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Large eddy simulation of the flow over a circular cylinder at Reynolds number ReD = 2580 has been studied 

with a high-order unstructured spectral difference method. Grid and accuracy refinement studies were 

carried out to assess numerical errors. The mean and fluctuating velocity fields in the wake of a circular 

cylinder were compared with PIV experimental measurements. The numerical results are in an excellent 

agreement with the measurements for both the mean velocity and Reynolds stresses. Other wake 

characteristics such as the recirculation bubble length, vortex formation length and maximum intensity of the 

velocity fluctuations have also been predicted accurately. The numerical simulations demonstrated the 

potential of the high-order SD method in large eddy simulation of physically complex problems. 
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I. Introduction 

 
The flow around bluff bodies is very complex and can involve regions of laminar, transitional and turbulent 

flows, unsteady separation and reattachment, and the formation of coherent structures, particularly in the wake 

region of the flow. The understanding of bluff body vortex shedding is of great practical importance and the uniform 

flow over a circular cylinder is a classical example of bluff body flow. The configuration is quite simple but the flow 

is characterized by a very complex wake at Reynolds number ReD=2580 examined in this paper. In this paper, we 

try to show the importance of using high order methods to study the numerical and physical aspect of unsteady wake 

flow involving separation, recirculation, unsteady vortex shedding and large complex flow structures at a sub-

critical Reynolds number. The near wake structure behind a bluff body plays an important role in the overall vortex 

formation and shedding processes and determines the magnitude of mean and fluctuating forces exerted on the body. 

Direct numerical simulations (DNS) of the Navier-Stokes equations, in which all eddy scales have to be captured, is 

almost impossible for problems with moderately high Reynolds number because of the huge computational 

requirements in resolving all turbulence scales. Hence a less expensive and accurate method is required. In Reynolds 

averaged Navier-Stokes (RANS) approach, all eddies are averaged over to give equations for variables representing 

the mean flow.  But RANS has proved to be generally inadequate in predicting the effects of turbulent separating 

and reattaching flows, because the large eddies responsible for the primary transport are geometry dependent. For 

any turbulent flow, the largest scale is of the order of the domain size and the small scales are related to the 

dissipative eddies where the viscous effects become predominant. Large eddy simulation (LES) is a method where 

the three-dimensional and unsteady motion of the large eddies is computed explicitly and the non-linear interactions 

with the smaller eddies, which are assumed to be isotropic and universal, are modeled. LES is an active area of 

research and the numerical simulation of complex flows is essential in the development of the method as a tool to 

predict flows of engineering interest. 

In this paper, implicit LES computations were performed without any sub-grid scale model in order to 

investigate the effectiveness of the spectral difference method. These simulations were deliberately not called direct 

numerical simulations because they did not comply with the resolution requirements of DNS. Turbulent flow past a 

circular cylinder has been the subject of a large number of experimental and numerical investigations
1,2

. In recent 

years a good understanding of the physics of flow at low Reynolds number of below a few hundred, has been 
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obtained. But at higher Reynolds number, still subcritical though, considerably less is known. A comprehensive 

review of the flow characteristics for a wide range of Reynolds numbers was studied by Williamson
3
. In addition, a 

number of simulations at various Reynolds numbers, mostly LES, have been carried out
4,5

. The cylinder flow at 

Reynolds number ReD=3900 has become a common test case for LES primarily because of the availability of the 

experimental results of Lourenco and Shih
6
 and Ong and Wallace

7
. The calculations were performed on structured

8-

11 
and unstructured meshes

12-14
. Beaudan and Moin

9
, Mittal and Moin

10
, Kravchenko and Moin

15
 were among the 

first to perform LES studies at ReD=3900. Motivated by the direct simulation results of Rai and Moin
16

, Beaudan 

and Moin
9
 used high-order upwind-biased schemes for the numerical simulations of the compressible Navier–Stokes 

equations. The profiles of mean velocity and Reynolds stresses obtained in these simulations were in reasonable 

agreement with the experimental data. However, inside the recirculation region, the streamwise velocity profiles 

differed in shape from those observed in the experiment
6
. These differences were attributed to the experimental 

errors as manifested in the large asymmetry of the experimental data
9
. A new experiment at the same Reynolds 

number was carried out by Ong and Wallace
7
 and provided the mean flow data at several locations in the near wake 

of the cylinder downstream of the recirculation region. Even though fair agreement between the simulations of 

Beaudan and Moin
9
 and the experiment was observed in the mean velocity profiles, turbulence intensities at several 

downstream locations did not match the experimental data. Also the Reynolds stresses were not predicted correctly 

when compared to experimental data. Similar problems were observed with Mittal and Moin's work
10,11

. In the two 

mentioned simulations, they showed a shape of the streamwise velocity profile inside the recirculation region 

different from that observed in the experiment of Laurenco and Shih
6
. A new experiment at the same Reynolds 

number was carried out by Ong and Wallace
7
 and provided the mean flow data at several locations in the near wake 

of the cylinder downstream of the recirculation region. Even though fair agreement between the simulations of 

Beaudan and Moin
9
 and the experiment was observed in the mean velocity profiles, turbulence intensities at several 

downstream locations did not match the experimental data. Several other researchers have examined a variety of 

aspects that affect the quality of LES solutions at ReD=3900. The numerical and modeling aspects which influence 

the quality of LES solutions were studied by Breuer
17

. He had also carried out LES computations without any sub-

grid scale model. 

DNS of the cylinder flow at ReD=3900 was performed by Ma et al.
13

. The mean velocity profiles and the power 

spectra are in good agreement with the experimental data in the near wake as well as far downstream. In particular, 

the velocity profiles agree well with those from the experiments in the vicinity of the cylinder. Compared with 

LES
11

, the pressure coefficient in DNS is a little lower, while the recirculation bubble length is larger. Franke and 

Frank
18

 found out that this is an effect of the averaging time in computing statistics. In DNS
13

 the statistics is 

accumulated over 600 convective time units (D/U), while in LES
11

 the statistics is accumulated over 35 convective 

time units. The numerical issues raised in the previous large eddy simulations prompted us to attempt simulations of 

the flow over a circular cylinder using a high order method. Second-order simulations for unperturbed inlet flow 

conditions at ReD=2580 were performed by Liang
19

. The length of the recirculation bubble was under predicted 

probably due to under-resolution. The primary motivation for using a high order method is to accurately study the 

wake flow at Reynolds number ReD=2580. The numerical results obtained were compared with the PIV experiment 

performed by Konstantinidis et al.
20

. 

 

II. Numerical Approach: The Spectral Difference Method 
 

High-order methods capable of handling unstructured grids are highly sought after in many practical 

applications with complex geometries in LES, DNS of turbulence, computational aero-acoustics, to name a few. The 

spectral difference (SD) method
21-24

 is a high order, conservative and efficient method for conservation laws on 

unstructured grids
8,21

. The SD method is similar to the finite-difference method and it utilizes the concept of 

discontinuous and high order local representations to achieve conservation and high accuracy in a manner similar to 

discontinuous Galerkin (DG) method
25-26

 or spectral volume (SV) method
27-30

. For quadrilateral and hexahedral 

grids, the SD method
31,32

 is identical to the staggered-grid multi-domain spectral method
33

. The method is very 

simple to implement since it involves one-dimensional operations only, and does not involve any surface or volume 

integrals. The SD method is based on the differential form. The basic idea is presented next for the Navier-Stokes 

equations. 

Consider the unsteady compressible 3D Navier-Stokes equations in conservative form written as 

 0=
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where Q is the vector of conserved variables, and F, G, H  are the total fluxes including both the inviscid and 

viscous flux vectors, i.e., vi
FFF −= , vi GGG −= , vi

HHH −= . 

We employ non-overlapping unstructured hexahedral cells or elements to fill the computational domain. In 

order to handle curved boundaries, both linear and quadratic iso-parametric elements are employed, with linear 

elements used in the interior domain and quadratic elements near high-order curved boundaries. In order to achieve 

an efficient implementation, all elements are transformed from the physical domain ),,( zyx  into a standard element 

∈),,( ςηξ [0,1]x[0,1]x[0,1]. The governing equations in the physical domain are then transformed into the 

computational domain (standard element), and the transformed equations take the following form 
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In the standard element, two sets of points are 

defined, namely the solution points and the flux points. 

The solution unknowns or degrees-of-freedom (DOFs) 

are the conserved variables at the solution points, while 

fluxes are computed at the flux points. In order to 

construct a degree (N-1) polynomial in each coordinate 

direction, solutions at N points are required. In a recent 

study, Van den Abeele et al
34

 found that the SD method 

does not depend on where the solution points are located, 

while the location of the flux points determines the 

method. Therefore, the solution points can be chosen to 

maximize efficiency. It was also found that the use of 

Chebyshev-Gauss-Lobatto points as the flux points 

results in a weak instability by Van den Abeele et al
34

 

and Huynh
35

. In the present simulation, the solution 

points are chosen to be the Chebyshev-Gauss points 

defined by 
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The flux points are selected to be the Legendre-Gauss-quadrature points plus the two end points, 0 and 1, as 

suggested by Huynh
35

. Using the N solutions at the solution points, a degree N-1 polynomial can be built using the 

following Lagrange basis defined as  
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Similarly, using the N+1 fluxes at the flux points, a degree N polynomial can be built for the flux using a similar 

Lagrange basis defined as  
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The reconstructed solution for the conserved variables in the standard element is just the tensor products of the three 

one-dimensional polynomials, i.e.,  
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Similarly, the reconstructed flux polynomials take the following forms: 

 
 

Fig. 1. Distribution of solution points (circles) and 

flux points (squares) in a standard element for a 3
rd

 

order SD scheme. 
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The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For the inviscid 

flux, a Riemann solver, such as the Rusanov or Roe flux, is employed to compute a common flux at interfaces to 

ensure conservation and stability. In summary, the algorithm to compute the inviscid flux derivatives consists of the 

following steps: 

1. Given the conserved variables at the solution points { }kjiQ ,,

~
, compute the conserved variables at the flux 

points 

2. Compute the inviscid fluxes at the interior flux points using the solutions computed at Step 1 

3. Compute the inviscid flux at element interfaces using a Riemann solver, in terms of the left and right 

conserved variables of the interface.  

4. Compute the derivatives of the fluxes at all the solution points according to 
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The viscous flux is a function of both the conserved variables and their gradients, e.g., 

),(
~~

,,2/1,,2/1,,2/1 kjikji

vv QQFF
kji ++ ∇=

+
. Therefore the key is how to compute the solution gradients at the flux points. The 

following steps are taken to compute the viscous fluxes: 

1. Same as Step 1 for the inviscid flux computations; 

2. When computing the derivatives, the solution Q at the cell interface is not uniquely defined. The solution at 

the interface is simply the average of the left and right solutions, 2/)(ˆ
RL QQQ += . 

3. Compute the gradients of the solution at the solution points using the solutions at the flux points. Then the 

gradients are interpolated from the solution points to the flux points using the same Lagrangian 

interpolation approach given in.  

4. Compute the viscous flux at the flux points using the solutions and their gradients at the flux points. Again 

at cell interfaces, the gradients have two values, one from the left and one from the right. The gradients 

used in the viscous fluxes at the cell interface are simply the averaged ones, i.e., 

)2/)(,2/)((
~~

RLRL

vv QQQQFF ∇+∇+= . 

More details of the SD method can be found in References 31 and 32. 

 

III. Problem Definition and Computational Details 
 

The simulation was performed to match the geometry of the experiment performed by Konstantinidis et al
20

. 

The experiments were performed using the PIV technique in a stainless steel water tunnel with a cross-section of 

72mm x 72mm. The origin and size of the computational domain are shown in Fig 2. The x-axis is along the 

streamwise flow direction and the z-axis is along the cylinder axis i.e. the spanwise direction. The cylinder has a 
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non-dimensional unit diameter. The upstream velocity is fixed at U=0.1 m/s and is assumed to be uniform across the 

inlet. The Reynolds number based on the cylinder diameter and upstream velocity is 2580. 

         
Fig. 2. The geometry of the flow over cylinder 

 

The size of the computational domain in the y-direction is equal to 7.2 cylinder diameters, which is equal to the 

one used in the experiment. The required size in the spanwise direction is estimated from the prior knowledge of the 

sizes of the streamwise vortex structures. It has been reported in the experimental studies by Mansy et al.
36

 and 

Williamson et al.
37

 that the wavelength of the streamwise structures in the near wake of a circular cylinder scale as  

 

λz/D ~ 25 ReD
-0.5

                               (8) 

 

For the present case of ReD=2580, the wavelength is approximately 0.5D. Further downstream, large scale 

structures were observed by Williamson et al.
37

 with wavelengths λz/D ~ 1. No experimental information was 

available about the size of streamwise structures, so the length of the domain in the spanwise direction is taken to be 

πD which is the same as the one used by Kravchenko and Moin
11

, and Breuer
8
.  

 High-order spectral difference method is employed to solve the problem. Implicit scheme with 2
nd

 order 

accuracy in time was used. Both 2
nd

 and 3
rd

 orders of spatial accuracy were tested with quadratic boundary for the 

cylinder surface. Although the explicit scheme is easy to implement and has high-order accuracy in time, it suffered 

from too small time step, especially for viscous grids which are clustered in the viscous boundary layer. It is well-

known that high-order methods are restricted to a smaller CFL number than low order ones. In addition, they also 

possess much less numerical dissipation. The computation cost of high-order explicit methods for many steady-state 

problems is so high that they become less efficient than low-order implicit methods in terms of the total CPU time 

given the same level of solution error. Therefore an efficient implicit lower-upper symmetric Gauss-Seidel (LU-

SGS)
38,39

 solution algorithm is used to solve viscous compressible flows for the high order spectral difference 

method on unstructured hexahedral grids.  

 As shown in Fig. 3 and Fig. 4, two meshes are used. The coarse mesh has 86,680 cells and the fine mesh has 

189,448 cells. For third order spatial accuracy, the coarse mesh has 2.34 million degrees-of-freedom (DOFs) while 

the fine mesh has 5.12 million DOFs. The fine mesh is produced by refining the coarse mesh by about 1.5 times in 

the wake region of the cylinder.  

As mentioned earlier, the length of the domain in the spanwise direction is πD and 12 layers are used for coarse 

mesh while 18 layers are used for the fine mesh. A constant expansion of 1.1 was used in the radial direction away 

from the cylinder. The smallest cell spacing in the radial direction is ∆rmin/D = 1.75 x 10
-3

 for the fine mesh and 3.5 

x 10
-3

 for the coarse mesh. Beaudan and Moin
9
 had used a slightly lower value of ∆rmin/D = 1.25 x 10

-3
 for their 

finest mesh at ReD=3900. Therefore the mesh used in this paper is coarser than the finest mesh used by Beaudan and 

Moin
9
. In every layer in the spanwise direction, 120 cells were placed along the circumference of the cylinder for 

coarse mesh while 160 for fine mesh which is lower than the ones used by Liang
19

 at  ReD=2580.  
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Fig. 3. Coarse mesh in X-Y plane 

 

 
 

Fig. 4. Fine mesh in X-Y plane 
 

The time step (normalized ∆T = tU/D) used is 0.005 for the coarse mesh while for the fine mesh it is half of the 

one used for the coarse mesh. It takes roughly 4 to 5 sub-iterations for the unsteady residual to drop by two orders. A 

far-field boundary condition is used at the inlet with an unperturbed inlet flow velocity. At the outlet, a fixed 

pressure boundary condition is used. Periodic boundary condition is applied in the spanwise direction while 

symmetry is imposed for the top and bottom surfaces. Zero velocity boundary condition is used for the cylinder 

wall.  

The flow over the cylinder is first allowed to reach a statistically steady state so as to allow all transients to exit 

the computational domain and then the statistics, mean and r.m.s. values, were obtained. The transients are 

convected out using 12 shedding periods and then 20 shedding periods are used to collect the statistics of mean and 

r.m.s. values. 

 

IV. Numerical Results and Discussions 
 

The instantaneous streamwise, transverse and spanwise velocities in the wake of the circular cylinder are shown 

in Fig. 5, 6 and 7. Fig 5 clearly shows the unsteady recirculation region. The alternating regions of positive and 

negative transverse velocity corresponding to the Karman vortices can also be observed in Fig. 6. At ReD=2580, the 

flow becomes turbulent and three-dimensional which is evident of the presence of both the small and large scale 

structures in Fig. 7. It also shows that the flow structures increase in size as we go downstream of the cylinder. It can 

be noted that small scale structures are still present very far away from the cylinder which were not observed by 

Beaudan and Moin
9
. Moser et al.

40
 performed a DNS and could capture the small scale and large scale turbulent 

structures at ReD=2000.  
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Fig. 5. Instantaneous streamwise velocity in x-z plane (y=0) in the wake of the cylinder. There are 40 contours 

from -0.1 to 0.1. 

 

 
 

Fig. 6. Instantaneous transverse velocity in x-z plane (y=0) in the wake of the cylinder. There are 40 contours 

from -0.1 to 0.1. 

 

 
 

Fig. 7. Instantaneous spanwise velocity in x-z plane (y=0) in the wake of the cylinder. There are 52 contours 

from -0.1 to 0.1. 

 

Fig. 8. shows contours of instantaneous vorticity magnitude. Two long shear layers can be seen separating from 

the cylinder. The Karman vortex street can also be seen in Fig. 8. The vortices arising from the instabilities of the 

shear layers mix in the primary Karman vortices before propagating downstream and similar observations were 

made by Chyu and Rockwell
41

 in their PIV experiments. 

A study on grid independency is made for the coarse and fine mesh since insufficient grid resolution can lead to 

inaccurate predictions of the wake characteristics
11

. Fig. 9 shows that the second order method cannot capture the 

statistics accurately. The coarse mesh with third order accuracy is in fairly good agreement with the experiment 

results. Fig. 10 and Fig. 11 show that both fine mesh and coarse mesh give excellent agreement with the experiment 

(PIV) measurements for the mean streamwise and transverse velocity at various locations in the wake of the 

cylinder. The fine mesh and coarse mesh results are pretty similar but the fine mesh gives slightly better results.  
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Fig. 8. Instantaneous vorticity magnitude showing 16 contours from ωD/U = -0.1 to ωD/U = 0.1. 

 

At x/D=1.5, 2 and 2.5, both the mean streamwise and transverse velocities are slightly over predicted for the coarse 

mesh. But the fine mesh results give a good agreement with the experiment values.  

 

 

 
 

 

Fig. 9. Mean normalized streamwise velocity in the wake of the circular cylinder, (oooo) - experiment; 

(Dashed line) – 2
nd

 order results; (Solid line) – 3
rd

 order results. The dotted line (......) represents the zero 

location of the shifted curves. 
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Fig. 10. Mean normalized streamwise velocity in the wake of the circular cylinder, (oooo) - experiment; 

(Dashed line) – coarse mesh; (Solid line) – fine mesh. The dotted line (......) represents the zero location of the 

shifted curves.  

 

 
 

Fig. 11. Mean normalized transverse velocity in the wake of the circular cylinder, (oooo) - experiment; 

(Dashed line) – coarse mesh; (Solid line) – fine mesh. The dotted line (......) represents the zero location of the 

shifted curves. 
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Fig. 12. Distribution of the streamwise mean velocity along the wake center-line. 

 

 

 
 

Fig. 13. Normalized <u'u'>/U
2
 in the wake of the circular cylinder, (oooo) - experiment; (Dashed line) – coarse 

mesh; (Solid line) – fine mesh. The dotted line (......) represents the zero location of the shifted curves. 
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Fig. 14. Normalized <v'v'>/U
2
 in the wake of the circular cylinder, (oooo) - experiment; (Dashed line) – coarse 

mesh; (Solid line) – fine mesh. The dotted line (......) represents the zero location of the shifted curves. 

 

 

 
 

Fig. 15. Normalized <u'v'>/U
2
 in the wake of the circular cylinder, (oooo) - experiment; (Dashed line) – coarse 

mesh; (Solid line) – fine mesh. The dotted line (......) represents the zero location of the shifted curves. 
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Fig. 16(a). Distribution of the streamwise r.m.s. 

velocities along the wake centerline. 

 
 

Fig. 16(b). Distribution of the transverse r.m.s. 

velocities along the wake centerline. 

 

Fig. 12 shows the normalized streamwise mean velocity along the wake center-line. A small region of reversed 

flow occurs very near to the cylinder which is often defined as recirculation bubble. The velocity decreases and 

reaches a maximum negative value close to the cylinder and rises rapidly to positive values and finally reaching an 

asymptotic behavior far downstream. The length of the recirculation bubble is generally defined as the position 

downstream of the cylinder where the mean velocity becomes zero. The fine mesh gives an excellent agreement of 

the length of the recirculation bubble with the PIV measurements of Konstantinidis et al.
20

. Though the coarse mesh 

does not predict the length of the recirculation bubble accurately, it gives a very good agreement of mean velocity at 

the wake center line further downstream. 

Fig. 13 and Fig. 14 show respectively the normalized time-averaged streamwise and cross-wake Reynolds 

stresses. The peaks in the streamwise Reynolds stress are predicted very well. But the cross-stream Reynolds stress 

is a little under predicted at x/D=1.5. The shear stress predictions are shown in Fig. 15. Both the coarse mesh and 

fine mesh are in good agreement with the experiment. 

The distribution of the normalized streamwise and transverse r.m.s. velocities along the wake center line is 

shown in Fig. 16 (a) and (b). Fig. 16(a) shows a peak at a position which is a measure of vortex formation length 

(Griffin
42

). Similar peak is observed in the case of transverse r.m.s. velocity distribution along the wake center line. 

It can be noted from Fig. 16 (a) and 16 (b) that the magnitude of the transverse fluctuations is roughly two times that 

of the streamwise fluctuations at almost every position due to the way that vortices are formed, typical of bluff body 

wakes. The maximum r.m.s. fluctuations along the wake center line for the fine mesh is in good agreement with the 

experiment results. The maximum streamwise r.m.s. velocity (u'/U)max for the coarse mesh is slightly less than the 

experiment results. The maximum values were over predicted by Konstantinidis et al.
43

. The results agree very well 

with the ones published by Noberg
44

 at a slightly higher Reynolds number ReD=3000. 

 

V. Conclusion 
 

Uniform flow past a circular cylinder at a Reynolds number of ReD=2580 was simulated using the spectral 

difference method. The predictions for the mean velocities and Reynolds stresses agree well with the experiment 

results obtained by Konstanidis et al.
20

. The second order results are inaccurate but higher order (=3) of spatial 

accuracy gives excellent results. The length of the recirculation bubble and vortex formation length were very well 

predicted. The effect of mesh refinement was also studied by considering both coarse and fine meshes. Higher order 

results on a finer mesh showed the best agreement with experimental data. The wake characteristics were very well 

captured with the third order SD method, demonstrating its effectiveness and potential in handling bluff body 

problems and vortex dominated flows.  
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