–73]. Bassi and Rebay demonstrated the DG
method for the compressible Euler and Navier–Stokes
equations in obtaining high-order accuracy [74–76].
Many other researchers made significant contributions
in the development of the DG method, e.g., [77–86].
Refer to [87] for a comprehensive review on the DG
history and literature.

In the past decade, there has been an explosive
interest in the DG method because of its attractive
features. The DG method combines two unique
characteristics of the FV and FE methods, i.e., the
physics of wave propagation being accounted for by
means of Riemann solvers, and high accuracy
obtained using high-order polynomials within ele-
ments. Due to the compactness of the discretization,
the DOFs associated with any element are coupled
only with those of the neighboring elements sharing
a face. This feature makes the DG method ideally
suited for parallel computers. This compactness also
results in highly sparse matrices in a linearized
implicit time integration scheme.

To present the basic idea, consider the 2D
Navier–Stokes equations (2). Again the approximate
solution is a piece-wise polynomial of degree k or less
with basis fjjð~rÞg

m
j¼1. Therefore the solution on V i is

Qð~r; tÞ � pð~r; tÞ ¼
Xm

j¼1

ujðtÞjjð~rÞ. (49)

Applying the weighted residual form to element V i,
we obtain

d

dt

Z
Vi

WQdV þ

Z
qVi

W ~F ðQ;rQÞ �~ndS

�

Z
Vi

rW � ~F ðQ;rQÞdV ¼ 0. ð50Þ

Because the solution is discontinuous across element
interfaces, the normal flux across the interface is not
uniquely defined. To couple the neighboring elements,
the normal flux in (50) is replaced with a common
numerical flux (the Riemann flux in the case of
inviscid flow) computed based on the solutions and
gradients on both element V i and its neighbor

~F ðQ;rQÞ �~n � F̂ ðQ�;rQ�;Qþ;rQþ;~nÞ, (51)

where Q� and rQ� are the solution and gradients on
V i, Qþ and rQþ are from the neighboring element.
The inviscid flux is just the Riemann flux used in the
FV method, depending on Q�, Qþ and the unit
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normal. The computation of the viscous flux has been
addressed by many researchers [75,76,78,88,89], and it
was shown a naı̈ve treatment causes degradation in
accuracy or loss of consistency. Here we present two
popular approaches to compute viscous fluxes in the
DG context, the local DG approach by Cockburn and
Shu [90] and a compact approach due to Bassi and
Rebay [76]. Introduce an auxiliary variable ~G ¼ rQ.
The Navier–Stokes equations become the following
system of two first-order equations:

~G ¼ rQ,

qQ

qt
þ r � ½~F iðQÞ � ~FvðQ; ~GÞ� ¼ 0. (52)

Applying the DG discretization to the these
equations, we obtainZ

Vi

W ~G dV ¼ �

Z
Vi

QrW dV þ

Z
qVi

WQ̂~ndS,

(53)

d

dt

Z
Vi

WQdV þ

Z
qVi

WF̂ iðQ
�;Qþ;~nÞdS

þ

Z
qVi

W ~FvðQ̂; ĜÞ �~ndS �

Z
Vi

rW � ~F ðQ; ~GÞ dV ¼ 0.

ð54Þ

In (53) and (54), since Q and ~G are discontinuous
across element interfaces, they have been replaced
with ‘‘numerical fluxes’’ Q̂ and Ĝ in the surface
integrals. In Bassi and Rebay original approach
[75], simple averages were used for the numerical
fluxes, i.e.,

Q̂ ¼ ðQ� þQþÞ=2,

Ĝ ¼ ð~G
�
þ ~G

þ
Þ=2. (55)

Cockburn and Shu [90] showed optimal conver-
gence with the following choice of numerical fluxes:

Q̂ ¼ Qþ,

Ĝ ¼ ~G
�
. (56)

Bassi and Rebay later improved their original
approach with a more compact and more accurate
one outlined next [76]. Rewrite (53) as

Z
Vi

W ð~G � rQÞdV ¼

Z
qV i

W ðQ̂�Q�Þ~ndS. (57)

Define the ‘‘element’’ correction as ~R ¼ ~G �rQ.
Then obviously we have
Z

Vi

W ~RdV ¼

Z
qV i

W ðQ̂�Q�Þ~ndS

¼
X

f2qVi

Z
f

W ðQ̂�Q�Þ~ndS. ð58Þ

Let ~Rf be the correction due to face f computed
according to
Z

Vi

W ~Rf dV ¼

Z
f

W ðQ̂�Q�Þ~ndS. (59)

Then the following relation between ~R and ~Rf

holds:

~R ¼
X

f2qVi

~Rf . (60)

Finally the numerical flux becomes

d

dt

Z
V i

WQdV þ

Z
qV i

WF̂ iðQ
�;Qþ;~nÞdS

þ
X

f2qVi

Z
f

WF̂vðQ
�;rQ� þ ~R

�

f ;Q
þ;rQþ

þ ~R
þ

f ;~nÞdS �

Z
Vi

rW � ~F ðQ;rQþ ~RÞdV ¼ 0.

ð61Þ

The viscous numerical flux is computed using simple
averages

F̂ vðQ
�;rQ� þ ~R

�

f ;Q
þ;rQþ þ ~R

þ

f ;~nÞ

¼ 1
2½
~FvðQ

�;rQ� þ ~R
�

f Þ

þ ~FvðQ
þ;rQþ þ ~R

þ

f Þ� �~n. ð62Þ

Since the fluxes are usually non-linear functions of
the state variable, Gauss quadrature formulas are
used to compute both the surface and volume
integrals. There is a precision requirement for these
quadrature rules, i.e., the surface quadrature
formula should be exact for degree 2k þ 1 poly-
nomials and the volume integral must be exact for
degree 2k polynomials.

For high-order wall boundaries, the standard
approach is to use high-order iso-parametric ele-
ments near solid walls [74]. This approach is quite
complex to implement, especially in three dimen-
sions. A much simpler approach was recently
developed by Krivodonova and Berger [81], with
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strikingly good numerical results. In fact, this
elegant approach was successfully implemented for
the SV method [91].

Letting W be each of the basis functions, we
obtain a system of equations about the DOFs.
Denote ~u the global DOFs, the equations can be
cast in the following form:

d ~u

dt
¼ �M�1Rð ~uÞ, (63)

where M is the global mass matrix. For compres-
sible flow problems with discontinuities, data limit-
ing becomes necessary. Various total variation

diminishing (TVD) and total variation bounding
(TVB) limiters [92] were developed by Cockburn
and Shu [73] and are not repeated here.

The double Mach reflection problem was also
tackled with the second- and third-order DG
schemes [73], and selected results are shown in
Figs. 6 and 7 for quadrilateral elements. The mesh
size for the second-order simulation is h ¼ 1

480
,

resulting in a total NDOFs of 2.76 million. For the
third-order scheme, results for two mesh sizes, h ¼ 1

240

and 1
480, are shown, with 1.38 and 5.53 million DOFs,

respectively. We can see that the third-order scheme
on the coarse mesh has qualitatively the same
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Fig. 6. Computed density contours using DG schemes for the double Mach reflection problem (courtesy of Cockburn and Shu [73]).

(a) Second-order DG, h ¼ 1
480

(2.76 million DOFs), (b) third-order DG, h ¼ 1
240

(1.38 million DOFs), (c) third-order DG, h ¼ 1
480

(5.53

million DOFs).
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resolution as the second-order scheme on the fine
mesh for the fine details of the complicated near the
Mach stem. The third-order scheme on the fine mesh
gives a much better resolution for these structures
than the second-order scheme with the same number
of elements.

An extensive comparison of SUPG and DG was
recently carried out by Venkatakrishnan et al. [69]
for a variety of problems, and some very interesting
accuracy results are presented here. The first case is
an inviscid flow over the NACA0012 airfoil using
the FV, SUPG and DG methods. The flow
conditions are M1 ¼ 0:5 and a ¼ 0	. Fig. 8 shows
the computed Cd with the second-order FV,
SUPG(1–3) (polynomial degree k ¼ 123) and
DG(0–2) (DG(0) being the Godunov method).
Notice that all the methods show no better than
second order accuracy as the grids are refined. The
reason for this behavior is because of the slope
discontinuity at the trailing edge, which limits the
accuracy to at most second order. For the same
polynomial order and NDOFs, SUPG appears to
give lower drag. A similar simulation was also
performed for a Joukowski airfoil, which has a cusp
trailing edge. At zero angle of attack, there is no
slope discontinuity at the trailing edge. The
computed Cd is shown in Fig. 9. All methods seem
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Fig. 8. Inviscid flow over an NACA0012 airfoil (courtesy of

Venkatakrishnan et al. [69]).
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Fig. 7. Close-up view of the density contours computed with DG

schemes for the double Mach reflection problem (courtesy of

Cockburn and Shu [73]). (a) Third-order DG, h ¼ 1
240

, (1.38

million DOFs), (b) second-order DG, h ¼ 1
480

, (2.76 million

DOFs), (c) third-order DG, h ¼ 1
480

, (5.53 million DOFs).
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to achieve ð2k þ 1Þth order accuracy. SUPG gives
lower drag than the FV and DG methods. The third
case is an accuracy study with a viscous flow
problem—the suction boundary layer, which has
an analytical solution [65]. The computed x-velocity
error is displayed in Fig. 10 for a high Reynolds
number of 106. SUPG(1) and SUPG(2) produce the
expected ðk þ 1Þth order. DG(0–2) appears to lose
half an order of accuracy. SUPG is again the most
accurate.

The high-order DG method has been used by
several researchers to compute turbulent flows [93,94].
One such computation is presented next. Bassi et al.
[93] computed the unsteady vortex shedding behind a
turbine blade using a k–o turbulence model. The
computational grid is displayed in Fig. 11. The grid
has 5411 triangular elements and consists of a layer of
anisotropic elements around the blade surface. The
simulation started with a first-order DG scheme, and
then proceeded to second- and third-order schemes.
Fig. 12 shows a snapshot of the turbulence intensity
fields of the third-order solution. In the figure the

alternate vortex shedding structure and the marked
widening of the turbulent wake are clearly evident.
Fig. 13 presents the evolution of the density field
during a vortex shedding cycle. The vortex shed by the
pressure side appears to be stronger than that shed by
the suction side. This is due to the different boundary
layer development on the two sides of the blade.

3.4. RD methods

The RD (or fluctuation splitting [164]) methods
refer to a class of numerical methods, which
distribute a cell-based residual to the nodes forming
the cell in order to update the nodal solutions, i.e.,
the DOFs. There are two major components in the
RD method: the computation of the cell residual
and the distribution of the cell residual. In the
development of the RD methods, many ideas from
FE, FD and FV methods were borrowed. The
upwind RD methods were conceived by Roe [95]
and then further developed in collaboration with
Deconinck and collaborators [96–100]. The RD
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Fig. 10. High Reynolds number suction boundary layer, Re ¼

106 (courtesy of Venkatakrishnan et al. [69]).Fig. 9. Inviscid flow over a Joukowski airfoil (courtesy of

Venkatakrishnan et al. [69]).
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methods have been reported in the von Karman
Institute Lecture Series [97,98]. Other research
groups also made significant contributions
[101,102]. More recently, Abgrall and Roe success-
fully extended the method to higher than second
order [103]. The extensions to unsteady and viscous
flows have been carried out by many researchers,
e.g., in [98,104]. A comprehensive review of the RD
methods is given by Abgrall in [105].

To fix the basic idea, consider the steady wave
equation in 2D

r � ðu~aÞ ¼ 0. (64)

Domain O is discretized into triangular elements,
and the ith element Vi has vertices i1, i2 and i3. The
DOFs are the solutions at the vertices fujg. The cell
residual for V i is defined as

Fi ¼

Z
V i

r � ðu~aÞdV ¼

Z
qVi

u~a �~ndS. (65)

The cell residual is then distributed to all the nodes
forming the cell in a conservative manner. Let the

distribution of Fi to node ij be Fi
j , with j ¼ 1; 2; 3.

Then the conservation condition is

X3
j¼1

Fi
j ¼ Fi. (66)

For any given node r, the total update is related to
the sum of the distributions from all the cells
sharing the node

ur (
X
i;r¼ij

Fi
j. (67)

When a steady-state solution is reached, all the cell
residuals should vanish, and so does the update for
each vertex, i.e.,X
i;r¼ij

Fi
j ¼ 0. (68)

The system (68) is never solved directly, but via an
iterative procedure. One simple example is given by

unþ1
r ¼ un

r �
Dt

jCrj

X
i;r¼ij

Fi
j, (69)
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Fig. 11. Global view of the grid around turbine blades (courtesy of Bassi et al. [93]).
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where Dt is the pseudo-time step and jCrj is the area
of the dual control volume surrounding node r. We
hope to reach the steady state once enough time
steps are marched. One can see the obvious
connection of (69) with a vertex centered FV
method, from which more ideas can be borrowed,
such as local time stepping.

A wide variety of schemes have been developed
following the RD philosophy. We briefly review
some of the most important ones in the history of
the RD methods. Assume the solution is linear
within an element, the cell residual can be easily
found to be

Fi ¼
X3
j¼1

kjuj , (70)

where kj ¼
1
2
~a �~nj, and ~nj is the inward normal

vector of the side opposite to vertex j, whose norm
is the length of the side. The N (narrow) scheme
[96] distributes the cell residual in the following
manner:

Fi
j ¼ kþj ðuj � ~uÞ, (71)

where kþj ¼ maxðkj ; 0Þ, ~u is a weighted average of
the following form:

~u ¼

P
jk
�
j ujP

jk
�
j

(72)

and k�j ¼ minðkj ; 0Þ. Eq. (71) can be interpreted in
the following way. There are two possible types of
triangles, the one target triangles and the two
targets triangles, as shown in Fig. 14. In fact, sinceP3

j¼1kj ¼ 0, one or two of the kj’s must be positive,
corresponding to the one or two target triangles. In
the one target case, we assume k140, and k2; k3o0,
then Fi

1 ¼ Fi and Fi
2;F

i
3 ¼ 0. In the two target case,

we assume k1; k240, and k3o0. Then Fi
3 ¼ 0, and

Fi
1 ¼ k1ðu1 � u3Þ, Fi

2 ¼ k2ðu2 � u3Þ.
The extension of the RD scheme to higher than

second-order accuracy was first conducted by
Abgrall and Roe [103]. Extra DOFs are added on
a triangle to fit a higher than linear polynomial.
For example, three edge points are added, in
addition to the three vertices, to construct a
quadratic polynomial on each triangle. A cell (or
element) residual FT can be computed based on the
quadratic reconstruction. Then this residual must be
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Fig. 12. Snapshot of the turbulent intensity using third-order DG (courtesy of Bassi et al. [93]).

Z.J. Wang / Progress in Aerospace Sciences 43 (2007) 1–41 17



Author's personal copy

distributed to all the DOFs in the cell in a
conservative manner

X6
j¼1

FT
j ¼ FT . (73)

In [103], it is shown that the scheme is third-order
accurate (in 2D) if the residuals satisfy

FT
j ¼ Oðh2þ2

Þ. (74)

In the d-dimensional case, for a ðk þ 1Þth order
accurate scheme, the condition (74) is replaced by

FT
j ¼ Oðhdþk

Þ. (75)

The easiest way of fulfilling conditions (75) for
ðk þ 1Þth order of accuracy is that FT

j ¼ bT
j F

T where
b’s are uniformly bounded. In [103], the follow-
ing scheme was developed. Define 4 sub-triangles
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Fig. 13. Turbine blade density fields during a vortex shedding cycle, third-order DG (courtesy of Bassi et al. [93]).
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Tx ¼ ð1; 4; 6Þ; ð4; 2; 5Þ; ð5; 3; 6Þ; ð6; 5; 4Þ, as shown in
Fig. 15. In these four sub-triangles, we can consider
the flowing high-order residuals based on the
quadratic reconstruction

FTx ¼

Z
Tx

~a � rudV . (76)

Then in Tx, the N scheme is applied resulting in FN;x
j ,

and define

bxj ¼
ðFN ;x

j =FTx Þ
þ

P
l2Tx
ðFN;x

l =FTxÞ
þ
. (77)

Then define

FTx
j ¼ bxj F

Tx . (78)

Finally the residual sent by T to j is defined by

FT
j ¼

X
Tx;j2Tx

FTx
j . (79)

As mentioned earlier, the RD method has been
successfully extended to hyperbolic systems including
the Euler and Navier–Stokes equations [98], and toto
unsteady problems [104]. Interested readers can
consult these references.

One sample computation with the high-order RD
schemes from [103] is shown here. Consider the
Burger equation

1

2

qu2

qx
þ

qu

qy
¼ 0; x 2 ½0; 1� � ½0; 1�,

ARTICLE IN PRESS

1 

6 

2 

5 

4 

3 

Fig. 15. A quadratic element in the RD method showing six

DOFs.
Fig. 16. Computational mesh for the Burger’s equation (courtesy

of Abgrall and Roe [103]).

a
→ →

a

Fig. 14. One target and two target cases for the N scheme.
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uðx; yÞ ¼ 1:5� 2x on the inflow boundary.

The exact solution is

The computational grid is displayed in Fig. 16 with
1041 vertices and 1960 elements. The solution
contours computed with second- to fourth-order
RD schemes are compared with the exact solution
in Fig. 17. Note that the solution is free of
oscillations and the higher-order schemes do have
higher resolution.

3.5. SV and SD methods

In this subsection, we briefly discuss the SV and
SD methods, two recently developed and still
evolving methods for compressible flow computa-
tion. Both the SV and SD methods employ the same
solution space as the DG method, i.e., element-wise
discontinuous polynomials. They differ on how the
DOFs are updated. The SV method is similar to a

FV method, while the SD method is close to a FD
method.

The SV method was developed by Wang, Liu and
their collaborators [22,23,106–109] for hyperbolic
conservation laws. The SV method has been
successfully extended to 2D Navier–Stokes equations
[109], and 3D Maxwell equations [108]. Chen
[110,111] developed many high-order SV partitions
for simplexes in 2D and 3D with relatively small
Lebesgue constants. Comparisons between the SV
and DG methods were made by Sun and Wang [112]
and by Zhang and Shu [113]. The SV method was
also applied to solve the 3D Euler and Navier–Stokes
equations by Haga et al. [114] on Japan’s Earth
Simulator. More recently, Van den Abeele et al. [115]
and Van den Abeele and Lacor [116] performed
Fourier analysis for both 1D and 2D SV methods,
and identified a weak instability in several SV
partitions. New partitions are derived which showed
improved stability properties. In addition, Harris et
al. [91] developed a more efficient quadrature free
implementation for the SV method, which is
expected to be significantly faster than the standard
quadrature-based SV method, especially in 3D.
Numerical tests in 2D have successfully demon-
strated the new implementation.

The SD method was developed by Liu et al.
[117,118] to further improve the efficiency and ease

of implementation of high-order methods for
simplexes. The SD method is easier to implement
than the DG and SV methods because it does not
involve surface or volume integrals, especially for
high-order curved boundaries. The SD method was
successfully extended to the Euler equations by
Wang and Liu [119], and their collaborators
[120], and to Navier–Stokes by May and Jameson
[121], and Wang et al. [122]. May and Jameson
obtained high-order convergence for shock waves
in 1D with a special basis function using post-
processing [123]. Huang et al. [124] implemented
a p-adaptive space and time SD scheme, and
demonstrated sharp discontinuity-capturing. The
SD method in 1D and for 2D quadrilateral
mesh is similar to the staggered-grid multido-
main spectral method by Kopriva et al. [27,125].
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Fig. 17. Isolines of the exact and computed solutions for the

Burger’s equations using high-order RD schemes (courtesy of

Abgrall and Roe [103]).

uðx; yÞ ¼

�0:5 if yp0:5 and � 2ðx� 3=4Þ þ y� 1=2p0;

1:5 if yp0:5 and � 2ðx� 3=4Þ þ y� 1=2X0;

max �0:5;min 1:5;
x� 3=4

y� 1=2

� �� �
else:

8>>><
>>>:
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Therefore the SD method can be viewed the
extension of the staggered-grid multidomain spectral
method to simplexes.

3.5.1. SV method

In the SV method, each simplex element V i

is partitioned into m sub-cells called control volumes
(CVs) V j;i, as shown in Fig. 18. Applying the integral
form of the governing equation on Vj;i gives

dQj;i

dt
jVj;ij þ

Z
qVj;i

~F ðQÞ �~ndS ¼ 0, (80)

where jV j;ij is the volume of Vj;i, and Qj;i are the CV
averaged conservative variables defined by

Qj;i ¼
1

jV j;ij

Z
Vj;i

QdV , (81)

which are the DOFs. On a SV Vi, the DOFs are
used to construct a degree k polynomial using

pið~rÞ ¼
Xm

j¼1

Lj;ið~rÞQj;i. (82)

The ‘‘shape function’’ like polynomials Lj;ið~rÞ
associated with Vj;i should satisfy

1

jV j;ij

Z
Vj;i

Ll;i dV ¼ djl , (83)

where djl is the Kronecker delta. Obviously, the
reconstruction (82) satisfies the k-exactness prop-
erty. In addition, the polynomial is an ðk þ 1Þth
order approximation of the solution, if the solution
is sufficiently smooth. On the interface between two
SVs, the reconstructed solutions are generally not
continuous. In this case, the normal flux is replaced
with a Riemann flux, given in (16)

dQj;i

dt
jVj;ij þ

X
f2qVj;i

Z
f

F̂ ðQ�;Qþ;~nÞdS ¼ 0. (84)

For interior CV faces, the analytical fluxes are used
since the solution is continuous inside the SV. The
surface integral is usually computed using ðk þ 1Þth
order Gauss quadrature formula, which is exact for
degree k or less polynomials. If the governing
equations are linear (such as the Maxwell equation),
the surface integral can be computed exactly because
the flux vector is also a degree k polynomial.

Although the extension of the SV method to three
dimensions is straightforward theoretically, many
interior polygonal faces will be generated, which
require Gauss quadratures to compute the surface
integrals. For example, a pentagonal face existing in
the partition of a tetrahedral SV is split into three
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Fig. 18. Partitions of various orders in a triangular spectral

volume, the third- and fourth-order partitions are found by Van

den Abeele and Lacor [116]. (a) Second-order, (b) third-order, (c)

fourth-order.
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triangles. To carry out the integration, a Gauss
quadrature formula of appropriate precision is then
employed for each triangle [126]. The partition of a
tetrahedron can be so complicated that hundreds or
thousands of Gauss quadrature points per SV may be
necessary to compute the face integrals to the desired
precision, making the 3D SV method very expensive.
To overcome this deficiency, a quadrature free
approach has been developed [91]. In the new
approach, a near optimal nodal set, such as those
shown in Fig. 19, is selected from Hesthaven [127].
This nodal set is then used to reconstruct a degree
k þ 1 polynomial approximation for the flux vector,
and then the flux integrals are computed analytically,
without the need for Gauss quadrature formulas. The
flux vector ~F can be computed at any point using

~F ð~rÞ ¼
Xmkþ1

j¼1

Zjð~rÞ~F j, (85)

where ~F j is the flux vector evaluated at node j, and
ZjðrÞ are the Lagrange shape functions defined by

the nodal set. This allows for the flux integral on
each internal face to be computed as a weighted
average of the flux evaluated at the nodal set, i.e.,

Z
f

~F �~ndS ¼ Af

Xmkþ1

j¼1

Zj
~Fj �~nf , (86)

where Zj are the face-averaged shape functions for
face f . In an actual implementation, face-averaged
shape functions are computed during preprocessing
for a standard element and then the physical face
area is multiplied. For the SV-bounding faces, the
Riemann flux integral can also be computed without
the use of a Gauss quadrature. For example, (16) is
integrated over each SV-bounding CV face, and the
resulting face integral can be expressed as the
integral of a Riemann flux as follows:

Z
f

F̂ ðQ�;Qþ;~nÞdS

¼
Af

2
½F� þ Fþ � lf ðQ

þ �Q�Þ�, ð87Þ
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Fig. 20. General third- and fourth-order SV partitions. (a) Third-order, (b) fourth-order.

Fig. 19. Nodal sets in a triangular SV supporting quadratic, cubic and quartic data reconstructions for the flux vector, shown in (a), (b)

and (c), respectively.
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where

F� ¼
1

Af

Z
f

~F ðQ�Þ �~ndS,

F
þ
¼

1

Af

Z
f

~F ðQþÞ �~ndS,

Q� ¼
1

Af

Z
f

Q� dS; Qþ ¼
1

Af

Z
f

Qþ dS, (88)

and lf is taken as the maximum absolute eigenvalue
which is evaluated at the face center based on a
average state. Analysis in [91] shows that this
quadrature free approach preserves the accuracy
of the SV method. Test cases for a variety of
problems verified this accuracy analysis.

Van den Abeele and Lacor [116] recently identi-
fied a weak instability in several SV partitions, and
proposed stable ones. For third- and fourth-order
SV schemes (SV3 and SV4), the general partitions in
2D are shown in Fig. 20. The SV3 partition has two
free parameters a3 ¼ jABj=jAEj, b3 ¼ jACj=jADj.
The SV4 partition has four free parameters
a4 ¼ jABj=jAGj, b4 ¼ jACj=jAF j, w4 ¼ jEF j=jAF j,
d4 ¼ jADj=jAF j. The two stable SV3 and SV4
partitions are displayed in Fig. 18, and have the
following parameters: a3 ¼ 0:091, b3 ¼ 0:18; a4 ¼
0:078, b4 ¼ 4a4=3, w4 ¼ b4=2 and d4 ¼ 9a4=2.

If the flow has discontinuities, data limiting is
required in the reconstruction. In the SV method,
limiters can be implemented at two levels, either
the SV level or the CV (subcell) level. This is easily
done because of the availability of subcell averages.
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Fig. 21. Density contours computed using SV schemes with the Rusanov flux and TVD limiter, 30 even contours between 1.25 and 21.5

[107]. (a) Second-order SV, h ¼ 1
120

(392,384 DOFs), (b) third-order SV, h ¼ 1
60

(197,616 DOFs), (c) third-order SV, h ¼ 1
120

(784,968

DOFs).
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Fig. 22. Close-up view of the density contours near the double Mach stem [107]. (a) Second-order SV, h ¼ 1
120

(392,384 DOFs), (b) third-

order SV, h ¼ 1
60

(197,616 DOFs), (c) third-order SV, h ¼ 1
120

(784,968 DOFs).
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The subcell-based limiting can enhance the resolu-
tion for discontinuities. More details are contained
in [107].

The extension of the SV method to the Navier–
Stokes equation was discussed in [109]. An ap-
proach similar to the local DG scheme was
employed to discretize the viscous flux. High-order
accuracy was demonstrated for viscous flow.

The double Mach reflection case was also
computed using the SV schemes. Two meshes with
mesh size of 1

60
and 1

120
were used in the simulation.

The coarse and fine computational grids have
32,936 and 130,828 cells, respectively, correspond-
ing to 98,808, and 392,484 DOFs for the second-

order SV scheme, and 197,616 and 784,968 DOFs
for the third-order SV scheme. The density contours
are displayed in Fig. 21. The close-up view is shown
in Fig. 22. It is obvious that the third-order SV
scheme has much higher resolution than the second-
order SV scheme for the complex flow structures
near the double Mach stem. In fact, the density
contours computed with the third-order scheme on
the coarse mesh display finer structures than those
computed with the second-order scheme on the fine
mesh, as shown in Fig. 22.

3.5.2. SD method

In a SD method, two sets of grid points, i.e., the
solution points and flux points are defined in each
element. The solution points are the locations where
the nodal values of the conservative variables Q are
specified (usually Gauss quadrature points). Flux
points are the locations where the nodal values of
fluxes are computed. The DOFs in the SD method
are the conservative variables at the solution points.
Fig. 23 displays the placements of solution and flux
points for the first to third-order SD schemes [117].
Let the position vector of the jth solution point at
cell i be denoted by~rj;i, and the kth flux point at cell
i be denoted by ~rk;i. Denote Qj;i the solution at ~rj;i.
Given the solutions at ~rj;i, an element-wise degree k

polynomial can be constructed using Lagrange-type
polynomial basis, i.e.,

pið~rÞ ¼
Xm

j¼1

Lj;ið~rÞQj;i, (89)

where Lj;ið~rÞ are the cardinal basis functions. With
(89), the solutions of Q at the flux points ~rk;i can be
computed easily. Since the solutions are discontin-
uous across element boundaries, the fluxes at the
element interfaces are not uniquely defined. We
again use approximate Riemann solvers to deter-
mine these fluxes. Obviously, in order to ensure
conservation, the normal component of the flux
vector on each face should be identical for the two
cells sharing the face. To ensure conservation, a 1D
Riemann solver is employed in the face normal
direction to compute the common normal flux.
Consider the face flux point shown in Fig. 24, and
denote the outgoing normal from cell V i to cell 1 ~n1.
For this interface point, Q� is computed from V i

and Qþ is computed from cell 1. Then the common
normal component of the flux can be computed with
any Riemann solver F̂ ðQ�;Qþ;~nÞ.
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Fig. 23. Solution (solid circles) and flux points (solid squares) for

first, second and third-order SD schemes. (a) First order, (b)

second order, (c) third-order.
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Since the tangential component of the flux does
not affect the conservation property, we have the
complete freedom in determining it at the face
point. Let the unit vector in the tangential direction
be ~l. Here we offer two possibilities. One is to use a
unique tangential component by averaging the two
tangential components from both sides of the face,
i.e.,

Fl ¼ FlðQ
�;Qþ;~lÞ ¼ 1

2
f½~F ðQ�Þ þ ~F ðQþÞ� �~lg. (90)

The other possibility is to use its own tangential
component, allowing the tangential component to
be discontinuous. Therefore, the tangential compo-
nent of the flux on either side is not modified. For
cell Vi, the tangential and normal components are
ð~F ðQ�Þ �~l; F̂ Þ, and for Vi’s neighboring cell, they
become ð~F ðQþÞ �~l; F̂ Þ.

For a corner flux point in cell Vi, two faces (from
cell V iÞ share the corner point, as shown in Fig. 24.
Let the unit normals of the two faces be ~n1 and ~n2.
Once again, the normal components of flux F̂1 and
F̂2 in ~n1 and ~n2 directions are computed with a 1D
Riemann solver in the normal directions. The full
flux vector can then be uniquely determined from
the two normal flux components

~F �~n1 ¼ F̂1, (91)

~F �~n2 ¼ F̂2. (92)

It is important to emphasize here that fluxes at cell
corner points do not have unique values for all the

cells sharing the corner. In spite of that, local
conservation is guaranteed because neighboring
cells do share a common normal flux at all the flux
points. Once the fluxes at all the flux points are re-
computed, they are used to form a degree k þ 1
polynomial, i.e.,

~Pið~rÞ ¼
Xmkþ1

l¼1

Zl;ið~rÞ~Fl;i, (93)

where Zl;ið~rÞ are the set of cardinal basis functions
defined by ~rl;i and ~Fl;i ¼ ~F ð~rl;iÞ. Obviously, the
divergence of the flux at any point within the cell
can be computed using

r � ~Pið~rÞ ¼
Xmkþ1

l¼1

rZl;ið~rÞ � ~F l;i. (94)

To update the solutions at the solution points~rj;i, we
need to evaluate the divergence at these points,
which can be easily computed according to

r � ~Pið~rj;iÞ ¼
Xmkþ1

l¼1

rZl;ið~rj;iÞ � ~Fl;i. (95)

Finally the semi-discrete scheme to update the
solution unknowns can be written as

dQj;i

dt
þ
Xmkþ1

l¼1

rZl;ið~rj;iÞ � ~Fl;i ¼ 0. (96)

The SD method for quadrilateral or hexahedral grid
is similar to the staggered grid multidomain spectral
method [27,125]. It is particularly attractive because
all the spatial operators are 1D in nature. In 2D, the
solution and flux points are usually the Gauss and
Gauss–Lobatto points, as shown in Fig. 25. Each
physical element (possibly curved) is first trans-
formed into a standard element (square). The
governing equations are also transformed from the
physical space into the computation space resulting
in (6). In the standard element, the solution and flux
points are defined by

X s ¼
1

2
1� cos

2s� 1

2N
� p

� �� �
; s ¼ 1; 2; . . . ; k þ 1,

(97)

X sþ1=2 ¼
1

2
1� cos

s

N
� p

� �h i
; s ¼ 0; 1; . . . ; k þ 1.

(98)

Let the corresponding Lagrange interpolation shape

functions be hiðX Þ ¼
Qkþ1

s¼1;saiððX � X sÞ=ðX i � X sÞÞ
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and liþ1=2ðX Þ¼
Qkþ1

s¼0;saiððX�X sþ1=2Þ=ðXiþ1=2�Xsþ1=2ÞÞ.

The reconstructed solution for the conserved vari-
ables in the standard element is just the tensor
products of the three 1D polynomials, i.e.,

Qðx; Z; BÞ ¼
Xkþ1
l¼1

Xkþ1
j¼1

Xkþ1
i¼1

~Qi;j;l

jJi;j;lj
hiðxÞ � hjðZÞ � hlðBÞ.

(99)

Similarly, the reconstructed flux polynomials take
the following form:

~F ðx; Z; BÞ ¼
Xkþ1
l¼1

Xkþ1
j¼1

Xkþ1
i¼0

~F iþ1=2;j;l liþ1=2ðxÞ � hjðZÞ � hlðBÞ,

(100)

~Gðx; Z; BÞ ¼
Xkþ1
l¼1

Xkþ1
j¼0

Xkþ1
i¼i

~Gi;jþ1=2;lhiðxÞ � ljþ1=2ðZÞ � hlðBÞ,

(101)

~Hðx; Z; BÞ ¼
Xkþ1
l¼0

Xkþ1
j¼1

Xkþ1
i¼1

~Hi;j;lþ1=2hiðxÞ � hjðZÞ � llþ1=2ðBÞ,

(102)

where ~F ; ~G; ~H are the components of ~~F . The
reconstructed fluxes are only element-wise contin-
uous, but discontinuous across cell interfaces. For
the inviscid flux, a Riemann solver is employed to
compute a common flux at interfaces to ensure
conservation and stability. In summary, the algo-

rithm to compute the inviscid flux derivatives
consists of the following steps:

1. given the conserved variables at the solution
points f ~Qi;j;lg, compute the conserved variables at
the flux points fQiþ1=2;j;l ;Qi;jþ1=2;l ;Qi;j;lþ1=2g;

2. compute the inviscid fluxes at the interior flux
points using the solutions computed at Step 1,
and compute the inviscid flux at element inter-
faces using a Riemann solver;

3. compute the derivatives of the fluxes at all the
solution points according to

q ~F
qx

� �
i;j;l

¼
Xkþ1
r¼0

~F rþ1=2;j;l � l
0
rþ1=2ðxiÞ, (103)

q ~G
qZ

� �
i;j;l

¼
Xkþ1
r¼0

~Gi;rþ1=2;l � l
0
rþ1=2ðZjÞ, (104)

q ~H
qB

� �
i;j;l

¼
Xkþ1
r¼0

~Hi;j;rþ1=2 � l
0
rþ1=2ðBlÞ, (105)

4. use the above derivatives to update the DOFs,
i.e.,

q ~Qi;j;l

qt
¼ �

q ~F
qx
þ

q ~G
qZ
þ

q ~H
qB

� �
i;j;l

. (106)

Two example simulations with the SD method are
presented next. The first one is a subsonic flow around
a NACA0012 airfoil at Mach ¼ 0:4, and angle of
attack of 5	. In this simulation, the computa-
tional results using the third-order SD scheme on a
coarse mesh with 72� 24� 2 triangles are compared
with those using a second order FV method on a
much finer mesh of 192� 64� 2 triangles. Therefore
the number of DOFs in the FV simulation is 24,576
while it is 20,736 in the SD simulation. The
computational meshes used for both the SD and FV
methods are displayed in Fig. 26. The average entropy
error with the second-order FV method is 1:04e� 5,
while the average entropy error with the third-order
SD scheme is 4:86e� 6, which is more than a factor
of 2 smaller. The entropy errors along the airfoil
surface are plotted in Fig. 27. Note that although the
second-order FV scheme used a much finer grid, the
solution quality of the third-order SD scheme is
superior.

The second example is a viscous flow around a
sphere, computed using a hexahedral grid with 6144
cells. The Reynolds number based on the diameter was
chosen to be 118. The flow was simulated using the
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Fig. 25. Distribution of solution points (circles) and flux points

(squares) in standard element for a third-order SD scheme.
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fourth- and sixth-order SD schemes to assess the
numerical error. The computedMach number contours
using both schemes are shown in Fig. 28. Note that the
contours are nearly on top of each other, indicating an
excellent agreement. The computational streamlines are
compared with the experimental streamlines in Fig. 29.
The size of the separation region in the computation
agrees very well with that of the experiment, at least
in the ‘‘eye ball’’ norm. The skin friction coefficients
at the wall computed with both schemes are plotted
in Fig. 30, and they are right on top of each other.
In fact, the skin friction coefficients differ less than
0.1% between the fourth- and sixth-order results.
The predicted separation angle from both schemes
is 123:6	 (the wind side stagnation point has an an-
gle of 0), and the length of the separation region
is 1.04D.

4. Time integration/iterative solution approaches

It is well known that high-order spatial operators
are much stiffer than lower-order ones. For time
accurate problems, the allowable CFL number
decreases with increasing order of accuracy for explicit
schemes. For viscous problems with highly clustered
mesh to resolve the viscous boundary layer, explicit
high-order methods are severely limited by the
time step size, and usually not competitive against
low-order implicit methods in terms of efficiency. A
major pacing item in the CFD community is the
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Fig. 27. Comparison of entropy error along the airfoil surface

[120].

Fig. 28. Computed pressure (on the sphere) and Mach number

(on z ¼ 0 plane) distributions using the fourth- and sixth-order

SD schemes. Mach contours start at Mach ¼ 1
40
with a 1

40
interval

[128].

Fig. 26. Computational grids for subsonic flow around a

NACA0012 airfoil [120]. (a) Second-order FV grid, (b) third-

order SD grid.
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development of efficient time integration/iterative
solution approaches for high-order methods, several
of which are reviewed in the next subsections.

Consider the following semi-discretized equation
with any of the spatial operators discussed earlier

M
d ~u

dt
þ Rð ~uÞ ¼ 0, (107)

where ~u represents the global DOFs, M is a ‘‘mass
matrix’’, and R is the spatial residual operator. The
steady solution is obtained from Rð ~uÞ ¼ 0. In the
FV, SV and SD methods, matrix M is an identity
matrix. In the DG method, M is a block-diagonal
matrix and can be easily inverted. In continuous FE
methods, matrix M is a globally coupled matrix and
a large system of equations must be solved even
with ‘‘explicit’’ time integration schemes.

4.1. Explicit Runge– Kutta methods

If M is easily invertible, (107) can be re-cast in the
following form:

d ~u

dt
¼ �M�1Rð ~uÞ. (108)

Many well-known explicit Runge–Kutta schemes
can be used to march (108) in time. Several widely
used ones are presented next.

4.1.1. Fourth-order four-stage Runge– Kutta scheme

This time integration scheme was first made
popular by the landmark paper of Jameson et al.
[129] because of its large stability limit. Later it was
used in many production CFD codes. The scheme
can be written as

~uð0Þ ¼ ~un,

~uð1Þ ¼ ~uð0Þ �
Dt

2
M�1Rð ~uð0ÞÞ,

~uð2Þ ¼ ~uð0Þ �
Dt

2
M�1Rð ~uð1ÞÞ,

~uð3Þ ¼ ~uð0Þ � DtM�1Rð ~uð2ÞÞ,

~uð4Þ ¼ ~uð0Þ �
Dt

6
M�1½Rð ~uð0ÞÞ þ 2Rð ~uð1ÞÞ

þ 2Rð ~uð2ÞÞ þ Rð ~uð3ÞÞ�,

~unþ1 ¼ ~uð4Þ. (109)

Jameson [130] also found the following low storage
four-stage scheme effective for his multigrid flow
solver:

~uð0Þ ¼ ~un,
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~uð1Þ ¼ ~uð0Þ �
Dt

3
M�1Rð ~uð0ÞÞ,

~uð2Þ ¼ ~uð0Þ �
4Dt

15
M�1Rð ~uð1ÞÞ,

~uð3Þ ¼ ~uð0Þ �
5Dt

9
M�1Rð ~uð2ÞÞ,

~uð4Þ ¼ ~uð0Þ � DtM�1Rð ~uð3ÞÞ,

~unþ1 ¼ ~uð4Þ. (110)

Other variations are also possible, and have been
used extensively in the CFD community.

4.1.2. Strong-stability-preserving (SSP)

Runge– Kutta schemes

This class of time integration method was
originally developed by Shu [131], and Shu and
Osher [132] and named TVD Runge–Kutta
schemes. It was further studied by many research-
ers, e.g., in [133,134]. These schemes preserve the
stability properties of forward Euler in any norm or
semi-norm. They have been popular for high-order
spatial operators because of its TVD or SSP
property. The coefficients of these schemes are not
unique. Optimal versions with maximum CFL
numbers have been derived in [131] for the second-
and third-order schemes, and by Spiteri and Ruuth
[134] for the fourth-order counterpart. More details
can be found in a recent review article by Gottlieb
[135]. The optimum second to fourth-order schemes
are presented next.

SSPRK ð2; 2Þ: Two stage, second-order

~uð1Þ ¼ ~un � DtM�1Rð ~unÞ,

~unþ1 ¼ 1
2
~un þ 1

2
~uð1Þ � 1

2
DtM�1Rð ~uð1ÞÞ. (111)

SSPRK ð3; 3Þ: Three stage, third-order

~uð1Þ ¼ ~un � DtM�1Rð ~unÞ,

~uð2Þ ¼ 3
4
~un þ 1

4
~uð1Þ � 1

4
DtM�1Rð ~uð1ÞÞ,

~unþ1 ¼ 1
3
~un þ 2

3
~uð2Þ � 2

3
DtM�1Rð ~uð2ÞÞ. (112)

SSPRK ð5; 4Þ: Five stage, fourth-order

~uð1Þ ¼ ~un � 0:391752226571890DtM�1Rð ~unÞ,

~uð2Þ ¼ 0:444370493651235 ~un þ 0:555629506348765 ~uð1Þ

� 0:368410593050371DtM�1Rð ~uð1ÞÞ,

~uð3Þ ¼ 0:620101851488403 ~un þ 0:379898148511597 ~uð2Þ

� 0:251891774271694DtM�1Rð ~uð2ÞÞ,

~uð4Þ ¼ 0:178079954393132 ~un þ 0:821920045606868 ~uð3Þ

� 0:544974750228521DtM�1Rð ~uð3ÞÞ,

~unþ1 ¼ 0:517231671970585 ~uð2Þ

þ 0:096059710526147 ~uð3Þ

� 0:063692468666290DtM�1Rð ~uð3ÞÞ

þ 0:386708617503269 ~uð4Þ

� 0:226007483236906DtM�1Rð ~uð4ÞÞ. ð113Þ

4.2. Implicit methods

It has long been recognized that implicit algo-
rithms are necessary to overcome the time step limit
suffered by explicit algorithms especially for highly
clustered viscous meshes [136]. Many types of
implicit algorithms have been successfully devel-
oped for unstructured grid-based solvers in the last
two decades, e.g., the element Jacobi, Gauss–Seidel,
precondition GMRES [93,137,166], matrix-free
Krylov [138], lower–upper symmetry Gauss–Seidel
[62,139], and line-implicit algorithms [140]. In
addition, these implicit algorithms can serve as
‘‘smoothers’’ for geometric or p-multigrid ap-
proaches. Many of these algorithms have been
successfully applied to high-order spatial discretiza-
tions described earlier. In almost all implicit
approaches, the non-linear system of equations is
linearized and then solved with an iterative solution
algorithm. Using the backward Euler scheme for
time integration, we obtain the following non-linear
system:

M
~unþ1 � ~un

Dt
þ Rð ~unþ1Þ ¼ 0, (114)

which can be linearized to give

AD ~u ¼ �Rð ~unÞ, (115)

where D ~u ¼ ~unþ1 � ~un and A ¼ ðM=Dtþ qR=q ~uÞ. In
the limit of Dt!1, (115) becomes the Newton
method for the non-linear system Rð ~unþ1Þ ¼ 0. The
left-hand side implicit operator is usually a large
sparse block matrix, whose direct inversion is often
too expensive. This large matrix can be partitioned
into the block diagonal, lower and upper matrices

A ¼ Dþ LþU.
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Many well established algorithms for linear systems
can be used to solve (115). Several of those are
described next.

4.2.1. Block Jacobi and Gauss– Seidel

The block Jacobi (BJ) and Gauss–Seidel (GS)
methods can be applied to solve (115) in at least two
possible manners. The first one is to solve the
linearized equation iteratively until a given conver-
gence tolerance or a maximum number of sweeps is
achieved. For example, the Jacobi iteration takes
the following form:

DD ~uðkþ1Þ ¼ �Rð ~unÞ � ðLþUÞD ~uðkÞ, (116)

where k is an iteration index and D ~uð0Þ ¼ 0. This
approach was sometimes called the linearized
element Jacobi method. Similarly, the GS approach
is

D ~uðkþ1Þ ¼ D�1ð�Rð ~unÞ � LD ~uðkþ1Þ �UD ~uðkÞÞ

¼ ðDþ LÞ�1ð�Rð ~unÞ �UD ~uðkÞÞ. ð117Þ

Much better performance than the BJ method was
demonstrated in [141] for a high-order DG im-
plementation. Generally, faster convergence may be
achieved by a symmetric GS (SGS) variation, in
which both forward and backward sweeps are
applied alternately. After the forward sweep given
in (117), the following backward sweep is applied by
reversing the order from element N to 1.

D ~uðkþ1Þ ¼ D�1ð�Rð ~unÞ �UD ~uðkþ1Þ � LD ~uðkÞÞ

¼ ðDþUÞ�1ð�Rð ~unÞ � LD ~uðkÞÞ. ð118Þ

The second approach is to apply (116) once and
then proceed to the next time step, i.e.,

DD ~u ¼ �Rð ~unÞ (119)

which is usually called the ‘‘element implicit’’
approach, or the non-linear element Jacobi ap-
proach. The corresponding low storage GS version
is then

D ~u ¼ �D�1Rð ~u
Þ, (120)

where ~u
 represents the latest available solution. In
other words, after (120) is solved for any element,
the DOFs are immediately updated, and used to
compute the residuals on all the rest of the elements.
In all of the above BJ and GS approaches, an exact
LU decomposition procedure is usually used to
solve the linear system in each element, and the
lower and upper matrices of D are pre-computed
and stored. Another variation for all the above

approaches is to freeze the diagonal block matrix D

for several time steps in order to further boost
computational efficiency. This variant was used
and named quasi-non-linear element Jacobi method
in [141].

The first variation obviously takes much more
storage than the second one because of the need to
store both L and U. However, it can allow a much
larger time step because the full linearized system is
solved at each time step.

4.2.2. Preconditioned GMRES approach and matrix-

free implementation

Bassi and Rebay successfully developed a pre-
conditioned GMRES (PGMRES) approach [137]
for the DG method [75] to solver the compressible
Navier–Stokes equations. A matrix-free Krylov
approach was developed by Rasetarinera and
Hussaini [138] with an efficient LU-SGS precondi-
tioner. Very good convergence properties were
demonstrated for high-order DG schemes with p

up to 3. Any successful GMRES iterative approach
needs a good pre-conditioner P. An equivalent
preconditioned form of (115) is

P�1AD ~u ¼ �P�1Rð ~unÞ. (121)

To achieve fast convergence, P should be ‘‘close’’ to
the implicit operator, but much easier to invert. A
good compromise between efficiency and storage
requirement is to use the main block diagonal
(element) matrix D. Other preconditioners include
the SGS approach, and the multilevel approach.

If the GMRES approach is implemented in the
conventional fashion, the full implicit matrix A

including the lower and upper matrixes needs to be
stored. In large 3D computations, the storage
requirement may become prohibitive. To remedy
this deficiency, various matrix-free implementations
of GMRES have been developed [138]. This is
possible because all the operations involving matrix
A in the GMRES algorithm is associated with the
computation of matrix-vector products. As these
products can be approximated using FDs, the
algorithm can be implemented without forming
the Jacobian matrix explicitly

qRð ~uÞ

q ~u
~u �

Rð ~uþ e ~uÞ � Rð ~uÞ

e
, (122)

where e is a small parameter scaled appropriately
with the norm of ~u and the precision of the
computer. In this implementation, it is not necessary
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to store A, thus yielding a considerable saving in
storage compared to the standard implementation.
However, the pre-conditioning matrix P must be
formed and stored.

4.2.3. Non-linear LU-SGS approach

The original LU-SGS approach was developed by
Yoon and Jameson [142] to solve compressible flow
on structured grids, and demonstrated high solution
efficiency with low storage requirements. Later, it
was extended and applied to hybrid structured and
unstructured grids [143]. Unstructured-grid-based
LU-SGS schemes have demonstrated performance
similar to that on structured grids [139]. In the LU-
SGS scheme, a special first-order approximation is
employed in linearizing the left-hand side resulting
in the reduction of the block diagonal matrices to
diagonal matrices. As a result, LU-SGS does not
require any extra memory compared to explicit
methods and is free from any matrix inversion. All
of the off-diagonal matrices still contribute to the
implicit operator through one forward and one
backward sweep of a Gauss–Seidel iteration, thus
significantly improving efficiency over an explicit
scheme. The special first-order approximation used
in deriving LU-SGS does degrade convergence
rate, especially after several orders of convergence
[62]. To further improve the convergence rate, Chen
and Wang [62] and Jameson and Caughey [144]
developed a block (preconditioned) non-linear LU-
SGS (BLU-SGS) approach. Chen and Wang
applied the approach to solve turbulent flows on
arbitrary grids and demonstrated much better
convergence rate than the original LU-SGS ap-
proach for a wide variety of flow problems. Jameson
and Caughey used the approach as a multigrid
smoother, and achieved convergence to truncation
error level in just a few multigrid cycles. The most
significant advantage of the BLU-SGS algorithm is
the low storage requirement (only the diagonal
block matrix is stored), and faster convergence to
steady state than the fully linearized version, which
requires the storage of the full matrix. The faster
convergence is because the non-linear equation
(114) is solved at each time step, rather than the
linearized version. Therefore for time-accurate
computations, the non-linear BLU-SGS approach
is much more efficient than the standard approach
of using multiple Newton sweeps for the non-linear
system to converge the unsteady residual. In the
following, we present a very compact form of
the non-linear BLU-SGS approach [145]. Let

~D ¼ ðD�M=DtÞ. It is then obvious

qR

q ~u
¼ ~Dþ LþU. (123)

The forward sweep of the GS iteration for (115) is

DD ~uðkþ1Þ ¼ � Rð ~unÞ �UD ~uðkþ1Þ � LD ~uðkÞ

¼ � Rð ~unÞ � ðUþ LÞD ~uð
Þ, ð124Þ

where D ~uð
Þ denotes the latest available solution
updates, and ~uð
Þ ¼ ~un þ D ~uð
Þ. Linearizing Rð ~uð
ÞÞ,
we obtain

Rð ~uð
ÞÞ � Rð ~unÞ þ ð ~Dþ LþUÞD ~uð
Þ. (125)

So

Rð ~unÞ þ ðLþUÞD ~uð
Þ ¼ Rð ~uð
ÞÞ � ~DD ~uð
Þ. (126)

Substituting (126) into (124) gives

M

Dt
þ ~D

� �
D ~uðkþ1Þ ¼ �Rð ~u
Þ þ ~DD ~uðkÞ, (127)

which can be further simplified to

DðD ~uðkþ1Þ � D ~uðkÞÞ ¼ �Rð ~uð
ÞÞ þ
M

Dt
D ~uð
Þ. (128)

Note that the right-hand side is nothing but the
unsteady residual evaluated with the latest available
solutions. Multiple SGS sweeps can be employed to
solve (128) iteratively. This form is also very easy to
implement because the residual operator can be
treated as a black box. The ease of implementation
is particularly important for high-order methods
because of the complexity of the spatial operators.
Only the diagonal block is stored since M is usually
an identity matrix or similar for a particular type of
elements. When this SGS iteration converges, we are
actually solving the non-linear equation (114) rather
than its linearized version (115). Because of the
removal of any errors due to linearization, the
convergence rate of the non-linear version should be
faster. Note that the non-linear equation (114) is
solved without multiple Newton sweeps. This is very
significant for unsteady flow problems and the
present approach is expected to be much more
efficient.

4.2.4. Line-implicit approach

The line-implicit approach was very popular for
structured grid-based flow solvers as coordinate
lines are readily available. In fact, approximate
factorization and alternating direction implicit
(ADI) algorithms widely used in structured grid
methods are equivalent to applying a ‘‘line’’ implicit
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scheme in each of the coordinate directions. The
line-implicit solver is very attractive since the
resultant block tri-diagonal system can be solved
efficiently. Much faster convergence rate is obtained
than an element implicit scheme since the flow
solutions on the line are solved in a coupled manner.
The use of the line-implicit approach is not as
widespread in unstructured grid-based solvers be-
cause there are no obvious coordinate lines in
unstructured grids. Special techniques need to be
developed to construct lines based on the computa-
tional grid and/or flow solution. There are many
possibilities on how the lines are constructed. Two
approaches are briefly described here.

In [140], Mavriplis developed an algorithm to
build lines in an anisotropic mesh using a weighted
graph technique. The rationale is to provide strong
coupling along directions with the strongest grid
clustering used to resolve viscous boundary layers
or shear layers. In the weighted graph approach,
each edge of the mesh is assigned a weight which
represents the degree of coupling in the discretiza-
tion. For simplicity, the edge weights are taken as
the inverse of the edge length. The ratio of
maximum to average adjacent edge weight is pre-
computed for every mesh vertex. The vertices are
then sorted according to this ratio. The first vertex
in this ordered list is then picked as the starting
point for a line. The line is built by adding to the
original vertex the neighboring vertex which is most
strongly connected to the current vertex, provided
this vertex does not already belong to a line, and
provided the ratio of maximum to minimum edge
weights for the current vertex is greater than a

specified threshold. The line terminates when no
additional vertex can be found. New lines are
constructed from the rest of the vertices using the
same approach. Using this line-implicit solver as a
smoother for a multigrid solver, Mavriplis was able
to demonstrate aspect ratio independent conver-
gence rate for a viscous flow computation [42].

More recently, a line-implicit solver was devel-
oped by Fidkowski et al. [146] to serve as the
smoother for a p-multigrid approach solving the
Navier–Stokes equations. A new algorithm for
constructing lines was developed, and it is based
on both the computational grid and the underlying
physics in some sense. The main idea is to strongly
couple lines of elements connected along directions
of strong convection or grid anisotropy. The
coupling between the elements is computed from a
first-order (element-wise constant) discretization of
a scalar convection diffusion equation in the
following form:

Y ðsÞ ¼ r � ðr~vsÞ � r � ðmrsÞ, (129)

where momentum r~v and viscosity m are taken from
the latest available solution. Then the coupling
between two elements j and k that share a face is
given by the ‘‘residual Jacobian’’

Cj;k ¼ max
qY j

qsk

����
����; qY k

qsj

����
����

� �
. (130)

After that, a two stage line creation and connection
algorithm was developed to constructed line sets.
A block tri-diagonal linear system is built and
solved for each line to provide implicitness coupling
all the elements along the line. This line solver was
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Fig. 31. Lines formed around the NACA0012 airfoil at M ¼ 0:5, Re ¼ 5000, a ¼ 0	 (courtesy of Fidkowski, Darmofal et al. [146]).
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shown to be much more effective as a p-multigrid
smoother than an element Jacobi approach, and
p-independent multigrid convergence rates were de-
monstrated. Shown in Fig. 31 is a viscous computa-
tional grid around the NACA0012 airfoil and the
element lines generated using this approach [146].
Note that the lines are perpendicular to the wall
boundary in the viscous boundary layer, but aligned
with streamlines elsewhere. With this line-implicit
smoother, Fidkowski et al. were able to achieve p-
independent convergence rate for both inviscid and
viscous flows. One typical convergence history plot
for inviscid flow through a duct with various
polynomial orders is shown in Fig. 32. The
convergence rate is obviously independent of p,
though still dependent on h.

4.3. Geometric and p-multigrid methods

The standard multigrid algorithm (geometric
multigrid, or h-multigrid) has been used very
effectively in CFD to accelerate the rate of
convergence to steady state. Jameson popularized
multigrid in CFD with his original combination of
Runge–Kutta time stepping and multigrid ap-
proaches [130], and since then there have been
numerous advances in the field, e.g.,
[38,140,144,147–151]. In an h-multigrid implemen-
tation, multilevels of coarse grids are generated
either from the finer grids or independently, with
each coarser grid roughly doubling the mesh size
of the next finer mesh in all directions. Several
factors contribute to the effectiveness of multi-

grid approach. First, all smoothers are more
efficient in damping high frequency errors than
low frequency ones. Errors on a fine mesh are
represented on a coarser mesh at higher frequency,
which can be damped more effectively. Second,
larger time steps can be used on the coarser mesh (in
the case of explicit time stepping schemes) and
errors can be driven out of the computational
domain faster.

The most critical element of a successful multigrid
approach is the development of an effective
‘‘smoother’’ to remove various types of ‘‘stiffness’’
in the spatial operator. For example, the stiffness
due to low flow speed and grid anisotropy was
known to degrade the performance of multigrid
solvers. Many novel numerical techniques were
developed to address them, including low speed
preconditioning [152–154], line-implicit solvers [140]
and semi-coarsening [151]. The most impressive
multigrid results are due to Jameson and Caughey
[144], who demonstrated convergence to truncation
error level using just a few multigrid cycles with a
preconditioned non-linear LU-SGS smoother.

In addition, p-multigrid, or multiorder, solution
strategies can be used in an analogous manner to
accelerate convergence of high-order methods to
steady state. Lower-order spatial operators in a p-
multigrid approach serve as the ‘‘coarse grid’’
operators in the h-multigrid counterpart. Lower-
order operators have similar advantages: they have
more numerical damping and allow larger time
steps than high-order operators. The p-multigrid
algorithm was introduced by Ronquist and Patera
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Fig. 32. Element line smoother convergence histories vs. grid size for inviscid duct flow at M ¼ 0:5 (courtesy of Fidkowski et al. [146]).

Z.J. Wang / Progress in Aerospace Sciences 43 (2007) 1–4134



Author's personal copy

[155], and later analyzed by Maday and Munoz
[156] for a 1D, Galerkin spectral element discretiza-
tion of the Laplace equation. More recently, Bassi
and Rebay presented a p-multigrid solution method
for the DG discretization of the Euler equations
[157]. Helenbrook et al. [158] examined the perfor-

mance of p-multigrid for Laplace equation and the
convection equation in two dimensions. Fidkowski
et al. [146] developed a p-multigrid approach using
an effective line-implicit smoother for their high-
order DG Navier–Stokes solver, and demonstrated
p-independent convergence rate for p up to 3 with
fourth-order accuracy. Luo et al. demonstrated a
low storage p-multigrid approach for a 3D DG
Euler solver [159], in which an explicit Runge–Kutta
scheme is used for the highest order discretization,
while implicit SGS smoothers are employed for the
lower-order operators. They demonstrated an order
of magnitude speed up for p up to 2. Nastase and
Mavriplis [141] developed an hp-multigrid approach
for their high-order inviscid DG solver, and
demonstrated h-independent and p-independent
convergence rates. The coupling of p- and h-
multigrid procedures, through the use of agglomer-
ated coarse levels for unstructured meshes, increases
the overall solution efficiency compared to a p-alone
multigrid procedure, and the benefits of the hp-
multigrid approach are expected to increase for finer
meshes.

An example computation of inviscid flow around
a four element airfoil by Nastase and Mavriplis
[141] is presented here. One typical computational
grid including the agglomerated coarser level is
displayed in Fig. 33. A full multigrid strategy with
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Fig. 33. A typical two level h-multigrid mesh configuration
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a non-linear FAS hp-multigrid scheme was used in
the simulation. The smoother is a linear GS ap-
proach, in which the diagonal and off-diagonal
matrices are stored. In Fig. 34, the convergence rate
is shown for a fixed mesh size of N ¼ 3856, for
various p discretizations. The convergence rate
increases slightly with higher-order accurate dis-
cretizations. Fig. 35 shows the convergence rate for
the p ¼ 4 discretization on the various grids for the
four-element airfoil configuration. The convergence
rate is nearly h and p independent.

5. Conclusions

Several high-order numerical methods for the Euler
and Navier–Stokes equations on unstructured grids are
reviewed in this article. Both spatial and temporal
discretizations are discussed. For problems with high-
accuracy requirement such as wave propagation
problems and vortex-dominated flows, high-order
methods are (asymptotically) more efficient than low-
order ones based on a simple generic analysis.

Although both structured and unstructured grid-
based high-order methods will co-exist and excel for
different type of flow problems, high-order unstruc-
tured grid methods offer several distinctive advantages:

� geometric flexibility;
� hp grid adaptivity;
� easier to maintain load balance on parallel

computers;
� less stringent on grid smoothness requirement.

We can perhaps distinguish the methods reviewed
here according to several different criteria to see the
differences and similarities.

Number of degrees per element: The k-exact,
ENO/WENO FV methods employ one DOF per
element or cell, while all the rest employ multiple
DOFs in each element. As a result, neighboring data
from a local stencil are used to reconstruct a high-
order polynomial on the element in the k-exact and
ENO/WENO methods.

Continuous or discontinuous: The continuous FE
and RD methods employ continuous polynomials,
while the rest use discontinuous polynomials. Those
methods with discontinuous polynomials employ
Riemann fluxes, in one form or the other, to achieve
stability.

Discretization approach: The continuous and
discontinuous FE methods use a weighted residual,
usually a Galerkin or Petrov–Galerkin, approach.

The k-exact, ENO/WENO, and SV methods apply a
FV approach (also a Petrov–Galerkin approach),
while the SD method use a FD approach. The RD
method utilizes ideas from FV and FE methods.

Some common challenges for all high-order
methods include the following:

� Discontinuity capturing: Any shock-capturing
methods will degrade to first-order accuracy
locally near a discontinuity because the error in
the location of the shock is proportional to the
mesh size. Methods which offer natural subcell
resolution (such as the SV method) can make the
error smaller, but cannot change the order. This
argument suggests h-refinement near shock
waves, coupling with a piece-wise constant
reconstruction, which is the robust, first-order
Godunov method, with p-refinement elsewhere.
How a locally first-order scheme affects the
solution elsewhere needs to be investigated,
especially for unsteady flow problems.
� Efficient time integrator for steady problems:

High Reynolds number viscous flow problems
have disparate length scales in the computational
domain, and the computational grids are highly
clustered in the boundary layer. Therefore,
explicit methods are too slow for steady pro-
blems due to the CFL condition. It appears hp-
multigrid methods offer the most promising
solution. However, the development of effective
smoothers for high-order operators may be
hindered by computer core memory. The mem-
ory requirement for the element Jacobi matrices
in 3D for degree higher than 3 polynomials may
be prohibitive. The main challenge will be to
develop effective and low storage smoothers for
high-order operators.
� High-order grid generation and flow visualiza-

tion: Almost all researchers in high-order meth-
ods pointed out the importance of high-order
boundary representation. Many demonstrated
the inadequacy of piece-wise linear facet repre-
sentation used in low-order methods. As most
grid generation packages were developed for
lower-order methods, capabilities should be
added to generate coarser grids with high-order
(at least quadratic) boundaries. The generation
of highly clustered viscous meshes near high-
order walls is another challenge, as more
elements near the boundary layer must be better
than linear to avoid grid lines crossing into each
other. The same can be said about visualization.
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Almost all graphics engines assume linear data. It
may be more efficient to consider high-order data
in the visualization layer.
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