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a b s t r a c t

This paper presents simulations of unsteady flow past plunging and pitching airfoils using a high-order
spectral difference (SD) method. Both third-order and fourth-order SDmethods are employed on unstruc-
tured quadrilateral grids for the plunging airfoil at a low Reynolds number. The vortex shedding pattern
of an airfoil in an oscillating plunge motion becomes asymmetric at a sufficiently high frequency. The SD
method is able to capture this effect and reveal a fine structure that closely replicates the experimental
photograph. Interestingly, our simulations also predict that the degree of this asymmetry increases with
Reynolds number. Unsteady flow at a higher Reynolds number past a pitching airfoil is studied using the
fifth-order SD method. Our predictions show very good agreements with the available experimental data.
The developed high-order accurate SD algorithms could enable high-order accurate simulations of
unsteady flow past flapping Micro-Air-Vehicles (MAVs).

Published by Elsevier Ltd.

1. Introduction

Increases in computational power are enabling high-order accu-
rate simulations of various research problems previously deemed
intractable such as unsteady Large Eddy Simulation (LES), Aero-
acoustics and fluid-structure interaction. The need for highly accu-
rate methods in these applications on complex geometries has
seen the development of higher order schemes for unstructured
meshes such as the Discontinuous Galerkin (DG) Method [1], Spec-
tral Volume (SV) method [13,26] and Spectral Difference (SD)
Method [12,25]. The SD method is a recently developed efficient
high-order approach based on the differential form of the govern-
ing equation. It was originally proposed by Kopriva and Kolias [7].
A general formulation was given by Liu et al. [12], who developed
the method for wave equations on triangular grids. Wang et al. [25]
extended it to 2D Euler equations on triangular grids and [22] fur-
ther developed it for three-dimensional Navier–Stokes equations
on hexahedral unstructured meshes. The SD method combines ele-
ments from finite-volume and finite-difference techniques. The
method is particularly attractive because it is conservative, has a
simple formulation and is easy to implement. The conservative
property of the SD scheme was discussed in Wang et al. [25].

Lift is produced by steady flow over aircraft surfaces. In contrast,
natural fliers create lift and thrust from unsteady aerodynamics by
flapping and hovering their wings. Computing unsteady flows at
low to moderate Reynolds number continues to be of significant
interest due to its application in MAVs and its relevance to insect

and bird flight. Flapping flight of birds and insects are fine examples
of highly efficient motion of aerodynamic surfaces that simulta-
neously develop the necessary thrust for forward motion and sus-
tained lift force for remaining airborne. Because of the abrupt
nature of the vortex formation and breakdown and their extreme
sensitivity to plunging/pitching amplitude and frequency, a high-or-
der accurate simulation is very desirable in order to minimize the
numerical dissipation which often prevents accurate prediction of
the energy and location of vortices as well as their life cycle.

In addition, the oscillating wing devices using hybrid plunging
and pitching motion, have been demonstrated as a potentially
more efficient concept to harness wind [14] and tidal energy [18]
than conventional energy harvesting systems with rotational
blades. Kinsey and Dumas [5] reported that for their sinusoidal
cases studied, where high power coefficients were generated, the
plunging contribution to power largely dominated the pitching
contribution. They concluded that generation of leading edge vor-
tices aided synchronization between the airfoil velocity and the
translational force for as long as possible through the flapping cy-
cle, a condition necessary for high power generation. Platzer et al.
[18] implemented their idea that the airfoil plunge is maintained
for as long as possible at a high velocity, followed by rapid pitching
reversals. They demonstrated that non-sinusoidal pitch–plunge
motion produces 30% increase in power generation.

Oscillating wing devices commonly produce vortex dominated
unsteady flow. As a result, schemes with low numerical dissipation
on moving grids are desirable in order to perform accurate
simulations. In this paper, we report our further developments of
the high-order SD method for these moving boundary unsteady
flow problems. We study plunging and pitchingmotions separately
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in order to understand their individual impacts on airfoil
performance.

For remaining parts of this paper, we present numerical formu-
lation of the SDmethod in Section 2. In Section 3,we verify the accu-
racy of our method using a 2D viscous flow Taylor–Couette flow
problem. Themajor results for unsteady flow past an airfoil are pre-
sented in Section 4. Finally, conclusions are drawn in Section 5.

2. Numerical formulation

We have reported the baseline 2D code development for solving
Navier–Stokes equations on fixed grids in Liang et al. [11,9].

2.1. Discretization in 2D space

Consider the unsteady 2D conservation law of the form

@Q
@t

þ @F
@x

þ @G
@y

¼ 0 ð1Þ

where Q is the vector of conserved variables; F and G are the total
fluxes including both inviscid and viscous flux vectors. To achieve
an efficient implementation, all elements in the physical domain
(x,y) are transformed into a standard square element (0 6 n 6 1,
0 6 g 6 1) as shown in Fig. 1. The transformation can be written as:

x

y

� �
¼
XK
i¼1

Miðn;gÞ
xi
yi

� �
ð2Þ

where K is the number of points used to define the physical ele-
ment, (xi,yi) are the cartesian coordinates of those points, and Mi

(n,g) are the shape functions. The metrics and the Jacobian of the
transformation can be computed. The governing equations in the
physical domain are then transferred into the computational do-
main, and the transformed equations take the following form:

@ eQ
@t

þ @eF
@n

þ @eG
@g

¼ 0 ð3Þ

where eQ ¼ jJj � Q and

eFeG
 !

¼ jJj nxny
gxgy

 !
F

G

� �
ð4Þ

In the standard element, two sets of points are defined, namely
the solution points and the flux points, illustrated in Fig. 1. In order
to construct a degree (N � 1) polynomial in each coordinate direc-
tion, solution at N points are required. The solution points in 1D are
chosen to be the Gauss points defined by:

Xs ¼ 1
2

1� cos
2s� 1
2N

� p
� �� �

; s ¼ 1;2; . . . ;N: ð5Þ

The flux points are selected as Legendre–Gauss-quadrature
points plus two end points as suggested by Huynh [3] and Van
den Abeele et al. [23].

Using the solutions at N solution points, a degree (N � 1) poly-
nomial can be built using the following Lagrange basis defined as:

hiðXÞ ¼
YN

s¼0;s–i

X � Xs

Xi � Xs

� �
ð6Þ

Similarly, using the fluxes at (N + 1) flux points, a degree N poly-
nomial can be built for the flux using a similar Lagrange basis de-
fined as:

liþ1=2ðXÞ ¼
YN

s¼0;s–i

X � Xsþ1=2

Xiþ1=2 � Xsþ1=2

� �
ð7Þ

For instance, for a second-order scheme, the first basis is de-
fined as

l1=2ðXÞ ¼ X � X1þ1=2

X1=2 � X1þ1=2

X � X2þ1=2

X1=2 � X2þ1=2
ð8Þ

The reconstructed solution for the conserved variables in the
standard element is just the tensor products of the two one-dimen-
sional polynomials,

Qðn;gÞ ¼
XN
j¼1

XN
i¼1

eQ i;j

jJi;jj
hiðnÞ � hjðgÞ ð9Þ

Similarly, the reconstructed flux polynomials take the following
form:eF ðn;gÞ ¼XN

j¼1

XN
i¼0

eF iþ1=2;jliþ1=2ðnÞ � hjðgÞ;

eGðn;gÞ ¼XN
j¼0

XN
i¼1

eGi;jþ1=2hiðnÞ � ljþ1=2ðgÞ ð10Þ

These reconstructed fluxes are only element-wise continuous,
but discontinuous across cell interfaces. For the inviscid flux, a Rie-
mann solver is employed to compute a common flux at interfaces
to ensure conservation and stability. In our case, we have used both
the Rusanov solver [20] and the Roe solver [19] to compute the
interface fluxes.

In summary, the algorithm to compute the inviscid flux deriva-
tives consists of the following steps:

� Given the conservative variables at the solution points, the con-
servative variables are computed at the flux points and the
inviscid fluxes at the interior flux points can be determined.

� The inviscid fluxes at the element interfaces are computed
using the Riemann solver. Given the normal direction of the
interface n, and the averaged normal velocity component Vn

and the sound speed c, the inviscid flux on the interface can
be determined.

� The derivatives of the fluxes are computed at the solution points
using the derivatives of Lagrange operators l

@eF
@n

 !
i;j

¼
XN
r¼0

eFrþ1=2;j � l0rþ1=2ðniÞ;

@eG
@g

 !
i;j

¼
XN
r¼0

eGi;rþ1=2 � l0rþ1=2ðgjÞ ð11Þ

To illustrate the treatment of viscous flows, one can write the
two-dimensional Navier–Stokes equations in conservation form as

@Q
@t

þrFinvðQÞ � rFvisðQ ;rQÞ ¼ 0 ð12ÞSolution points

ξ

η

Flux points

Fig. 1. Distribution of flux and solution points for the third-order SD scheme.
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where the conservative variables Q and Cartesian components fe(Q)
and ge(Q) of the inviscid flux vector Finv(Q) are given by

Q ¼

q
qu
qv
E

8>>><>>>:
9>>>=>>>;; finvðQÞ ¼

qu
qu2 þ p

quv
uðEþ pÞ

8>>><>>>:
9>>>=>>>;; ginvðQÞ ¼

qv
quv

qv2 þ p

vðEþ pÞ

8>>><>>>:
9>>>=>>>; ð13Þ

Here q is the density, u and v are the velocity components in x and y
directions, p stands for pressure and E is the total energy. The pres-
sure is related to the total energy by

E ¼ p
c� 1

þ 1
2
qðu2 þ v2Þ ð14Þ

with a constant ratio of specific heats c. For all test cases in the pres-
ent study, c is set as 1.4 for air.

The Cartesian components fvis(Q,rQ) and gvis(Q,r Q) of the vis-
cous flux vector Fvis(Q,rQ) are given by

fvisðQ ;rQÞ ¼ l

0
2ux þ kðux þ vyÞ

vx þ uy

u½2ux þ kðux þ vyÞ� þ vðvx þ uyÞ þ Cp

Pr
Tx

8>>>><>>>>:

9>>>>=>>>>;

gvisðQ ;rQÞ ¼ l

0
vx þ uy

2vy þ kðux þ vyÞ
v ½2vy þ kðux þ vyÞ� þ uðvx þ uyÞ þ Cp

Pr
Ty

8>>>><>>>>:

9>>>>=>>>>; ð15Þ

where l is the dynamic viscosity, Cp is the specific heat and Pr
stands for Prandtl number. T is temperature which can be derived
from the perfect gas assumption. k is set to �2/3 according to the
Stokes hypothesis.

The procedures to get the viscous fluxes can be described as the
following steps:

(1) reconstruct Qf at the flux points from the conservative vari-
ables at the solution points using Eq. (9).

(2) average the field of Qf on the element interfaces as

Qf ¼ 1
2 QL

f þ QR
f

� �
. For interior flux points, Qf ¼ Qf . Mean-

while, appropriate boundary conditions shall be applied for
specific boundary flux points.

(3) evaluate rQ at solution points from Qf using Eq. (11) where

rQ ¼ Qx

Qy

� 	
and Qx ¼ @Q

@n nx þ @Q
@g gx, etc.

(4) reconstructrQ from solution points to flux points and using
Eq. (9), average them on the element interfaces as

rQf ¼ 1
2 rQL

f þrQR
f

� �
(5) use Qf and rQf in order to compute the viscous flux vectors

described in Eq. (15) at the element interfaces.

2.2. Extension of the SD method to moving and deformable grids

Morton et al. [16] and Persson et al. [17] have shown that the
Navier–Stokes equations on moving and deformable grids can be
transformed using a mapping technique to a stationary structured
and unstructured grids respectively.

Let M denote a time-dependent continuous mapping function
from a reference domain (X,Y)t0 to a physical domain (x,y)t such
that ðx; yÞ ¼ MðX;Y ; tÞ. The mapping gradient is G ¼ rXM ¼ @ðx;yÞ

@ðX;YÞ.
The determinant of the mapping is the Jacobian g. The mapping
velocity w can be determined from the time derivative of M.

The conservative Eq. (12) on the physical (moving and deform-
able) domain can be re-written as

@ bQ
@t







X

þrX F̂invðbQ Þ � rF̂visðbQ ;rbQ Þ ¼ 0 ð16Þ

where bQ ¼ gQ ; F̂inv ¼ gG�1Finv � G�1wbQ and F̂v is ¼ gG�1Fvis. The
gradient of conservative variables on the physical domain can be
simply expressed on the reference domain using a chain rule

rQ ¼ rXðg�1 bQ Þ@X=@x ¼ ½g�1rX
bQ þ bQrXðg�1Þ�G�T ð17Þ

The high-order method can then be applied directly to the
transformed equations on the stationary grids. Implementing the
geometric conservation law correction term for g is also expected
to make our algorithms more robust for large deformations. Never-
theless, since we only consider plunge/pitch motion without mesh
deformation in this paper, a simplification can be made as g = 1 for
both cases. The transverse plunge motion is defined as a mapping func-
tion of X = x and Y(t) = y + h cos(xt) globally for all mesh points. The
pitching motion is defined as X = cosh�x + sinh�y and Y = �sinh�x +
cosh�y for all mesh points, where h = A sin(2pf t) and A is pitching
amplitude.

2.3. Time advancement schemes

Flows with either steady or unsteady solutions are considered
in this paper. All computations utilize a fourth-order accurate,
strong-stability-preserving five-stage explicit Runge–Kutta time step-
ping scheme [21].

3. Validation studies

3.1. Order verification using compressible Taylor–Couette flow

In this example, the numerical order of accuracy is validated
against the analytical solution for the compressible Taylor–Couette
flow. This test problemwas taken from a recent paper presented by
Michalak and Ollivier-Gooch [15].

The Reynolds number is 10 based on the tangential magnitude
of the spinning velocity of the inner cylinder and its radius (=1).
The temperature and pressure are prescribed for the inner cylinder
giving a Mach number 0.5. The outer cylinder is fixed and an adi-
abatic wall boundary condition is employed. A grid with 24 � 2
cells is shown in Fig. 2. Two other finer grids are obtained using
successive grid refinements in both directions. A steady solution
of Mach number contour obtained by the SD method is shown in
Fig. 2b. A cubic curved wall boundary is used for inner and outer
cylinders. We obtained desired numerical order L2 accuracy of
the y-component of the angular velocity as shown in Table 1.
The maximum accuracy of fourth-order is demonstrated in the ta-
ble. The explicit Runge–Kutta scheme becomes slow when the
polynomial order is increased. However, the fifth-order and even
higher accuracy can also be demonstrated using the implicit LU-
SGS method and p-multigrid approach with a significantly shorter
CPU time [10].

4. Simulation results

In this section, we study unsteady flow past an airfoil using
unstructured grids. The initial mixed-element mesh is shown in
Fig. 3 and the far-field distance is 20 chords. The initial grid con-
sists of 1881 elements. The NACA0012 airfoil upper surface is
formed using only 20 edges. This grid is denoted as ‘Mesh 1A’. To
perform one-level h-refinement and treat solid boundaries using
high-order curved representation, the airfoil surface curve was
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subdivided to match the domain of each edge on the surface of an
existing mesh. After one-level h-refinement, a quadrilateral mesh
with 5792 elements is obtained. A sectional part of this grid (Mesh
1B) is visualized in Fig. 4. Further details on the technique of h-
refinement can be seen in Liang et al. [9]. In order to demonstrate
the property of grid independence, a finer grid, namely Mesh 2B, is
generated as shown in Fig. 5 with all triangular cells. The airfoil
upper surface consists of 30 edges in Mesh 2A. We again perform

one-level h-refinement of Mesh 2A in order to obtain a finer mesh
(Mesh 2B) to have 60 edges on the airfoil upper surface as shown in
Figs. 6 and 7. If it is not mentioned elsewhere, the time step size of
Dt U1/c = 2 � 10�5 will be employed.

4.1. Viscous flow past a stationary NACA 0012 airfoil

Mesh 1B is used firstly for computing the flow past a stationary
NACA 0012 airfoil. The inflow Mach number is 0.2 and the Rey-
nolds number is 1850. Fig. 8 shows the pressure contour distribu-
tion obtained on Mesh 1B using a fourth-order SD method. The
symmetry of pressure contour plot indicates that the viscous flow
eventually settles with a steady flow solution. The drag coefficient
predicted is 0.054.

Following the notation of Jones et al. [4], we define the plunge
amplitude as h and plunge circular frequency as x = 2pf.
Subsequently, the Strouhal number is determined as Sr ¼ xhc

U1
,

where c is the airfoil chord length and U1 is the free-stream veloc-
ity. The airfoil plunge motion profile considered in this paper is
prescribed as Y(t) = h sin(xt). In the following, we consider two test
problems, i.e. slow plunging airfoil and fast plunging airfoil.

Fig. 2. Compressible Taylor–Couette Flow.

Table 1
L2 errors and orders of accuracy of viscous Taylor–Couette flow.

No. of elements No. of DOFs L2-error Order

Third-order SD
48 432 8.896E�04 –

192 1728 1.002E�04 3.15
768 6912 1.084E�05 3.21

Fourth-order SD
48 768 1.4815E�04 –

192 3072 1.0036E�05 3.88
768 12,288 6.5746E�07 3.93

Fig. 3. Initial mixed-element mesh for NACA 0012 (Mesh 1A). Fig. 4. Quadrilateral mesh after h-refinement for NACA 0012 (Mesh 1B).

C. Liang et al. / Computers & Fluids 40 (2011) 236–248 239
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4.2. Slow plunging airfoil

We consider a plunge motion with x = 1.15 and h = 0.08c. It
corresponds to the test case with Sr = 0.46 in the paper of Jones
et al [4]. We examine this slow plunging airfoil case using both
the third-order and fourth-order SD methods on Mesh 1B. This
flow has boundary layer separations from top and bottom sides
which result in alternate vortex shedding patterns as shown in
Fig. 9. The total 12 contour levels of x c/U1 shown in Fig. 9 are
bounded between �6 and 6. In general, vortices are more confined
by the fourth-order scheme than the third-order scheme. Fig. 9 also
reveal that the numerical dissipation produced by the third-order
scheme is significant after the seventh vortex. By analyzing the lift
and drag coefficients for this slow plunging airfoil, we found that
the vortex shedding frequency obtained from the lift coefficient
(as shown in Fig. 10) is identical to the airfoil plunge motion fre-
quency. The maximum of lift coefficients is around 4.77 and the
minimum locates at the level of �4.78. After discarding the initial
transients for statistics, the overall time-averaged lift coefficient
predicted is very close to zero (�0.0042). In contrast, the maximum
drag coefficient predicted is 0.1 and the minimum drag reaches
�0.181. The overall time-averaged drag coefficient is negative
(�0.0436). It can be summarized that the slow plunging airfoil un-
der the above performance condition generates thrust but not lift.

In order to evaluate the effect of viscous stresses on this plung-
ing airfoil, we compare computed lift and drag coefficients ob-
tained by our SD viscous solver with the ones obtained by the
inviscid Panel code employed in [4]. As shown in Fig. 11, the Panel
code predicted a smaller magnitude of the lift coefficient and a
considerably bigger magnitude of thrust force than that of the pre-
dictions by the SD solver.

4.3. Fast plunging airfoil

Finally, we consider the same airfoil with a plunge motion with
x = 2.46 and h = 0.12c. This setup is identical to the one with
Sr = 1.5 in the paper of Jones et al. [4]. The free-stream mach num-
ber is equivalent to the previous test case and maintained at the le-
vel of 0.2 using the Dirichlet boundary condition. As shown in
Fig. 12a and b, our simulations suggest that the vortex shedding
associated with a high-speed jet travels upwards with a degree
of angle if the first stroke of the airfoil goes downwards, and vice
versa. It shall be noted here that [2] observed that the high-speed
jet switched to a different direction in their experiment at a much
higher Reynolds number. We also noted that a numerical simula-

Fig. 5. A close view on the triangular cells in Mesh 2A.

Fig. 6. A close view on the quadrilateral cells in Mesh 2B.

Fig. 7. Overall view of Mesh 2B.

Fig. 8. The pressure contour plot obtained on Mesh 1B.
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tion by Lewin and Haj-Hariri [8], which solved incompressible Na-
vier–Stokes equations at Reynolds number of 500, predicted that
their high-speed jet switched direction with either upward or
downward angles.

The third-order SD method is able to reproduce the dual-mode
vortex street as shown in Fig. 12a and b. They agree well with the
experimental results shown in Fig. 12d obtained in a water tunnel.
Using the same computational grid, the fourth-order SD method is
able to reproduce the fine structures traveling in the opposite
direction in the wake of the airfoil as shown in Fig. 12c. These fine
structures resemble the structures shown in the photograph of the
experiment by Jones et al. [4] and have not previously been repro-
duced in numerical simulations.

The lift and drag coefficients predicted by the third-order SD
method shownonbothMesh 1B andMesh 2B in Fig. 13 demonstrate
that the solution is close to the state of grid independence. The
difference between lift coefficients predicted Meshes 1B and 2B is
negligible although there is a small difference between drag coeffi-
cients predicted by both meshes. The fourth-order SD scheme on
Mesh 1B predicts that the time-averaged lift and drag coefficients
are2.57 and�0.51 respectively. Themaximuminstantaneous thrust
is generated at the level of Cd = �1.51 in comparison to the
maximum instantaneous drag of only around Cd = 0.37. Similar to
the case with slow plunging motion, the dominant frequency
obtained from the lift coefficient spectra is also equivalent to the
plunge motion frequency.

Fig. 9. The vorticity contour plot obtained using the third-order (top) and fourth-order (bottom) methods.

Fig. 10. The lift and drag coefficients obtained on Mesh 1B with the fourth-order SD method.

C. Liang et al. / Computers & Fluids 40 (2011) 236–248 241
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Once again, in order to evaluate the effect of viscous stresses on
the plunging airfoil, in Fig. 14, we compare computed lift and drag
coefficients obtained by our SD viscous code with the ones
obtained by the inviscid Panel code employed in [4]. Both codes

compute the same plungemotion. The differences of lift coefficients
predicted by both codes are very small. As the transverse plunge
velocity increases, the dynamic pressure difference between top
and bottom surfaces becomes more and more dominant and the

Fig. 11. Force coefficients obtained by SD and Panel codes.

Fig. 12. The vorticity field predicted by the SD method against the experimental results presented in Jones et al. [4] and the contour levels are within the range of �6 6xc/
U1 6 6. Both (a) and (b) are obtained by the third-order SD method, and (c) is obtained by the fourth-order SD method.

242 C. Liang et al. / Computers & Fluids 40 (2011) 236–248
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difference of viscous stresses on top and bottom surfaces becomes
negligible. However, viscous stresses win over pressure in the
streamwise direction. The resultant thrust force predicted by the
SD code has a peakmagnitude only 30%as big as the peakmagnitude
predicted the Panel code.

The SD method worked well with the refined grid (Mesh 1B) as
reported above. In order to demonstrate the grid-independence of
our simulation results, two-level h-refinements are performed for
the initial hybrid mesh (Mesh 1A). The final grid is shown in
Fig. 15. This mesh is defined as ‘Mesh 1C’. Mesh 1C has 23,168 grid
points, which are 16 times the number of Mesh 1A.

In order to see the h-refinement effect on our simulation results,
Mesh 1C is also used for the third-order SD simulation. Fig. 16
presents the vorticity contour plot. The contour levels are within
the range of �66xc/U1 6 6. The third-order SD scheme on Mesh
1C is able to capture some fine structures in the downstream below
the airfoil which were not resolved on Mesh 1B. However, The
third-order SD scheme onMesh 1C does not resolve these fine struc-
tures as clearly as the fourth-order SD scheme onMesh 1B. It demon-
strates that the p refinement ismore effective than the h-refinement.

Fig. 13. Lift and drag coefficients predicted by Meshes 1B and 2B using third-order SD method.

Fig. 14. Force coefficients obtained by SD and Panel codes.

Fig. 15. All-quadrilateral-element mesh after two-level h-refinements (Mesh 1C).
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4.3.1. The effect of Reynolds number
Four Reynolds numbers (1850, 1000, 500 and 252) are investi-

gated for the fast plunging case. We observe deflected wakes for

all these Reynolds numbers. Interestingly, the angle of deflection
decreases as the Reynolds number decreases. Fig. 17 presents vor-
ticity shedding behind the airfoil at different Reynolds numbers.
Figures (a), (b), (c) and (d) each contain 12 contour levels within
the range of �6 6xc/U1 6 6. The simulations were performed
using the third-order SD method on Mesh 2B for all cases. The time
step size Dt U1/c = 2 � 10�5 remains the same for all cases.

The variation of Reynolds number results in little change of the
lift coefficients as illustrated in Fig. 18a. However, as the Reynolds
number decreases, the drag coefficient increases evidently as
shown in Fig. 18b. To our knowledge, this is the first report on
the dependence of Reynolds numbers for the angle of deflected
wakes behind a fast plunging airfoil.

4.4. Viscous flow past a pitching NACA 0012 airfoil

In this section we study viscous flow over a pitching NACA 012
airfoil along its quarter chord axis. The simulations were per-
formed at a much higher Reynolds number than the previous
plunging case. In particular, we aim to validate the simulation with
existing experiment results of a pitching airfoil, test the solver with
increased Reynolds number, and study the lift and drag character-
istics of a pitching airfoil.

Fig. 16. Vorticity contour predicted on Mesh 1C using the third-order SD method.

Fig. 17. Vortcity around the fast plunging airfoil at different Reynolds numbers.
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4.4.1. Pitching airfoil flow simulation setup
The simulation Reynolds number, based on the airfoil chord

length, is Re = 12,000. Mesh 1B with 5792 cells is employed for
computations of all cases of pitching airfoil. Note that the mesh
points are shifted in the streamwise direction so that the quarter
chord locates at (0,0). The Reynolds number is chosen according
to the experimental study carried out by Koochesfahani [6], in
which the vortical patterns behind a pitching NACA0012 airfoil
around the quarter chord axis were studied and visualized in a
water tunnel. The simulations were computed at a small mach
number of M1 = 0.15, at a reduced frequency k of 2pfc/
(2u1) = 20.9f, where f is the pitching frequency. The amplitude of

the sinusoidal pitching motion is denoted A. The airfoil starts with
a zero mean angle of attack. Three cases have been computed and
compared with the corresponding experimental results. The vorti-
cal pattern for each case is illustrated in Figs. 19–21. In order to
produce little numerical dissipation, the simulations here were
performed with fifth-order SD method.

4.4.2. Pitching airfoil flow patterns
Comparing the vortical patterns, the simulations for the cases

with (A = 4�, k = 0.835) and (A = 2�, k = 6.68) produce wakes that
are very similar to the experimental visualizations as shown in
Figs. 19 and 20. Note that the free-stream flow comes from the

Fig. 18. Lift and drag coefficients predicted for different Reynolds number for the fast plunging case.

Fig. 19. Vortical pattern for A = 4�, k = 0.835.

Fig. 20. Vortical pattern for A = 2�, k = 6.68.

Fig. 21. Vortical pattern for A = 4�, k = 3.09.
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right side. This is opposite to the previous cases of plunging airfoil.
In the first case with (A = 4�, k = 0.835), the wake assumes a form of
undulating vortex sheet. In the later case, an alternating vortex
pattern is formed, with the vortices positioned in a nearly straight
line, similar to the slow plunging case. For the case with (A = 4�,
k = 3.09), the simulation captures the double-vortex feature, but
only in the region about two chords downstream of the airfoil.
The vorticity further downstream seems to dissipate and merge
into one another, losing the double-vortex feature that is charac-
teristic of this particular pitching frequency and amplitude. It is
likely that this special case where two vortices of the same sign
are shed on each half-cycle of the oscillation requires a finer mesh
downstream of the airfoil, since it occupies a wider flow domain,
and has finer features than other cases. Also, the mesh currently
used was chosen to be rather unstructured to demonstrate the
capability of the solver, hence can introduce more dissipation than
otherwise it would. The pitching airfoil considered here has a much
higher Reynolds number than the plunging case. In this paper, we
only consider 2D simulations. As a result, possible 3D effect is not
confirmed. It is worthy of mentioning that Visbal [24] recently
studied a plunging airfoil case at a Reynolds number of 10,000

using both 2D and 3D simulations. The 3D effect on lift and drag
coefficients is nearly negligible according to his simulations.

4.4.3. Force coefficients time history for A = 2� and k = 6.68
As shown in Fig. 22, with the pitching amplitude set to A = 2�,

and the reduced frequency set to k = 6.68, the airfoil produces zero
mean lift and generates a small drag force.

The lift coefficient varies sinusoidally with time around zero
axis. The average lift acting on the airfoil is zero. The instantaneous
lift coefficient is, however, very big, largely due to the contribution
from the pressure term, as can be clearly observed from the lift
coefficient plot. The skin friction term has negligible contribution
to the instantaneous lift force.

While the average lift force is zero, there is a small average drag
acting on the airfoil under this condition. The contribution from
the skin friction is significant. The skin friction drag coefficient is
also nearly constant at a value of CDv = 0.0276. In the contrast,
the pressure term has a beneficial mean thrust contribution of
CDp = �0.015. This helps to offset the skin friction drag by a large
amount, reducing the overall drag acting on the airfoil. The pres-
sure drag term has large instantaneous variations, with half of

Fig. 22. CD and CL time history for A = 2� and k = 6.68.

Fig. 23. CD and CL time history for A = 4� and k = 0.835.
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the pitching cycle producing thrust, and the other half generating
drag.

4.4.4. Force coefficients time history for A = 4� and k = 0.835
As shown in Fig. 23, with the pitching amplitude set to A = 4�,

and the reduced frequency set to k = 0.835, the airfoil produces
zero mean lift and generates a drag force that is larger than the
previous case.

The lift coefficient time history is very similar to the previous
case, with large instantaneous but zero average value.

The entire drag coefficient curve stays above the zero axis.
Hence the airfoil experiences drag at all time. The contribution
from the skin friction term is almost the same as the previous case,
with CDv = 0.0234. The pressure term, however, has zero mean
contribution to the drag. The mean overall drag force is entirely
due to skin friction.

4.4.5. Force coefficients time history for A = 4� and k = 3.09
As shown in Fig. 24, with the pitching amplitude set to A = 4�,

and the reduced frequency set to k = 3.09, the airfoil again pro-
duces zero mean lift, but a smaller drag force than the previous
case.

Again, no mean lift force is produced, and the instantaneous
force remains large.

The skin friction remains at about CDv = 0.0255. The pressure
term is thrust producing with an average CDp = �0.0139. This
helps to reduce the overall mean drag force.

4.4.6. Variation of drag coefficient with reduced frequency
Three additional cases have been computed to produce the fol-

lowing curves showing the variation of drag coefficients with re-
duced frequencies for different pitching amplitudes. The mean
CD values for all the cases are also tabulated in Table 2.

From the previous section, we note that, by pitching faster, the
pressure term becomes thrust producing while the skin friction
term remains roughly unaltered, leading to an overall reduction
in drag experienced by the airfoil. Both curves shown in Fig. 25
demonstrate the beneficial effect of increasing pitching frequency.
We also observe that this effect is more pronounced for higher
pitching amplitude.

5. Conclusions

The spectral difference method is robust and accurate. Both
third and fourth-order SD simulations of unsteady flow past a

Fig. 24. CD and CL time history for A = 4� and k = 3.09.

Table 2
Drag coefficients for various pitching frequencies and amplitudes.

A K CDp CDv CDt A K CDp CDv CDt

0 0 0.0254 0.0254 0 0 0.0254 0.0254
2 5.01 �0.0039 0.0253 0.0214 4 0.835 0.0045 0.0234 0.0253

6.68 �0.0172 0.0276 0.0104 3.09 �0.0139 0.0255 0.0115
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Fig. 25. Variation of drag coefficient with reduced frequency for amplitude = 2�
(triangle) and amplitude = 4� (circle).
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plunging airfoil confirm that the vortex shedding pattern becomes
asymmetric at a sufficiently high frequency. The fourth-order SD
method both captures this effect and also reveal a fine structure
that closely replicates the experimental photographs. It is found
that the vortex shedding frequencies of these plunging airfoils
are equivalent to the plunging frequencies. The angle of deflected
wake increases with the Reynolds number. Conversely, the increase
of Reynolds number from 252 to 1850 results in decreases of the drag
coefficient.

Our predictions for the pitching airfoil also achieved excellent
agreements with experimental data. Comparison between our
high-order SD simulations and other inviscid flow solvers confirms
that it is necessary to solve a full set of Navier–Stokes equations in
order to predict accurately both lift and drag characteristics for
oscillating airfoils.

The SD method could enable high-order accurate simulations of
unsteady flow past flapping MAVs. Our planned future work is to
apply this technique for predictions of unsteady flow past oscillat-
ing wings with combined plunging and pitching motion.
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