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The newly developed lifting collocation penalty (LCP) formulation for conservation laws 

is extended to solve the Navier-Stokes equations on 2D mixed meshes. The LCP formulation 

is an extension of the flux reconstruction (FR) method. Like the FR method, it can unify 

several popular high order methods including the discontinuous Galerkin and the spectral 

volume methods into a more efficient differential form. For the discretization of viscous 

fluxes, two compact formulations are employed, including the 2
nd

 approach of Bassi and 

Rebay (BR2) and the I-continuous approach recently introduced by Huynh (2009). Several 

test cases are conducted with the implicit LU-SGS scheme to demonstrate the capability of 

the LCP formulation. 

I. Introduction 

While 2
nd

 order methods are dominant in most compressible flow simulations on unstructured meshes, many 

types of problems, such as computational aeroacoustics, vortex-dominant flows and large eddy simulation (LES) of 

turbulent flows, call for higher order accuracy. Various high order methods have been developed in the last two 

decades, including the discontinuous Galerkin (DG) method [1-5], the spectral volume (SV) method [6-10], and the 

spectral difference (SD) method [11-13]. The above-mentioned methods have a common feature: they achieve high 

order accuracy by locally approximating the solutions as a high order polynomial inside a cell or element. Therefore 

the solution space is piecewise discontinuous polynomials of degree k, with a (k+1)th order of accuracy. The 

difference between these methods lies in the definition of degrees of freedom (DOFs) and how the DOFs are 

updated. 

Huynh (2007) [14] unified all the above methods in 1D with the introduction of the flux reconstruction (FR) 

method. Wang and Gao (2009) [15] extended the idea to 2D triangular and mixed meshes with the lifting collocation 

penalty (LCP) formulation, and applied this formulation to solve the 2D Euler equations. The LCP formulation 

resulted in a highly efficient differential scheme without involving numerical integrations for almost arbitrary 

meshes. The present study aims at further extending the formulation for the solution of the Navier-Stokes equations. 

The central issue of this study is the discretization of the viscous terms in the LCP formulation. 

 Numerous studies have been performed for the treatment of the diffusion terms in high order methods. The first 

[5] and second [16] approaches of Bassi and Rebay (BR1 and BR2) are the first successful ones solving the Navier-

Stokes equations. However, although the BR2 approach is compact, the BR1 approach is not. Later the LDG 

approach [17] was developed to address the disretization of viscous terms. The LDG approach demonstrated 

uniform accuracy, but the approach is not compact on general unstructured meshes. The non-compact property was 

remedied with the developed of the compact DG (CDG) approach [18]. Van Leer and Nomura [19] developed a very 

accurate recovery approach for the DG method, but it is more expensive computationally than the other approaches 

in multiple dimensions, because a reconstruction across two adjacent cells is needed for each interface. Huynh 

(2009) [20] unified several approaches into the FR formulation, and also proposed the I-continuous approach based 

on a continuous local reconstruction at each interface. 

If the residual of the DOFs inside one cell is only dependent on the solution of this cell and its face neighbors, 

the spatial scheme is said to be compact. Being compact is a highly desirable property for implicit time integration 

and for parallel computing. Therefore in the present study, two compact approaches for viscous terms– the BR2 and 

I-continuous approaches - are adapted to the LCP formulation. 

Hybrid meshes provide the most flexibility in handling a complex geometry. In addition, they are also more 

suitable in tackling viscous boundary layers. Liang et al [21] developed an SD solver for the N-S equations on 
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mixed meshes. Their approach was to perform a one-level h-refinement to convert a mixed mesh to a finer 

quadrilateral mesh. In the present study, however, triangular and quadrilateral cells are treated separately, and their 

interfaces are connected by the same distribution of flux points to maximize efficiency, as shown in Figure 1. 

The paper is organized as follows: Section 2 reviews the FR and LCP formulations for mixed meshes and 

describes the discretization of viscous terms; Section 3 presents numerical tests with the Couette flow, the flow 

around a NACA 0012 airfoil and the flow around a circular cylinder; several conclusions are drawn in Section 4. 

 

II. Numerical Formulations 

2.1 Governing Equations 

The 2D Navier-Stokes equations can be written in the following conservation form: 

 0
Q F G

t x y

  
  

  
 (2.1) 

where Q is the vector of conserved variable, and F and G include both the inviscid and viscous flux vectors, i.e., 

,i v i vF F F G G G    , which take the following form 
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 (2.3) 

In (2.1)-(2.3),  is the density, u and v are velocity components in x and y directions, p is the pressure, and E is 

the total energy,  is the dynamic viscosity, 
pC is the specific heat at constant pressure, Pr is the Prandle number, 

andT is the temperature. For a perfect gas, the pressure is related to the total energy by  

  2 21

1 2

p
E u v


  


. (2.4) 

The ratio of specific heats  is assumed to be a constant, 1.4 for air.  is set to -2/3 according to the Stokes 

hypothesis. 



 

American Institute of Aeronautics and Astronautics 
 

 

3 

2.2 Review of the Flux Reconstruction (FR) Method 

 This review presents the essential idea of the flux reconstruction developed by Huynh [14]. This method is 

extended to 2D quadrilateral cells with a tensor product approach. 

2.2.1 1D FR Method 

Consider the following scalar conservation law 

 
( )

0
Q F Q

t x

 
 

 
, (2.5) 

where Q is the state variable and F is the flux. The computational domain [a, b] is discretized into N elements, with 

the ith element defined by ],[ 2/12/1  iii xxV . Each element can be transformed into the standard element [-1, 1] 

using a linear transformation. The DOFs at the ith element are the nodal values of the state variable Qi,j at k+1 

solution points, xi,j,  j = 1, ..., k+1. Then the solution is approximated by the following degree k Lagrange 

interpolation polynomial 
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  , (2.6) 

where )(xL j
 is the Lagrange polynomial or shape function. Given this numerical solution, the flux at every point is 

well defined, i.e., ))(( xQF h

i
. For non-linear conservation laws, ))(( xQF h

i
 may not be a polynomial. Instead, 

))(( xQF h

i
 is approximated by the following degree k flux polynomial 
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 . (2.7) 

Since we do not explicitly enforce continuity at element interfaces, the state variable is discontinuous across the 

interfaces. In order to update the DOFs, a new flux function )(ˆ xFi
 is reconstructed, which must satisfy the following 

criteria: 

 )(ˆ xFi
 is a degree k+1 polynomial, i.e., one degree higher than the solution polynomial; 

 )(ˆ xFi
 is close to )(xFi

 in some sense. In other words, some norm of the difference )()(ˆ xFxF ii   is 

minimized; 

 At both ends of the element, the flux takes on the value of the Riemann fluxes, i.e., 

2/12/12/112/1

~
))(),((

~
)(ˆ

  iiiiiii FxQxQFxF  

2/12/112/12/1

~
))(),((

~
)(ˆ

  iiiiiii FxQxQFxF , 

where ),(
~  QQF  is a well-defined common face flux given the two discontinuous solutions at the left and right 

of the interface (such as any Riemann flux for inviscid flow). Once this flux function is found, the DOFs are updated 

using the following differential equation 

 , ,
ˆ ( )

0
i j i i jQ F x

t x

 
 

 
. (2.8) 

Obviously the above criteria do not uniquely define )(ˆ xFi
, since only the two end conditions are prescribed. The 

reconstructed flux is first re-written as 

 ˆ ( ) ( ) ( )i i iF x F x x  , (2.9) 
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where )(xi  is a correction flux polynomial, which should be as close as possible to 0. The correction is then 

further expressed to satisfy the two end conditions 

 
1/2 1/2 1/2 1/2( ) [ ( )] ( ) [ ( )] ( )i i i i L i i i Rx F F x g x F F x g x        , (2.10) 

where gL(x) and gR(x) are both degree k+1 polynomials called correction functions, and they satisfy 
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Eq. (2.8) then becomes 
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Because of symmetry, we only need to consider gL(x), or simply g(x). It is more convenient to consider the 

correction function in the standard element g(ξ) on [-1, 1]. Using special polynomials such as the Radau and 

Legendre polynomials, Huynh [14] successfully recovered )(ˆ xFi
 for the DG, staggered grid (SG) [22] (or SD/SV) 

methods, at least for linear conservations laws. In the present study, only the correction corresponding to the DG 

method is used. 

 

2.2.2 2D FR Method for Quadrilateral Cells 

It is very straight-forward to extend the FR method to quadrilateral cells, first any arbitrary quadrilateral cell is 

transformed to a standard square element ),(  [-1,1]x[-1,1] as shown in Figure 2. The transformation can be 

written as 
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where K is the number of points used to define the physical element, ),( ii yx  are the Cartesian coordinates of 

those points, and ),( iM  are the shape functions. For the transformation given in Eq. (2.13), the Jacobian matrix 

J  takes the following form 
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For a non-singular transformation, its inverse transformation must also exist, and the Jacobian matrices are 

related to each other according to 

1

),(

),( 












J

yx yx

yx



 . 

Therefore the metrics can be computed according to 

 Jyx /  ,  Jxy /  ,  Jyx /  ,  Jxy /  . (2.15) 

The governing equations in the physical domain are then transformed into the computational domain (standard 

element), and the transformed equations take the following form 

 0
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where  

 QJQ 
~

 (2.17) 
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. Then we have 
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 , . In our implementation, J  and 
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, are stored at the solution points. Within the ith element, the solution polynomial is a tensor product of 1D 

Lagrange polynomials, i.e.,  
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where h

ljiQ ,;
 are the state variables at the solution point (j,l), with j the index in  direction and l the index in  

direction, )(jL  and )(lL  are 1D Lagrange polynomials in  and  directions. Based on the reconstructed 

solution ),( h

iQ , the fluxes can be defined using )(),( h

i

h

i QFQF  . Again, one can also choose to represent the 

fluxes with Lagrange interpolation polynomials in the following form: 
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Again common face fluxes are computed at all four element interfaces in the normal directions, which are the 

same or opposite directions of 
S


 or 
S


.  

Therefore the Riemann flux corresponding to F  is computed according to 
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Finally the DOFs are updated using the following equation 
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Note that the correction is done in a “one dimensional” manner, thus the 1D approach can be followed. 
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2.3 Review of the LCP Formulation for Conservation Laws 

For more general 2D elements like triangular ones, a direct implementation of the FR method is quite involved. The 

LCP formulation is developed for this purpose, with exceptionally good properties for triangular elements. Let’s 

express the hyperbolic conservation law as 

0)( 



QF

t

Q 
,                                                         (2.24) 

where ( , )F F G  is the flux vector. The computational domain is discretized into N non-overlapping elements 

}{ iV . Let W be an arbitrary weighting function. The weighted residual form of Eq. (2.24) on element 
iV  can be 

easily derived by multiplying Eq. (2.24) with W and integrating over 
iV  to obtain 
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Let 
h

iQ  be an approximate solution to Q at element i. We assume that the solution belongs to the space of 

polynomials of degree k or less, i.e., 
kh

i PQ  , within each element without continuity requirement across element 

interfaces. In addition, the numerical solution 
h

iQ  must also satisfy Eq. (2.25), i.e., 
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Since the solution is discontinuous across element interfaces, the surface integral in Eq. (2.26) is not well-defined. 

To remedy this problem, a common flux is used to replace the normal flux to provide element coupling, i.e., 
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where 
h

iQ 
 is the solution outside the current element 

iV . Then Eq. (2.26) becomes 
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Applying integration by parts to the last term on the LHS of Eq. (2.28), we obtain 
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 (2.29) 

The last term in Eq. (2.29) can be viewed as a penalty term, i.e., penalizing the normal flux differences. Introduce a 

“correction field” 
k

i P , which is determined from a “lifting operator” 

 dSFWdVW

ii VV
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 is the normal flux difference. Substituting Eq. (2.30) into Eq. (2.29), we 

obtain 
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Because W is arbitrary, Eq. (2.31) is equivalent to 

 0)( 
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i QF
t
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,  (2.32) 

i.e., Eq. (2.32) is satisfied everywhere in element 
iV . With the definition of a correction field i , we have 

successfully reduced the weighted residual formulation to an equivalent simple differential form, which does not 

involve any explicit surface or volume integrals. The lifting operator obviously depends on the choice of weighting 

function. If kPW  , Eq. (2.32) is equivalent to the DG formulation.   

Next let the degrees-of-freedom (DOFs) be the solutions at a set of points jir ,


, named solution points (SPs), as 

shown in Figure 3. Then Eq. (2.32) must be true at the SPs, i.e., 
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 .  And for a specific set of solution points and flux points, the correction at SPs 

can be derived to take the following form. 

 ,]
~

[
1

,,,, 



iVf

f

l

lflfj

i

ji SF
V

  (2.34) 

where 
lfj ,,  are constant scheme coefficients independent of the solution, or the shape of the triangle, but 

dependent on the location of solution points and the test functions chosen. Especially Substituting (2.33) into (2.34) 

we obtain the following LCP formulation 
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It can be shown that the location of SPs does not affect the numerical scheme for linear conservation laws. For 

efficiency, the solution points are always chosen to coincide with the flux points. For 2D faces (or edges), the flux 

points are the Legendre Lobatto points for both triangular and quadrilateral cells to minimize the complexity of the 

interface treatment.  

2.4 Inviscid Flux Discretization 

With the formulations for quadrilateral and triangular elements defined in Section 2.2 and 2.3, we still need to 

discretize the numerical flux. This includes two parts: find the internal flux divergence F ; evaluate the common 

flux at the interface. Let’s first start with the inviscid terms. 

Instead of approximating the inviscid flux by a Lagrange polynomial, the flux divergence is computed “exactly” by 

a chain rule (CR) approach  

 ( ) ( )
( )

x h y h h hx y
h hi i i i
i i

F Q F Q Q QF F F
F Q Q

x y Q x Q y Q

     
      

      
 (2.36) 

The common inviscid flux at the interfaces can be obtained with any Riemann solver. In the present study, Roe 

flux [23] is used for all the cases presented later. 

2.5 Viscous Flux Discretization 
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2.5.1 Basic Framework 

The viscous fluxes  ,vF Q Q and  ,vG Q Q  are functions of both the conserved variables and their gradients. In 

order to compute the divergence of the viscous flux, we follow the formulation in [5] by introducing a new variable

R : 

 0R Q R Q     (2.37) 

Eq. (2.37) is solved in the weak DG formulation, and in our LCP framework, this will result in a collocation 

formulation 

  , , , ,

1
[ ]

i

h

i j i j f l f l f fj
f V li

R Q Q n S
V




      (2.38) 

where 
, , ; ,[ ] com

f l f l i f lQ Q Q  , 
,

com

f lQ is the common solution on interface f, and 
; ,i f lQ

 
is the solution within cell i on face 

f. The definition of  , ,com comQ Q Q Q n  varies with different approaches to discretize the viscous terms. Note 

that Eq. (2.38) is for triangular elements. A similar formulation for 1D or quadrilateral element is straight-forward to 

derive. 

 After this, the viscous fluxes at solution points are evaluated by 

    , , , , , ,, , ,v v v v

i j i j i j i j i j i jF F Q R G G Q R  . (2.39) 

And with the fluxes at solution points, 
vF

x




and 

vG

y




can be easily obtained through Lagrange reconstruction. 

Besides those interior derivatives, common viscous fluxes at the interfaces are also needed for the LCP formulation 

    , , , , , ,, , ,com v com com com v com com

f l f l f l f l f l f lF F Q Q G G Q Q     (2.40) 

This means we also need to define a common gradient  , , , ,com comQ Q Q Q Q Q n       on the cell interfaces. 

The definition also depends on the approach to discretize the viscous terms. 

In the following sections, the ways to define comQ  
and comQ  

in both the BR2 and I-continuous approaches are 

described. 

 

2.5.2 BR2 

The common solution in BR2 is simply the average of solutions at two sides of the face 

 , ,

,
2

f l f lcom

f l

Q Q
Q

 
 . (2.41) 

For the common gradient, the definition can be written as 

  , , , , ,

1

2

com

f l f l f l f l f lQ Q r Q r         . (2.42) 

where 
,f lQ and

,f lQ are the gradients of the solution of the left and right cells, while ,f lr
and ,f lr

are the 

corrections to the gradients only due to the common the solution on face f 

  , , , , , , , ,

1 1
[ ] , [ ]f l f l m f m f f f l f l m f m f f

m m

r Q n S r Q n S
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     (2.43a) 
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Eq. (2.43a) is used for triangular cells, where 
, , , , , ,[ ] ,[ ]com com

f l f l f l f l f l f lQ Q Q Q Q Q       , 
, ,f l m is the coefficient of 

correction due to face f. 
, ,f l m can be extracted from coefficients 

, ,j f l in Eq. (2.34), and due to the symmetry of 

triangles, 
, ,f l m for any face f is identical for a fixed distribution of flux points, thus the face index is omitted from 

here on. 

For quadrilateral elements, we have similar equations in FR formulation 

      , , , ,[ ] ' 1 , , [ ] ' 1 ,f l f l x y f l f l x yr Q g r Q g   
 

        . (2.43b) 

 ' 1g  in Eq. (2.43b) serves as a coefficient to penalize the solution difference on different sides of the face. In the 

actual implementation, it is discovered that if we use  ' 1DGg  , i.e. the derivative of the Radau polynomial (the 

value is 2 / 2K for degree K polynomial), the resulted scheme is unstable for N-S equations. Therefore, a slightly 

bigger coefficient   1 2 / 2K K  
 
is used in simulations presented later. 

 

2.5.3 I-continuous 

The I-continuous approach in 1D was proposed in Huynh (2009) [20]. Its basic idea is: instead of prescribing a 

common solution comQ at the interfaces, comQ is solved so that the corrected derivative 
C

Q

x




is continuous at the 

interface. In this way, the common derivative 
com

Q

x




is also well-defined, since there is only one value at the 

interface. 

However, in 2D cases, requiring CQ  
to be continuous at the interfaces gives us two conditions –continuity in x 

and y directions. Since we are only solving one variable comQ , we only require the continuity in the face normal 

direction. If both sides of the face are quadrilateral elements, the corrected gradients can be written as  

      , , , , , ,[ ] ' 1 , , [ ] ' 1 ,C C

f l f l f l x y f l f l f l x yQ Q Q g Q Q Q g   
 

           . (2.44) 

Then we require the gradient to be continuous in the normal direction 

 C CQ n Q n     . (2.45) 

Substituting in (2.44), we have 

          2 2 2 2

, , , , , ,' 1 ' 1com com

f l f l f l x y f l f l f l x yQ n Q Q g Q n Q Q g   
 

               . (2.46) 

The only unknown in (2.46) is 
,

com

f lQ , after 
,

com

f lQ
 
is solved from (2.46), the common viscous flux at the interface can 

be obtained by 
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,

, ,

2

f l f l

f l

com C com C

f l f lcom

Q n Q n or Q n Q n

Q t Q t
Q t

 

 

         

   
  

 (2.47) 

If both sides of the face are triangular cells, the corrected gradients is 

  , , , , , , , ,[ ] , [ ]
f fC C

f l f l f m l m f l f l f m l m

m m

S S
Q Q Q n Q Q Q n

V V
      

 
           (2.48) 
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Substituting into (2.45), after some derivation,  

 , ,

, , , , ,

1 1 f m f mcom

f l m f m f l f l f l m

m m

Q Q
S Q Q n Q n S

V V V V
 

 

 

   

   
          
   
   

   (2.49) 

Eq. (2.49) represents a linear system, from which 
,

com

f lQ
 
can be easily solved. Then, the common viscous flux comQ

is obtained through (2.47). 

For a mixed mesh, there is another situation, when the face has a quadrilateral cell on one side and a triangular 

cell on the other side. Without the loss of generality, assume the left (-) cell to be triangular, then the corrected 

gradients are  

   , , , , , , ,[ ] , [ ] ' 1 ,
fC C

f l f l f m l m f l f l f l x y

m

S
Q Q Q n Q Q Q g

V
  


     


      . (2.50) 

Again this is substituted into (2.45), we can derive 
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m
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 (2.51) 

Eq. (2.51) is also a linear system. The solved 
,

com

f lQ
 
are then put into (2.47) for comQ . 

It may seem quite expensive to solve the linear system for each face, but the matrices are constant for fixed 

meshes, so they only need to be inverted once during the initialization. Therefore, the I-continuous approach can be 

made almost as efficient as the BR2 approach. 

 

III. Numerical Tests 

3.1 Couette Flow – Accuracy Test 

Compressible Couette flow between two parallel walls is used to evaluate the accuracy of the method on 

irregular mixed grids. The computational domain is a 4X2 rectangular.  

The exact solution for this case is 
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. (3.1) 

The following parameters are chosen: the speed of the upper wall U=0.3, the temperature of the lower wall T0=0.8, 

the temperature of the upper wall T1=0.85, viscosity µ=0.01, domain size in y direction H=2. 

The LCP scheme is used for triangular elements while the FR scheme is used for quadrilateral elements. Both 

BR2 and I-continuous methods are tested for accuracy. The flow variables at boundary faces are simply fixed to the 

exact solution. All the tests cases presented below are obtained with a LUSGS implicit time integration approach 

[24], and all cases converge to machine zero. Density errors are used for the accuracy evaluation.  

First, three meshes shown in Figure 4 are used for a mesh refinement study for 2
nd

 -- 4
th

 order schemes. The 

meshes are generated independently, rather in an h-refinement manner. The order of accuracy is calculated by  
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1 2

2 1

ln /

ln /

Er Er
p

N N
  (3.2) 

where 
1Er and 

2Er  are the error norms from Mesh 1 and Mesh 2, and N1 and N2 are the numbers of cells of Mesh 1 

and Mesh 2. 

The results for the BR2 and I-continuous approaches are shown in Table 1 and Table 2 respectively. There is no 

significant difference either in the error magnitude or in the order of accuracy. The BR2 approach performs better 

for the 3
rd

 order cases while the I-continuous approach slightly outperforms BR2 for the 4
th

 order cases. Although 

the achieved order of accuracy is slightly less than the optimal, one should note that these results are achieved with 

highly irregular and mixed meshes of poor quality.  

Then, a p-refinement study is performed on a 10X5 mesh (Figure 4a), from k = 1 to 5. Figure 5 shows the 

convergence of both the BR2 and I-continuous approaches in L2 norm. The two approaches show almost no 

difference in terms of accuracy. 

3.2 Laminar Flow around a NACA0012 Airfoil 

Viscous laminar flow around an NACA 0012 airfoil is then simulated with the LCP method, using both the BR2 

and I-continuous approaches for viscous terms. 2
nd

, 3
rd

, and 4
th

 order schemes are tested. The flow conditions are 

Mach = 0.5 and Re = 5000, with an angle of attack of 1 degree. Under such conditions, steady laminar separations 

are expected for both upper and lower surfaces of the airfoil.  

Adiabatic no-slip wall condition is prescribed at the airfoil surface, and subsonic characteristic far field condition 

is used at the outer surface of the computational domain. The curve boundary is represented by piecewise cubic 

polynomials. 

The computational domain extends 20 chord lengths away from the center of the airfoil. The mesh of 2692 cells, 

as is shown in Figure 6, is composed of regular quadrilateral elements near the airfoil and irregular mixed elements 

elsewhere, with some refinement at the trailing edge. A LUSGS solver is used for time integration and all cases are 

converged to machine zero. 

The computed Mach number contours of 2
nd

 – 4
th

 order schemes are shown in Figure 7(a-c). Only the BR2 

results are shown, since the I-continuous results are very similar. Due to the coarse mesh, the 2
nd

 order results are 

not so smooth, especially at the wake. Note that for the 3
rd

 and 4
th

 order cases, the contour lines are smooth across 

the interfaces between regular cells and irregular ones, and also between triangular cells and quadrilateral ones. 

Visually, 3
rd

 and 4
th

 order results are very close to each other. 

The skin friction coefficient Cf is defined as  

 

21

2

w
fC

U



 

  (3.3) 

where the shear stress at wall is computed by 
w

V

n
 





, with its sign chosen to be the same as 

u

n




. 

The Cf distribution near the separation point is shown in Figure 8. The 3
rd

 and 4
th

 order results are very close, 

showing a convergence of the p-refinement study. Besides, BR2 and I-continuous yield almost identical results for 

3
rd

 and 4
th

 order cases.  

The computed pressure drag coefficients CD,p, friction drag coefficients CD,f, and the separation points on the 

upper wall are shown in Table 3. All the data converges as the polynomial degree increases, and again, there is no 

significant difference between BR2 and I-continuous. 

In order to estimate the efficiency of the BR2 and I-continuous approaches, the convergence history of the 4
th

 

order case is shown in Figure 9 (a,b). The same time step is used for both approaches, which is also the largest 

allowed. It can be seen that BR2 was able to converge with less iterations and CPU time for this case. Note that it 

takes 2,555 seconds to complete 3,000 iterations for BR2, and 2,654 seconds for I-continuous, showing the fact that 

the computational cost per one iteration of the two approaches is almost the same. 

3.3 Unsteady Flow around a Circular Cylinder 
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The unsteady laminar flow around a cylinder is simulated with the LCP method, with 2
nd

 – 4
th
 order BR2 

approach. The Reynolds number Re = 75, and the free stream Mach number M = 0.2. A vortex street is expected to 

form in the wake of the cylinder. The frequency of the vortex shedding is often denoted by the Strouhal number, 

defined by 

 s cf L
St

U

 . (3.4) 

The length scale Lc here is just the diameter of the cylinder. In an experimental study by Williamson [25], St was 

found to be 0.148. 

 The spatial discretization is the same: LCP for triangular elements and FR for quadrilateral elements. Subsonic 

far field boundary condition is used at the outer boundary of the domain, and adiabatic wall condition is used for the 

cylinder surface. A 2
nd

 order unsteady LUSGS solver is used for time integration. 

The mesh is shown in Figure 10. It contains 2,028 cells, with regular quadrilateral cells near the cylinder and in 

the wake region, and irregular mixed cells elsewhere. The effects of domain size, time step and convergence criteria 

of inner iterations are carefully studied, in order to make sure the true numerical solution is approached. 

The instantaneous Mach number contours are shown in Figure 11 (a-c). 2
nd

 order contours are not smooth, due to 

the relatively low resolution away from the cylinder. 3
rd

 and 4
th

 order results are similar, with 4
th

 order contours 

obviously smoother at 20 diameters downstream. 

Table 3 shows the average drag coefficient 
DC and computed St for p=1-3. Both converge as p increases, and the 

computed St is within the error range of known experimental data. 

IV. Conclusions 

The LCP method is extended to 2D Navier-Stokes equations on mixed meshes, with up to 6
th

 order accuracy. 

Two approaches are adopted in the LCP formulation for the discretization of the viscous flux, including the BR2 and 

recently proposed I-continuous approaches. This is the first attempt to extend the I-continuous approach for 

unstructured 2D simulations, and it is shown that it is an accurate and efficient approach for the 2D Navier-Stokes 

equations. Several test cases are presented for both steady and unsteady laminar flows, and BR2 and I-continuous 

show no significant difference in accuracy, efficiency or robustness. Future studies include the extension to 3D 

Navier-Stokes equations as well as the use of a p-multigrid technique for convergence acceleration. 
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Table 1 Couette Flow Accuracy Results with BR2 

Polynomial 
Degree 

Grid Size L1 error L1 order L2 error L2 order L∞ error L∞ order 

1 

10X5 5.731e-05 - 7.261e-05 - 2.425e-04 - 

20X10 1.799e-05 1.64 2.312e-05 1.62 1.145e-04 1.06 

40X20 5.490e-06 1.82 7.151e-06 1.80 3.506e-05 1.82 

        

2 

10X5 6.320e-07 - 8.914e-07 - 5.023e-06 - 

20X10 9.545e-08 2.68 1.309e-07 2.72 6.873e-07 2.82 

40X20 1.535e-08 2.81 2.091e-08 2.82 1.145e-07 2.75 

        

3 

10X5 6.258e-09 - 8.525e-09 - 6.986e-08 - 

20X10 4.807e-10 3.64 6.525e-10 3.64 4.965e-09 3.75 

40X20 4.054e-11 3.80 5.785e-11 3.72 4.505e-10 3.69 
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Figure 1. Solution points for the 3
rd

 order LCP scheme on hybrid meshes 

 

Table 4 P-refinement study for unsteady flow around a cylinder 

Viscous Method -- 
Polynomial Degree DC  St  

BR2--1 1.053 0.153 

BR2--2 1.037 0.153 

BR2--3 1.035 0.153 
 

Table 3 P-refinement study of the flow around NACA 0012 airfoil 

Viscous Discretization 
-- Polynomial Degree ,D pC  

,D fC  Separation Point 
(Upper Wall) 

BR2--1 0.02516 0.03230 80.43% 

I-Continuous--1 0.02497 0.03271 79.01% 

BR2--2 0.02251 0.03274 69.17% 

I-Continuous--2 0.02247 0.03275 69.15% 

BR2--3 0.02274 0.03253 68.35% 

I-Continuous--3 0.02273 0.03252 68.31% 

BR2--5 0.02269 0.03248 68.25% 

I-Continuous--5 0.02269 0.03248 68.25% 
 

Table 2 Couette Flow Accuracy Results with I-continuous 

Polynomial 
Degree 

Grid Size L1 error L1 order L2 error L2 order L∞ error L∞ order 

1 

10X5 5.065e-05 - 7.112e-05 - 2.677e-04 - 

20X10 1.796e-05 1.47 2.306e-05 1.60 1.062e-04 1.31 

40X20 5.497e-06 1.82 7.162e-06 1.80 3.991e-05 1.50 

        

2 

10X5 6.301e-07 - 8.795e-07 - 4.877e-06 - 

20X10 1.029e-07 2.57 1.400e-07 2.61 8.697e-07 2.44 

40X20 1.852e-08 2.63 2.456e-09 2.67 1.568e-07 2.63 

        

3 

10X5 6.100e-09 - 8.190e-09 - 7.536e-08 - 

20X10 4.616e-10 3.66 6.157e-10 3.67 4.843e-09 3.89 

40X20 3.698e-11 3.88 5.186e-11 3.80 4.235e-10 3.74 
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(a)              (b) 

 
(c) 

Figure 4. Mixed mesh used for Couette flow (a) 10X5 with 61 cells (b) 20X10 with 250 cells 

(c) 40X20 with 919 cells 
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Figure 3. Solution points (squares) and flux points (circles) for k = 2 
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Figure 2. Transformation of a quadrilateral element to a standard element 
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nd
 Order          (b) 3

rd
 Order 

 
(c)  4

th
 Order 

Figure 7.  Mach number contours of flow around an NACA 0012 airfoil 

 
Figure 6.  Mixed mesh around an NACA0012 

airfoil 

 
Figure 5. P-refinement study for Couette flow 

with a 10X5 mesh 
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Figure 9.  Convergence history for flow around NACA 0012 airfoil 

 
Figure 8.  Cf distributions on upper wall near the separation point 
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(a) 2

nd
 order 

 
(b) 3

rd
 order 

 
(c) 4

th
 order 

Figure 11.  Mach number contours for unsteady flow around a cylinder 

 
   (a) The whole domain           (b) near the cylinder 

Figure 10.  Mixed mesh for unsteady flow around a cylinder 


