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An analysis of the accuracy and stability properties of the spectral volume (SV) 
method, with applicability to very high-order accurate simulations, is presented. In 
the SV method, each simplex grid cell is called a spectral volume (SV), and the SV is 
further partitioned into polygonal (2D), or polyhedral (3D) control volumes (CVs) to 
support high-order data reconstructions. In general, the partitioning of an SV into 
CVs is not uniquely defined, and thus it is of great importance to select a partition 
which yields favorable stability properties, and results in an interpolation 
polynomial of high quality. Here we present a new approach to efficiently locate 
stable partitions by means of constrained minimization. This is motivated by the 
fact that, at present, an exhaustive search approach to SV partition design would be 
prohibitively costly and thus not feasible. Once stable partitions are located, a high 
quality interpolation polynomial is then assured by subsequently minimizing the 
dissipation and dispersion errors of the stable partitions. Results are presented 
which demonstrate the potential of this method for producing stable and highly 
accurate partitions of arbitrary order. In particular, a new 4th-order partition is 
presented which has improved accuracy and stability properties over previously 
used partitions, and a new stable 5th-order partition is introduced.  

 

I.     Introduction 
he spectral volume (SV) method is a recently developed finite volume method for hyperbolic 
conservation laws on  unstructured grids.1-7 The SV method belongs to a general class of Godunov-type 

finite volume method8-9, which has been under development for several decades, and is considered to be the 
current state-of-the-art for the numerical solution of hyperbolic conservation laws. For a more detailed 
review of the literature on the Godunov-type method, refer to Wang1, and the references therein. Many of 
the most popular numerical methods, such as the k-exact finite volume10-11, the essentially non-oscillatory 
(ENO)12-13, and weighted ENO14 methods are also Godunov-type methods. A thorough review and 
comparison of these methods can be found in Wang.15 The SV method is also closely related to the 
discontinuous Galerkin (DG)16-20 method, a popular finite-element method for conservation laws. Both the 
SV and DG methods employ multiple degrees of freedom within a single element, but the SV method 
avoids the volume integral required in the DG method. Each simplex in the SV method utilizes a 
“structured” set of sub-cells, or control volumes (CVs), to support a polynomial reconstruction for the 
conserved variables, and a nodal set to support a polynomial reconstruction for the flux vector. For a more 
thorough comparison of the SV and DG methods, refer to Wang.1,15   
 The partitioning of an SV into CVs has been one of the greatest challenges in the implementation of 
the SV method since its inception. This partitioning defines the reconstruction stencil, and thus plays a vital 
role in determining the accuracy and stability properties of the scheme. Early on, several researchers 
focused on using the Lebesgue constant as a means to design accurate SV partitions. In particular, the work 
of Wang2, Liu5, and Chen21,22 is of relevance. While this criteria may be used to find partitions with lower 
error bounds, it does not guarantee that a particular scheme will be more or less accurate, and it offers no 
information about the stability of the scheme. A positive step towards addressing the issue of stability was 
given by Van den Abeele et al.23-25. In this work, some previously used SV partitions were found to be 
                                                 
1Project Engineer, Aeromechanics Dept., 215 Wynn Drive, reh@cfdrc.com, AIAA Member. 
2Professor of Aerospace Engineering, 2271 Howe Hall, zjw@iastate.edu, Associate Fellow of AIAA. 

T

47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
5 - 8 January 2009, Orlando, Florida

AIAA 2009-1333

Copyright © 2009 by Robert Harris. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 2

weakly unstable, and several new stable partitions were proposed. It was also shown that the new partitions 
had lower dissipation and dispersion errors than some previously used partitions despite having larger 
Lebesgue constants. This showed that although the Lebesgue constant should be small to ensure a lower 
upper bound on the error, it need not be minimal for a scheme to possess superior accuracy.  
 This paper is organized as follows. In Section 2, we review the basic formulation of the SV method. 
After that, the framework for stability analysis of the SV method is described in detail in Section 3. Next, 
the methodology for partition design and optimization is outlined in Section 4. Numerical results are then 
given in Section 5, including stability and accuracy studies for new impoved 4th and 5th-order partitions. 
Finally, conclusions are summarized in Section 6. 
 

II.     Review of the spectral volume method 
 Consider the multidimensional conservation law 
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on domain Ω × [0,T] and 3R⊂Ω  with the initial condition  
 ),,,()0,,,( 0 zyxQzyxQ =                                                                                              (2) 
and appropriate boundary conditions on ∂Ω. In (1), x, y, and z are the Cartesian coordinates and (x,y,z) ∈  
Ω, t ∈  [0,T] denotes time, Q is the vector of conserved variables, and f, g and h are the fluxes in the x, y and 
z directions, respectively. Domain Ω is discretized into I non-overlapping triangular (2D), or tetrahedral 
(3D) cells. In the SV method, the simplex grid cells are called SVs, denoted Si, which are further 
partitioned into CVs, denoted Ci,j, which depend on the degree of the polynomial reconstruction. Volume-
averaged conserved variables on the CVs are then used to reconstruct a high-order polynomial inside the 
SV. To represent the solution as a polynomial of degree m, we need N pieces of independent information, 
or degrees of freedom (DOFs). Where N is calculated as follows: 
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where d is the spatial dimension of the problem. The DOFs in the SV method are the volume-averaged 
conserved variables at the N CVs. Define the CV-averaged conserved variable for Ci,j as 
 ∫=
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where Vi,j is the volume of Ci,j. Given the CV-averaged conserved variables for all CVs in Si, a polynomial 
pi(x,y,z) ∈  Pm (the space of polynomials of at most degree m) can be reconstructed such that it is a (m+1)th 
order accurate approximation to Q(x,y,z) inside Si. 
 ( ) ( ) ( )1,,,, ++= m
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where h is the maximum edge length of all the CVs. This reconstruction can be solved analytically by 
satisfying the following condition: 
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This polynomial pi(x,y,z) is the (m+1)th order approximation we are looking for as long as the solution 
Q(x,y,z) is smooth in the region covered by Si. The reconstruction can be expressed more conveniently as  
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where Lj(x,y,z) ∈  Pm  are the shape functions which satisfy 
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Integrating (1) in Ci,j, we obtain 
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where F
r

= (f,g,h), Ar  represents the rth face of Ci,j , n
r  is the outward unit normal vector of Ar, and K is the 

number of faces in Ci,j. More details of this, including representative plots of the shape functions can be 
found in Wang2. The integral in (9) can be computed using Gauss quadrature, or using the quadrature-free 
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approach outlined in Harris et al.7 For time integration, we use either the 2nd- or 3rd-order SSP Runge-Kutta 
scheme from Gottlieb et al.26 Some recent accomplishments in the development and application of the SV 
method can be found in Harris and Wang27-28 and the references therein. 
 It was shown in Wang and Liu2 that the so-called Lebesgue constant computed as 
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gives a simple method of bounding the interpolation polynomial for the SV method. Thus the smaller the 
Lebesgue constant ΠΓ  , the better the interpolation polynomial in terms of error bounds. However, 
although this criteria can be helpful in finding accurate SV partitions, it carries no information about the 
stability properties of the resulting scheme, and is thus a necessary but not sufficient tool for designing SV 
partitions.  
 

III.     Formulation for stability analysis 
The wave propagation properties associated with a particular SV partition and Riemann flux carry 
information about both the accuracy and stability of the numerical scheme. Recent work by Van den 
Abeele et al.23-25 has utilized the so-called Fourier footprint to facilitate the design of stable SV partitions 
with favorable wave propagation properties. A similar analysis is employed here.  
 Consider the 2D linear advection equation 
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with periodic boundary conditions, where a
r

=a(cosψ, sinψ) is the wave propagation velocity, and ψ is the 
wave propagation direction. The initial solution is taken to be a harmonic plane wave 
 ( ) ( )θθ sincos0,, yxIkeyxQ += ,     (12) 
with wave number k, orientation angle θ, and I is the square root of -1. The SV method is then applied to 
(11) on a grid comprised entirely of equilateral triangles. The simplest unit which produces the entire grid 
when periodically repeated, commonly referred to as the generating pattern (GP), is shown in Figure 1.  

 
Figure 1. Generating pattern for the grid (taken from Van den Abeele and Lacor24). 

The GP is completely defined by the vectors 1B
r

 and 2B
r

. On the boundary between two SVs, the following 
Riemann flux is employed 
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where QL is the solution due to the SV to the left of the face, QR is the solution due to the SV to the right of 
the face, and φ is an upwinding parameter, where φ = 0 gives rise to a central flux, and φ = 1 results in a 
simple upwind flux. After applying the SV method to (11), we obtain 
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where ∆B is the magnitude of 1B
r

, a is the magnitude of a
r

, V’ is the volume of an SV nondimensionalized 

by ∆B2, the index m varies from 1 to 2N, and the indices i and j denote a particular GP. The variables njiQ ;,  
for n = 1 to N are the CV-averages corresponding to the first SV in the GP (SV1), while the variables for n 
= N + 1 to 2N are the CV-averages corresponding to the second SV in the GP (SV2), and the matrices 
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nmN  are functions of the wave propagation direction and their 

definitions can be found in Van den Abeele and Lacor24 Substitution of the harmonic plane wave 
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where K is the nondimensional wave number, and Ω~  is the nondimensional numerical frequency. The 
numerical dispersion relation can then be written as 
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from which Ω
~  can be readily computed. The quantity Ω−

~I  is the so-called Fourier footprint 
ImRe ℜ+ℜ=ℜ I of the discretization, Imℜ  being a measure of the dispersive properties of the scheme, and 

Reℜ  being a measure of the diffusive properties. To ensure stability, Reℜ should be nonpositive for all K, θ, 
and ψ.  
 

IV.     Partition design and optimization 
 Families of SV partitions which are considered here, as with those considered in Chen21 and Van den 
Abeele and Lacor24, contain quadrilateral, pentagonal, and hexagonal CVs. It turns out that for an 
interpolation polynomial of degree m, there must be 3 quadrilateral corner CVs, 3(m-1) pentagonal side 
CVs, and (m2-3m+2)/2 hexagonal interior CVs. Initially a uniform partition of this family is generated, as 
shown in Figure 2 for polynomials of degree 3, 4, and 5. 
 

         
                          (a)                                                      (b)                                                      (c) 

 Figure 2. Uniform partitions for polynomials of degree 3 (a), 4 (b), and 5 (c). 
 
 The parameters that uniquely define the SV partition, which will subsequently be referred to as the 
control vector, can then be determined. The control vector essentially contains the locations of the nodes 
which physically define the shapes of the CVs within the SV. If any linear manipulation of the SV, while 
keeping the SV center fixed, causes a given node to coincide with any other node, then any movement of 
that given node is tied to the movement of the “coincident” nodes. These “coincident” nodes will hereafter 
be referred to as partner nodes, as shown in Figure 3 for partitions of degree 3 and 4. Denote the 
components of the control vector as (α4, β4, γ4, δ4) for a 4th order partition. These components refer to 
positions of the square, circle, diamond, and delta symbols from Figure 3, respectively. 



 5

 

   
 
Figure 3. Identification of partner nodes (denoted by like shapes) for partitions of degree 3 (left) and 

4 (right). The degree 3 partition is completely defined by 4 parameters, whereas the degree 4 
partition requires 7 parameters. 

 
 Thus if a given node is found to have partner nodes, for simplicity, the control vector need only contain 
the position of the given node. Furthermore, the three corner nodes, as well as the SV center node (if it 
exists) and the SV edge center nodes (if they exist) are omitted from the control vector, since they are 
immovable. Finally, if a node exists on an SV edge or on an SV line of symmetry, that node is constrained 
to move along a line and is thus represented by a single coordinate in the control vector, while all other 
nodes are unconstrained and are represented by two coordinates in the control vector. 
 The constrained minimization program called CONMIN29 is employed to optimize the SV partitions. 
CONMIN is a gradient-based optimizer which utilizes the method of Feasible Directions30 to find the 
Feasible Direction, and then move in that direction to update the control vector. The objective or cost 
function for CONMIN is taken to be the maximum real part of the Fourier footprint of the scheme Re

maxℜ . 

Since CONMIN is used for minimization, it will attempt to drive Re
maxℜ to as low a value as possible, and if 

it reaches a nonpositive value, a stable partition has been discovered. Then, upon discovery of many stable 
partitions, those with the lowest dissipation and dispersion are deemed likely to be suitable for simulation.  
   

V.     Results 
 The constrained minimization approach outlined above has been applied to a 4th-order SV partition. In 
Figure 4, we present a new partition denoted as “SV4H”, and compare with a partition previously proposed 
by Van den Abeele et al.24 denoted as “SV4P”, which is known to have favorable stability properties and 
high accuracy. The control vectors and Lebesgue constants for both the “SV4H” and “SV4P” partitions are 
given in Table I for comparison. In Figure 5 we present the dispersion and dissipation errors for the both 
partitions as a function of wave number, leaving the wave angle fixed at π/6. It is evident that the new 
partition proposed here has better agreement with the exact solution for a wider range of wave numbers 
than partition “SV4P”. In addition, plots of the corresponding Fourier footprints in Figure 6 show that the 
“SV4H” partition also has a smaller Fourier footprint than the “SV4P” partition, and thus will allow for 
larger time steps to be taken. To validate this analysis numerically, both partitions are used to solve the 
problem of linear advection of a sine wave on a 10x10x2 grid with periodic boundary conditions. The 
solution is carried out until time=400. Figure 7 shows the time history of the residual for this simulation, 
and it is clear that the "SV4H" partition has considerably less damping than the "SV4P" partition. It is thus 
apparent that the "SV4H" partition is capable of preserving a wave for a longer period of time than the 
"SV4P" partition on the same grid.   
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Table I. Control vector and Lebesgue constant for "SV4P" and "SV4H" partitions.  

Partition α4 β4 γ4 δ4 ||ΓΠ|| 

SV4P 0.07800000 0.07800000 0.03900000 0.26325000 4.2446

SV4H 0.12061033 0.09097092 0.05000000 0.23419571 4.0529

 
                                         (a)                                                                                 (b) 

Figure 4. Partitions for 4th-order SV schemes; (a) “SV4P” proposed in Van den Abeele et al.24; (b) 
“SV4H" proposed here. 

    

                                             (a)                                                                           (b)  

Figure 5. Dissipation and dispersion errors as a function of wave number for various 4th-order 
partitions. The wave angle considered here is π/6. (a) dispersion error vs. wave number; (b) 

dissipation error vs. wave number. 
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                                           (a)                                                                                    (b) 

Figure 6. Fourier footprint for 4th-order partitions; (a) “SV4P”; (b) “SV4H”. 

 The new approach has also been applied to a 5th-order partition, and preliminary studies have produced 
some stable 5th-order partitions. An example of a stable 5th-order partition and its corresponding Fourier 
footprint are shown in Figure 8. Although more work still needs to be done to minimize the dissipation and 
dispersion errors of the partition, it is now very promising that this procedure can be used to design stable 
SV partitions of arbitrary order.  

 

Figure 7. Residual vs. time history for 4th order simulation of the linear advection of a sine wave in a 
10x10x2 domain with periodic boundary conditions. 
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Figure 8. Stable 5th order partition (left) and corresponding Fourier footprint (right). 

 

VI.    Conclusions 
 A new method for obtaining stable SV partitions with low dissipation and dispersion errors via 
constrained minimization has been presented. The methodology for automatically generating a uniform 
partition and extracting the parameters that define the design space was outlined. Preliminary results were 
given for both 4th and 5th order partitions which demonstrate the potential of this method for producing 
stable and highly accurate partitions of arbitrary order. In particular, a new improved 4th-order partition was 
presented which posesses superior stability properties and a significant reduction in dissipation and 
dispersion error over previously used partitions. Additionally, the SV method was extended to 5th-order 
accuracy and a new stable 5th-order partition is introduced.  
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