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Performance of Low-Dissipation Euler Fluxes and 
Preconditioned Implicit Schemes in Low Speeds 
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In low speed flow computations, compressible finite-volume solvers are known to a) fail 
to converge in acceptable time and b) reach unphysical solutions. These problems are known 
to be cured by A) preconditioning on the time-derivative term, and B) control of numerical 
dissipation, respectively. There have been several methods of A) and B) proposed separately. 
However, it is unclear which combination is the most accurate, robust, and efficient for low 
speed flows. We carried out a comparative study of several well-known or recently-
developed low-dissipation Euler fluxes coupled with a preconditioned LU-SGS (Lower-
Upper Symmetric Gauss-Seidel) implicit time integration scheme to compute steady flows. 
Through a series of numerical experiments, accurate, efficient, and robust methods are 
suggested for low speed flow computations. 

Nomenclature 
c  = speed of sound 
CD = drag coefficient 
cp  = specific heat at constant pressure 
Cp = pressure coefficient 
c2 = pressure stabilization coefficient in All-Speed-Roe, 0.05 
δ = minimum spacing of grid, 1.e-3 in viscous cases 
E  = total energy 
F, Fv  = inviscid (Euler) and viscous flux vectors 
ε = preconditioning coefficient 
γ  = specific heat ratio, 1.4 
Γ  = preconditioning matrix 
H  = total enthalpy 
i, j  = cell indices 
K = coefficient in preconditioning matrix, 1.0 
κ  = thermal conductivity, κ = μcp/Pr 
M = Mach number 
m&  = mass flux, m& = ρu 
μ  = molecular viscosity 
n = normal vector to the cell-interface, (nx, ny, nz)T 
p  = pressure 
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p~  = pressure flux 
Pr  = Prandtl number, 0.72 
Q  = (conservative) state vector  
Re   = Reynolds number 
ρ  = density 
T  = temperature 
u, v, w = velocity components in x, y, z-directions, respectively 
x, y, z = Cartesian coordinates 
Vi = volume of cell i 
Vn = velocity component normal to the cell-interface, Vn = (u, v, w)n = unx + vny+ wnz 
(¯) = arithmetic averaged value  
(^) = Roe averaged value  
( )’ = preconditioned value 
 
Subscripts 
co = cutoff 
L, R  = left and right running wave components 
∞ = freestream condition 
* = maximum value in whole computational domain in All-Speed-Roe 
1/2 = cell-interfacial value 
 
Superscripts 
m  = value at m-th sub-iteration 
n  = value at n-th timestep 
* = critical value in AUSM-type schemes 

I. Introduction 
N recent years, compressible finite-volume methods (FVMs) have been used in a wide range of flow regimes, 
even for low speed flows in which compressibility plays no significant role. The application of compressible flow 

solvers to low speeds has been motivated by the fact that users need only slight modifications to the existing 
(compressible) codes for computations of such low speed flows, and that this extension has the following potential 
applications of engineering interests: 
- Analysis of flows involving both low speeds (M<0.1) and high speeds (M≈ 10 or even 100), e.g., a cavitating 

flow in a rocket engine [1,2] 
- Aeroacoustic analysis in low speed flows [3] 

When applied to low speed flow computations, however, compressible solvers are known to a) fail to converge 
in acceptable time (stiffness problem), and b) reach unphysical solutions. These problems are known to be cured by 
A) preconditioning on the time-derivative term so that acoustic wave speed is properly scaled, and B) control of 
dissipation in numerical fluxes, respectively. There have been several methods of A) [4,5] and B) [6-9] proposed 
separately. However it is unclear which combination is the most accurate, robust, and efficient in low speed flows. It 
is difficult to prove this mathematically because, for instance, the amount of dissipation added to the computation is 
dependent not only on the adopted methods, but on the computational grid, flow conditions, and so forth. If a 
combination of methods A) and B) has insufficient dissipation for the given conditions, the calculation will suffer 
from numerical oscillation/instability, and may eventually diverge. If the method is too dissipative, on the other hand, 
its accuracy is significantly lost. 

Therefore, in the present paper, we pursue an experimental approach by performing a comparative study of 
different methods of A) along with B) for different grids and different flow conditions of low speeds. We will pay 
particular attention to several well-known or recently-developed low-dissipation Euler fluxes coupled with a 
preconditioned LU-SGS (Lower-Upper Symmetric Gauss-Seidel) implicit scheme [10,11] in the framework of 
steady flows. Similar comparisons have already been conducted by others (in [12], for example), but their 
discussions were limited to only a few methods/cases and lacked concrete conclusions. In this study, through an 
extensive series of numerical experiments, accurate, efficient, and robust methods among 12 different approaches 
will be suggested for low speed flow computations. 

I
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II. Numerical Methods and Flow Conditions 

A. Governing Equations 
The governing equations are the compressible Navier-Stokes equations as follows, including the 

preconditioning matrix Γ of Weiss and Smith [4]. Γ is given in the Appendix A, and we keep using conservative 
variables as dependent variables as in [8,13], instead of using primitive ones. In the non-preconditioned form, on the 
other hand, Γ is simply eliminated. 

where ρ is the density, ui velocity components in Cartesian coordinates, E total energy, p pressure, H total 
enthalpy (H = E + (p/ρ) ), and T temperature. The working gas is air approximated by the calorically perfect gas 
model with the specific heat ratio γ =1.4. The Prandtl number is Pr=0.72. The molecular viscosity μ and thermal 
conductivity κ are related as κ=cpμ/Pr where cp is specific heat at constant pressure. 

Eq.(2.1) is solved with a finite-volume code, and can be written in the delta form as: 

B. Numerical Methods 
The computational code employed here is “LS-FLOW:” JAXA’s 

in-house, unstructured, compressible Navier-Stokes solver for arbitrary 
polygons/polyhedra. LS-FLOW has many options for spatial 
reconstruction and temporal evolution. Included in Table 1 are only the 
methods adopted for the present study. The second order of spatial 
accuracy is guaranteed (Appendix B presents accuracy study for vortex 
preservation). 

The Euler fluxes and the implicit schemes are summarized in Table 
2. Viscous fluxes are computed by using Wang’s second-order method 
[16]. Formulation of each Euler flux is briefly introduced below, 
followed by that of time evolution methods (for details, see the original literatures). 

                                                           
†† The Green-Gauss method is suitable for body-fitted (= structured-type) grids as used here [14,15], whereas not for Cartesian 
grids having hanging-nodes. 
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Figure 1: Schematic of cell geometric 
properties. 

Table 1: Numerical methods. 

Governing Eqs. Compressible Euler/Navier-
Stokes Eqs. 

Spatial Discretization Cell-centered FVM 

Reconst
-ruction 

Gradients Green-Gauss Method[14,15] †† 
(without slope limiter) 

Inviscid Term (see Table 2, “Euler Fluxes”) 
Viscous Term Wang[16] 

Temporal Evolution (see Table 2, “Implicit 
Schemes”) 

 

Table 2: Euler fluxes and implicit schemes. 

 Baseline Low-Dissipation/ 
Preconditioned 

Euler 
Fluxes 

Roe[17] A-Roe[9] 
AUSM+[20] AUSM+-up[6] 
SHUS[21] SLAU[8] 

Implicit 
Schemes LU-SGS[10] pLU-SGS[4] 
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• Euler Fluxes 
Inviscid numerical fluxes at cell-interfaces F1/2 are calculated by one of the following Euler fluxes. 
1) Roe [17] and All-Speed-Roe (A-Roe) [9]: Using the difference of variables Δ( ) = ( )R - ( )L and the Roe-

averaged [17] values (^), the Roe flux is expressed in the following form of Liu and Vinokur [18]. 

The Roe’s approximate Riemann solver is one of the most widely-used numerical fluxes, but this flux is known to 
suffer from the carbuncle phenomenon [19] or expansion shock at high speeds, and as shown later, unphysical 
oscillations at low speeds. 

All-Speed-Roe (A-Roe), which was developed recently by Li and Gu [9], modified the Roe flux by introducing 
the switching function f(M) for all speeds as follows: 
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where Fc
press is a pressure stabilization term with c2 = 0.05 and ρ∗u∗ = ρ∞u∞. According to the original paper[9], these 

values with (∗) should be the maximum values in the whole computational domain; however, they are simply set to 
be freestream values here, since no shock discontinuities are present in this work. 

This scheme does not rely on “cutoff Mach number Mco,” which is typically borrowed from preconditioning 
matrix Γ (see Eq.(A.2) in Appendix) and included in some other all speed schemes (e.g, preconditioned Roe in [4]), 
though reference values ρ∗u∗ should be specified. 

 
2) AUSM+ [16] and AUSM+-up [6]: AUSM-family schemes [6-8,20,21] are another set of widely-used fluxes 

featuring simplicity and relative robustness against shock-related anomalies (e.g., carbuncle phenomenon [22]). 
Among AUSM-family, we first introduce two representative methods, i.e., AUSM+ and its all-speed extension, 
AUSM+-up. 

Formulation of AUSM+ is given as: 

This scheme was extended later for all speeds as AUSM+-up, by introducing additional user-specified 
parameters: 
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This scheme also excludes “cutoff Mach number Mco,” though freestream Mach number M∞ is required. 
 
3) SHUS [21] and SLAU [8]: SHUS (Simple High-resolution Upwind Scheme) is one of AUSM-family schemes, 

which replaced the mass flux of AUSM+ with that of Roe (Eq. 2.3f) with the use of arithmetic averaged values 
rather than Roe-averaged ones. This scheme achieved accuracy of Roe flux while keeping the robustness of AUSM+ 
against shock anomalies. 

SHUS was further developed to give more reliable solutions both at low and high speeds. The latest version is 
named SLAU (Simple Low-dissipation AUSM): 
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SLAU needs no cutoff Mach number Mco or freestream Mach number M∞. To the best of the authors’ knowledge, 
this flux is the only method among all speed schemes which is totally free from restrictions of specifying reference 
values. This property is desirable for computations of flows involving no uniform flow, such as turbopump internal 
flows [1]. 

• Time Evolution Methods 
Inviscid numerical fluxes at cell-interfaces F1/2 are calculated by one of the following Euler fluxes. 
1) LU-SGS and pLU-SGS (preconditioned LU-SGS) Implicit Schemes: Time integration is conducted by using 

LU-SGS implicit method or its preconditioned version, preconditioned LU-SGS[4], which is referred to as “pLU-
SGS” for brevity here. Its formulation starts from Eq. (2.2), expressed with time step index n included 
 

Again, in the case without preconditioning, Γ-1 is simply dropped. 
Then, Eq. (2.9) is rewritten in the form of Gauss-Seidel (GS) iterative method by decomposition of new 

(updated) and old (non-updated) values 
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is flux Jacobian from cell i to cell j through the cell-interface Si,j. A+ has only the positive components of the 
eigenvectors. The diagonal matrix Di is given as 

 

Specifically, in LU-SGS (Lower Upper Symmetric Gauss-Seidel), Eq. (2.10a) is further rewritten as 
 

Then, A+ is approximated as the following as in Jameson and Turkel’s LU-SGS [10] (this version is commonly 
referred to as “LU-SGS”). 
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In pLU-SGS, the spectral radius σi,j is scaled as σ'i,j, thus, 
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 2)) (Eq.(A.2) in Appendix). Variables in this equation can be arbitrary chosen, 
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Substituting Eqs. (2.10b), (2.13a), and (2.14a), Eqs. (2.11a) and (2.11b) becomes 

Note that the computational cost for the implementation of Γ-1ΔF is trivial according to Turkel [5], by using the 
following form. 

 
2) Time step: Time step Δti is given by the following formula. 

where CFL is Courant number, and the spectral radius σ can be replaced by σ' for preconditioned systems. 
The use of Eq. (2.17) is called local time stepping, whereas the global time stepping takes the form of 

 
3) Sub-iteration procedure: The sub-iteration (sometimes called Newton-iteration) is used to enhance the 

convergence rate outside the LU-SGS loop. Eq. (2.9a), 

with mn QQ Δ→Δ  and applying three-point backward difference (subscripts i and j are omitted for clarity), leads to 
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where m is the number of sub-iterations, and when m reaches the specified maximum iteration number or the mQΔ  

reduced to the threshold value, the sub-iteration process is terminated as nm QQ Δ→Δ . Note that this procedure 

achieves second-order temporal accuracy if Δt is frozen throughout the computation. In addition, with 
preconditioning matrix Γ, dual time stepping is usually adopted for unsteady calculations [4]. However, we did not 
take this strategy and used sub-iterations only to accelerate and stabilize computations of steady flows.‡‡  

In the subsequent sections, Courant number is chosen as CFL = 20 in consideration of both stability and 
efficiency, and no sub-iterations (= one sub-iteration) or three sub-iterations are employed, if not mentioned 
otherwise. The global time stepping technique is usually used (unless stated otherwise). Based on the flow 
conditions explained below (in Table 3), no slope limiters or turbulence models are used. 

C. Flow Conditions 
Computations are conducted for a subsonic or a low-Mach-number flow over NACA0012 airfoil, under the 

conditions given in Table 3. The airfoil has no angle-of-attack throughout the present study. The following two grids 
are generated (Fig. 2): 
- Two-dimensional, O-type, structured grids. 
- 201 points in the circumferential direction, and 31 points (inviscid) or 51 points (viscous) in the radial (wall-

normal) direction, respectively. 
- The minimum spacing near the wall for viscous cases is δ = 1.0e-3, based on the chord length of 1. This spacing 

achieves sufficient resolution for boundary-layers considered here. 
- Far field boundary is 50 times chord length away from the wall. 

 

 

                                                           
‡‡ We found that three inner-iterations helped to accelerate convergence and/or to stabilize computations even for steady cases by 
significant reduction (two orders drop) of RHS residual achieved at the third inner loop. 
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(a) 

 
(b) 

Figure 2: Computational grids for a) inviscid (201 x 31 points) and b) viscous (201 x 51 points) simulations. 

Table 3: Test cases and conditions. 
Cases Conditions Comments 
1) Viscous M∞=0.5, Re∞=5,000[23,24] Moderate Speed (Validation) 

2) Inviscid M∞=0.001 - 0.1 Low Speeds 

3) Viscous M∞=0.01, Re∞=2,000[3,11] Low Speed 
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III. Results and Discussions 
The results are summarized in Tables 4-5 in which the following notations are used: 

- S (Stable): The L2-norm of density residual dropped at least four orders with physically correct solution. 
- U (Unphysical): The solution reached to unphysical one with poor quality, and/or the residual remained 

significant (=oscillatory). 
- F (Failure): The calculation diverged. 

The result of each case will be discussed in the subsequent sub-sections. 

 

 

Table 4: Computed results of no sub-iteration cases (CFL=20), S (Successful), U (Unphysical or oscillatory), and 
F (Failure, diverged). 

Sub-iterations: 1 Case 1 Case 2 Case 3 

Im
pl

ic
it 

Sc
he

m
es

 

Euler Fluxes 

M∞=0.5 A) M∞=0.1 B) M∞=0.01 C) M∞=0.001 M∞=0.01 

Re∞=5,000 Re∞= ∞ (Inviscid) Re∞=2,000 

LU
-S

G
S 

Roe  
S 
 

U 
 

U 
 

AUSM+ 
SHUS 
A-Roe U U F F F 
AUSM+-up S F F F F 
SLAU S U U U U 

pL
U

-S
G

S 

Roe S 
F F AUSM+ F 

SHUS S 
A-Roe U F F (F: CFL=200) F S (S: CFL=200)
AUSM+-up F S S (S: CFL=200) S S (S: CFL=200)
SLAU S S S (F: CFL=200) S S (F: CFL=200)

 

Table 5: Computed results of three sub-iteration cases (CFL=20), S (Successful), U (Unphysical or oscillatory), 
and F (Failure, diverged). 

Sub-iterations: 3 Case 1 Case 2 Case 3 

Im
pl

ic
it 

Sc
he

m
es

 

Euler Fluxes 

M∞=0.5 A) M∞=0.1 B) M∞=0.01 C) M∞=0.001 M∞=0.01 

Re∞=5,000 Re∞= ∞ (Inviscid) Re∞=2,000 

LU
-S

G
S 

Roe S 
 U U  AUSM+ 

SHUS 
A-Roe S S F F F 
AUSM+-up S F F F F 
SLAU S S S S S 

pL
U

-S
G

S 

Roe S 
F 

 
F 
 

AUSM+ F 
SHUS U 
A-Roe S S S (F: CFL=200) S S (S: CFL=200)
AUSM+-up F F S (S: CFL=200) S S (S: CFL=200)
SLAU S S S (F: CFL=200) S S (F: CFL=200)
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A. Case 1: M∞=0.5 Viscous (Laminar) Flow for Code Validation 
This test case has been widely used as a benchmark [23,24]. The computations were conducted for 10,000 

timesteps. Typical computed flow field is displayed in Fig. 3. Figure 4 shows histories of drag coefficient CD and 
L2-norm of density residual for the successful cases. 

For all the successful cases, the computed flows were almost identical to each other, with slightly different 
separation points [23,24] near the trailing edge. These locations are in good agreement with reference separation 
points of 80%-89% chord length, which validates our code. 

 

 

 

 
(a) 

 
 
 
 
 
 

(b) 

Figure 3: Computed flow field by LU-SGS/SLAU, no sub-iterations, Case 1 (M∞=0.5, viscous): a)  Iso-Mach-
contours (0 < M < 0.59), b)  u-velocity contours; blow-up view of separation region near the trailing-edge (-0.01 < 

u < 0) 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4: Residual and drag coefficient histories, Case 1 (M∞=0.5, viscous): a)  Residual vs. CPU time, b) CD vs. 
CPU time, c) Residual vs. time steps, and d) CD vs. time steps. 
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From Tables 4 and 5, and Figs. 3 and 4, the following features are noteworthy: 
- Coupled with LU-SGS, all the fluxes (except for A-Roe without sub-iterations) yielded physically correct 

solutions. 
- The LU-SGS/A-Roe combination (without sub-iterations) exhibited an oscillatory solution with the separation 

point within the reference range. This oscillation was removed by employing three sub-iterations. 
- Sub-iterations worked to stabilize the solutions, not to accelerate the convergence (Fig. 4a). 

 
- In this test case, the convergence rate was not practically improved by preconditioning of LU-SGS, although 

histories of the drag coefficient and residual are slightly affected (Fig. 4a,b). Even worse, calculations diverged 
in some cases (see Table 4) unless sub-iterations were introduced. This would be because i) some combinations, 
such as pLU-SGS/AUSM+, resulted in an insufficient amount of dissipation production (explained later), or ii) 
the scaling function of AUSM+-up did not work well in conjunction with pLU-SGS under the current flow 
conditions. 

- Effect of Euler fluxes seemed to be minor (Fig. 4c,d), compared with the above mentioned factors. 

B. Case 2: Low Speed (M∞=0.1, 0.01, and 0.001), Inviscid Flow 
In this section, inviscid computations were carried out for 2,000 timesteps with the freestream Mach number as a 

parameter: M∞=0.1 (Case 2A), 0.01 (2B), and 0.001 (2C). Solutions and convergence rates are compared for 
different methods. Figure 5 shows the typical computed flowfields by LU-SGS/Roe, LU-SGS/SLAU and pLU-
SGS/SLAU. In Fig. 6, drag coefficient histories are shown for the three sub-iteration cases. Under the current flow 
conditions, the computed drag is regarded as an indicator of numerical error. For example, in LU-SGS/Roe 
calculation, the drag coefficient history reached a plateau at a significant value (Fig. 6b) with an apparently 
unphysical solution shown in Fig. 5a, even though the corresponding density residual showed five orders of 
reduction (Fig. 7). 

From those figures, the following general remarks are confirmed: 
a) If no-preconditioned system of equations (Eq.(2.1) without Γ) is solved, such as LU-SGS/Roe, calculations do 

not diverge, but reach unphysical solutions due to excessive numerical dissipation of the method (Fig. 5a) [3,8]. 
b) If only preconditioning A) (time-derivative preconditioning) is used, such as pLU-SGS/Roe, calculations 

diverge (usually within a few time steps), because the dissipation in the numerical flux is not scaled properly 
[4,8,25]. 

c) If only preconditioning B) (numerical flux preconditioning) is used, such as LU-SGS/SLAU, calculations are 
sometimes unstable and/or oscillatory (Fig. 5b) [3,8]. These oscillations can be cured by introduction of sub-
iterations, but this of course increases the computational cost. 

d) If both preconditioning A) and B) are used, such as pLU-SGS/SLAU, physically correct solutions are obtained 
in most cases, with clearly improved convergence (Fig. 5c). 

These remarks are summarized in Table 6. 
According to Tables 4 and 5, performances of most of the methods presented here were independent on the 

Mach number. However, the drag coefficients for non-preconditioned cases increased with decreasing Mach 
number; Meanwhile, those values for the preconditioned cases stayed constant (Fig. 6). The drag coefficient, the 
error indicator, showed the least value for pLU-SGS/A-Roe of 0.0019, followed by pLU-SGS/SLAU (0.0037), and 
pLU-SGS/AUSM+-up (0.0049), in the three sub-iteration cases (Table 7). Therefore, from the present standard, 
pLUSGS/A-Roe produced the most accurate solution, if it successfully worked. 

 

 

 
(a) 

 

(b) 

 

(c) 
Figure 5: Computed flow fields (-1 < Cp < 1), no sub-iterations, Case 2B (M∞=0.01, inviscid): a) LU-SGS/Roe 

(Unphysical), b) LU-SGS/SLAU (Oscillatory), and c) pLU-SGS/SLAU (Stable). 
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(a) 

 

 
(b) 

 

(c) 

 

 
(d) 

Figure 6: Drag coefficient histories, Case 2 (inviscid), 3 sub-iterations: a) Case 2A (M∞=0.1), b) Case 2B 
(M∞=0.01), c) Case 2C (M∞=0.001), and d) Case 2C (M∞=0.001, wider scale for vertical axis) 

Table 6:  Summary of computed results (expect for a few exceptions), S (Successful), U (Unphysical or 
oscillatory), and F (Failure, diverged). 

 Euler Fluxes 
Baseline Low-Dissipation 

Im
pl

ic
it 

Sc
he

m
es

 

LU-SGS U S (slow convergence), U or F 

pLU-SGS F S (fast convergence) 

 

Table 7: Calculated drag coefficient in inviscid flow (= numerical error) over NACA0012 airfoil. 

 No-sub-iterations Three-sub-iterations 

pL
U

-S
G

S A-Roe (Diverged) 0.0019 

AUSM+-up 0.0049 0.0049 

SLAU 0.0037 0.0037 
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In addition, it is confirmed that a pLU-SGS/Low-
Dissipation-Flux combination can handle even M∞=0.001 flow. 
Specifically, with three sub-iterations, pLU-SGS/SLAU 
produced more successful results than other methods in a 
range of M∞= 0.001 – 0.5. 

C. Case 3: Low Speed (M∞=0.01), Viscous Flow 
This test case has also been used to investigate the effects 

of preconditioning [3,11].  Here, however, we  focus on the 
viscous effects. Again, typical computed flow fields and 
drag/residual histories are shown in Figs. 8 and 9, respectively. 
As can be seen from these figures and Tables 4 and 5, these 
computations behaved in a broadly similar manner to their 
inviscid counterparts (Case 2B; Figs. 5, 6b, and 7), for both aspects of robustness and efficiency. In other words, 
viscous effects played a minor role in the present cases withfew exceptions. For example, A-Roe flux (without sub-
iterations) yielded a satisfactory solution only in the viscous case, probably because its pressure stabilization term 
(Eqs. 2.4c-2.4e) in combination with the viscous source term (Fv in Eq. 2.1b) had a favorable contribution to the 
solution. 

 

D. Effect of Courant Numbers 
We compared convergence rates of pLU-SGS/Low-dissipation-flux combinations with different Courant 

numbers ranging from 2 to 2,000 for M∞=0.01, both in inviscid (Case 2B) and viscous (Case 3) cases. According 
to the results included also in Tables 4 and 5, the larger the Courant number is, the more the computation tends to 
be oscillatory or unstable. Figure 10 shows residual histories for the cases with sub-iterations (diverged cases are 

Figure 7: Residual histories, Case 2B (M∞=0.01, 
inviscid), 3 sub-iterations. 

 

 
(a) 

 

(b) 

 

(c) 

Figure 8: Computed flow fields (-1 < Cp < 1), 3 sub-iterations, Case 3 (M∞=0.01, viscous): a) LU-SGS/Roe 
(Unphysical), b) LU-SGS/SLAU (Stable, slow convergence), and c) pLU-SGS/SLAU (Stable, fast convergence). 

 

 
(a) 

 

 
(b) 

Figure 9: Drag coefficient and residual histories, Case 3 (M∞=0.01, viscous), 3 sub-iterations: a) CD, b) 
Residual. 
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excluded, e.g., pLU-SGS/SLAU with CFL=200). Judging from this figure, pLU-SGS/AUSM+-up with 
CFL=2,000 gave the fastest convergence (to machine zero) with a satisfactory solution both in the inviscid and 
the viscous cases, whereas this combination with CFL=200 showed faster convergence rate until four-order 
reduction of residual is achieved (about 100 time steps; Figs. 10a,b), which is as twice fast as that of the CFL=20 
case. Courant numbers larger than such optimum values led to oscillatory or unstable solutions. 

In addition, from Fig. 11 in which both the cases with and without sub-iterations are shown together (as 
“residual histories versus CPU time”), it is confirmed that using sub-iterations generally yield faster convergence. 
With the effect of number of sub-iterations taken into account, the choice of pLU-SGS/AUSM+-up with 
CFL=2,000 (3 sub-iterations) (Fig. 11), again, showed the fastest convergence rate towards machine zero; for 4-
order drop of residual, pLU-SGS/AUSM+-up with CFL=200 (3 sub-iterations) is the fastest. Thus, in terms of 
efficiency, pLU-SGS/AUSM+-up appeared to be the best with the maximum allowable Courant numbers. Based on 
this limited set of results, numerical dissipation in AUSM+-up is compatible with that produced by LU-SGS (or 
pLU-SGS) for large Courant numbers, §§ probably due to its use of M∞. 

 

 

E. Effect of Local Time-Stepping 
It is commonly known that the local time-stepping technique (Eq. 2.17) enhances convergence rate for steady 

flow computations, and, we employed this technique for our test cases here.  
                                                           
§§ From Eqs. 2.14 and 2.17, the larger CFL is, the smaller the scalar D becomes, degrading its diagonal dominance and hence, 
introducing more numerical dissipation into the system of equations. 

 

(a) 

 

(b) 
Figure 10: Residual histories with different Courant numbers for M∞=0.01, 3 sub-iterations: a) inviscid (Case 2B) 

and b) viscous (Case 3) computations. 

 

(a) 

 

(b) 
Figure 11: Residual histories with different Courant numbers, with and without sub-iterations, for M∞=0.01: a) 

inviscid (Case 2B) and (b) viscous (Case 3) computations. 
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The computations were conducted for selected cases and methods, and three sub-iterations were adopted. The 

results are summarized in Table 8, and residual histories are shown in Fig. 12. 

Table 8: Computed results of three sub-iteration cases (CFL=20, with local time stepping), S (Successful), U 
(Unphysical or oscillatory), and F (Failure, diverged); time step sizes Δti are also included for selected cases. 

Sub-iterations: 3 Case 1 Case 2B Case 3 

Im
pl

ic
it 

Sc
he

m
es

 

Euler Fluxes 

M∞=0.5 M∞=0.01 M∞=0.01 

Re∞=5,000 Re∞= ∞ (Inviscid) Re∞=2,000 

LU
-S

G
S Roe S (0.00456≤Δti≤5.30) - - 

A-Roe S  F F
AUSM+-up S  F F
SLAU S  S (0.00165≤Δti≤5.54) U 

pL
U

-
SG

S 

Roe S (0.00911≤Δti≤10.5) - - 
A-Roe S S S  
AUSM+-up F S (1.37≤Δti≤534) S (0.465≤Δti≤526) 
SLAU U F F

 

 

(a) 

 

(b) 
 

(c) 

 

(d) 
Figure 12: Residual histories with different Courant numbers, with and without sub-iterations: a) viscous, M∞=0.5 

(Case 1), b), c) inviscid, M∞=0.01 (Case 2B), and d) viscous, M∞=0.01 (Case 3) computations. 
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- The portions of successful cases and others are roughly similar to the global time-stepping cases shown in 
Table 5. 

- As shown in Fig. 12a, the local time-stepping clearly accelerated the convergence for viscous, moderate Mach 
number flow of M∞=0.5 (Case 1). At this flow speed, local time-stepping appeared to be more effective than 
preconditioning, and this is explained from the formulation of Eqs. (2.12b), (2.13b), and (2.17). The spectral 
radius, σ = |Vn| + c + (viscous term), is dominated by |Vn| along with c, and |Vn| varies from one cell to another 
with the order of c. This change is amplified by changes of cell sizes of the order of 10 or more (in this case, 
about 100; Fig. 2b), significantly affecting the time step Δti (= 0.00456-5.30, i.e., three orders magnification at 
maximum, as included in Table 8), compared with preconditioning σ →σ’ with which the order of the spectral 
radius is only doubled (Δti = 0.00911-10.5, Table 8). 

- At low Mach numbers, on the other hand, the local time-stepping is less effective than time-derivative 
preconditioning (Fig. 12b). Again, this is clearly explained from Eqs. (2.12b), (2.13b), and (2.17). If 
preconditioning technique is used at low speeds [e.g., in “SLAU, pLU-SGS (3itrs.)” in Fig. 12b (M∞=0.01; 
Case 2B)], c is reduced to c’ with the order of |Vn| (which is orders smaller than original c), resulting in orders 
larger time steps in the whole computational domain (Δt = 4.70 in this case); on the contrary, if only the local 
time-stepping is used [as in “SLAU, LU-SGS, LocalTimeStep (3itrs.)” in Fig. 12b in which Δti = 0.00456-
5.30], this technique has little effect on the spectral radius σ = |Vn| + c since |Vn| << c, and the cell sizes play a 
major role. As a result, the maximum Δti = 5.30 (at cells away from the wall) is only slightly larger than Δt = 
4.70 which is achieved by the preconditioning standalone for all the cells. 

- Combination of the time-derivative preconditioning and the local time stepping is appeared to be quite 
effective (Figs. 12c,d), but this set led to unstable or oscillatory solutions under some conditions. 

F. The “Best” Scheme 
From the view point of the inviscid/subsonic drag generation as an overall error indicator, pLUSGS/A-Roe 

produced the most accurate solution if it successfully worked. 
In terms of efficiency, pLU-SGS/AUSM+-up appears to be the best with the maximum allowable Courant 

numbers. 
To compare robustness, we simply counted numbers of successful cases marked in Tables 4, 5, and 8: pLU-

SGS/A-Roe (9), pLU-SGS/AUSM+-up (10), pLU-SGS/SLAU (10). Thus, pLU-SGS/SLAU produced more 
successful cases than other methods in a range of M∞= 0.001 – 0.5, and this combination seems the most robust 
among all the methods. 

 
Based on all the discussions above, overall ratings for each combination of preconditioned LU-SGS scheme 

and a low-dissipation flux is presented in Table 9. All in all, in low speed flow computations, each method is 
suggested for use in the following occasions: 
- pLU-SGS/A-Roe: Obtaining the lowest drag error is the top priority. 
- pLU-SGS/AUSM+-up: One seeks the fastest convergence. 
- pLU-SGS/SLAU: One is not sure whether the computation reaches stable solutions, and/or there is no 

reference (uniform) flow present. 
Therefore, it is expected that a promising flux function can be developed if, for instance, SLAU is improved 

by incorporating numerical dissipation while its robustness is maintained, by using reference flow values as in A-
Roe or AUSM+-up only when they are available. 

Table 9: Evaluation of Preconditioned LU-SGS Scheme/Low-Dissipation Euler Fluxes: 5 (Excellent), 4 (Very 
Good), 3 (Good), 2 (Fair), and 1 (Poor). 

 Accuracy Efficiency Robustness 

pL
U

-S
G

S A-Roe 5 4 3 

AUSM+-up 3 5 3 

SLAU 4 2 4 
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IV. Conclusions 
We carried out a comparative study for several well-known or recently-developed low-dissipation Euler fluxes 

coupled with preconditioned LU-SGS (pLU-SGS) implicit scheme in the framework of steady flows. It is confirmed 
that pLU-SGS along with low-dissipation Euler fluxes gave accurate solutions with significant improvement of the 
computational efficiency. The system of non-preconditioned counterparts, on the other hand, suffered from 
unphysical solutions (no preconditioning at all), oscillation/slow convergence (control of dissipation in numerical 
flux only), or divergence of calculations (preconditioning of time integration only). The following features suggest 
that pLU-SGS/A-Roe, pLU-SGS/SLAU or pLU-SGS/AUSM+-up combination is the best for low speed 
computations in terms of accuracy, efficiency, or robustness, respectively: 
- [Accuracy] pLU-SGS/A-Roe yielded the minimum numerical error among the methods tested here. 
- [Efficiency] The maximum allowable Courant number for pLU-SGS/AUSM+-up is much larger than one for 

pLU-SGS/A-Roe or pLU-SGS/SLAU. With this Courant number, pLU-SGS/AUSM+-up showed the fastest 
convergence rate. 

- [Robustness] In most cases, with its optimum Courant number, pLU-SGS/SLAU gave satisfactory solutions for 
any Mach numbers ranging from 0.001 to 0.5. 

In addition, SLAU is the only all-speed scheme which is totally free from restrictions of specifying reference 
values, such as cutoff Mach number Mco or freestream Mach number M∞. 

Therefore, it is expected that a promising flux function can be developed if, for instance, SLAU is improved 
by incorporating numerical dissipation while its robustness is maintained, by using reference flow values as in A-
Roe or AUSM+-up only when they are available. 

Furthermore, local time stepping technique was proven to be effective to accelerate convergence, but its effect 
decreased with decreasing Mach number M∞. At low speeds, the effect of local time stepping is recovered if it is 
coupled with preconditioning of time integration, but this combination led to unstable or oscillatory solutions 
under some conditions. 

The use of other time integration methods such as pMFGS [8] or BLU-SGS [26] can be effective when 
coupled with the low dissipation fluxes, and performance assessment of those combinations is left as a future 
work. 
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Appendix A: Weiss and Smith Preconditioning Matrix for Conservative Vector 
The preconditioner of Weiss and Smith is written as follows due to Turkel [4], although this form is not used in 

the actual implementation. 

where K is constant usually taken as 0.25 – 1.0, and Mco is cutoff Mach number which is as the same order as 
freestream Mach number M∞. 
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Appendix B: Accuracy Study - Vortex Preservation 
The static and propagating vortex problems, widely known benchmark tests for Euler equations [27,28], are 

solved to assess spatial accuracy of the code. Euler Eqs. are solved by the following methods: spatial reconstruction 
using G-G with no limiter (second order in space), SLAU inviscid flux, and Shu’s TVD Runge-Kutta [27] (second 
order in time) for time integration. 

The computational setup is exactly the same as in [28]. 
- Mean flow: (ρ, u, v, w, p) = (1, U∞, 0, U∞, 1)  

where U∞=0 for static vortex, whereas for vortex advection problem U∞=1. 
- Perturbations representing isotropic vortex: 

where center of the vortex is initially located at (x0, y0, z0) = (5, 0, 5) in the computational domain of [0, 10] × [-0.5, 
0.5] × [0, 10]. 

 In the vortex advection case, the vortex moves with the speed U∞=1 in the diagonal direction in the x-z plane. 
 As boundary conditions of what was referred to as characteristic conditions in [28], the exact solutions are 

imposed at all the ghost cells at each time step. Uniform Cartesian grids are used with different time step size Δt to 
keep Courant number almost unchanged. The numbers of cells used in each grid are presented in Tables B1 and B2. 
Computations are conducted until t=2.0 when the exact solution of the vortex center is located at (7, 0, 7). 

Figure B1 shows the computed flows at t=2 of stationary and propagating vortex cases. In Tables B1 and B2, 
and Fig. B2, the L1 norms in density difference between computed and exact values are presented for static and 
propagating vortex problems, respectively. One can see that the formal (second) order of accuracy is achieved in L1 
norms in both cases. 
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Figure B1:  Density contours of (a) initial and (b) propagated (t=2) vortex, with 80×80 grid. 
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Figure B2:  Solution errors for stationary and propagating vortex cases (t=2). 

Table B1. Grid Refinement Study for Stationary Vortex 

Grid (Δt) × (time steps) L1 error L1 order 

10 × 10 0.2   × 10 9.57E-3 - 

20 × 20 0.1   × 20 2.37E-3 2.01 

40 × 40 0.05  × 40 4.91E-4 2.20 

80 × 80 0.025 × 80 9.70E-5 2.25 

160×160 0.0125×160 2.12E-5 2.14 
 

Table B2. Grid Refinement Study for Vortex Advection 

Grid (Δt) × (time steps) L1 error L1 order 

10 × 10 0.2   × 10 1.67E-2 - 

20 × 20 0.1   × 20 5.31E-3 1.77 

40 × 40 0.05  × 40 1.20E-3 2.10 

80 × 80 0.025 × 80 2.74E-4 2.09 

160×160 0.0125×160 6.62E-5 2.03 
 


