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The transitional flow with a laminar separation bubble over a SD7003 wing at a low
Reynolds number Re = 6 x 10* and angle of attack AoA = 4.0deg is numerically
computed using implicit large eddy simulation with a spectral difference method on
unstructured hexahedral meshes. The averaged and statistical results are compared with
previously published results. A laminar separation bubble forms after the flow detaches
from the suction side of the wing. After the vortex breakdown, the separated flow transitions
to turbulent flow and reattaches to the wall. The origin and growth of the initial
disturbances ar e investigated. The vortex breakdown process and the transition mechanism
are described and discussed.

l. Introduction
Low Reynolds number flow has been of interest fecatles because of the development of Micro Air dlehi
(MAV). A numerical investigation of the flow ovehé¢ SD7003 wing at angle of attadkA = 4.0 deg. and
Reynolds numbeRe = 6 x 10* is presented in this paper. The SD7003 wing amat londitions are chosen due to
the availability of high-resolution numerical antperimental datd®202425

High-order methods on unstructured grids arewkn for their advantages of accuracy and flexipiiit the
numerical simulation of multi-scale flow with corepl geometries. In the last two decades, there Heen
intensive research efforts on high-order methodsifistructured grids=. In this paper, a high-order SD method for
the three dimensional Navier-Stokes equations atructured hexahedral grids developed by Sun Etialused.
Both the attached/detached laminar flow and thtaelaed turbulent flow exist on the suction side¢haf wing at the
current flow condition. The Implicit Large Eddy Sitation (ILES) approach is employed to capture [dminar
separation and the vortex breakdown.

Since laminar boundary layers are less resgstithe significant adverse pressure gradientjriar separation
bubbles (LSB) are widely found over the suctioresidl low-Reynolds-number airfoils at moderate iecides. The
behavior of the LSB is known to significantly affehe aerodynamic performance of the airfoils. Aeparation,
the separated laminar boundary layers rapidly iiansto turbulence. Attached turbulent boundamels form after
the vortex breakdown. But the details of the breaku process are not clearly understood yet. A gologkical
understanding of the formation of the LSB and thechanism of the vortex breakdown would help imprthe
aerodynamic performance of MAVS.

The rest of the paper is organized as followsthe next section, the numerical method is byiefiviewed. In
section Ill, averaged and statistical results aesgnted, and comparisons with the results fromiqusly published
data are made. In section IV, the transition predasluding the origin and growth of the initialstlirbances, the
breakdown mechanism and the formation of the temuortex packet are extensively investigated dindussed.
Concluding remarks are given in section V.

. Review of M ultidomain Spectral Difference (SD) M ethod
Governing equations
Consider the three-dimensional compressible naalitNavier-Stokes equations written in the congemdorm as

6Q+6F+6G+6H_0 -

ot "ax oy oz (2.10)
on domain? x [0, T] andf? < R3 with the initial condition

Q(x,,2,0) = Qo(x,y,2) (2.1b)

! Ph.D. Candidate, Dept. of Aerospace Engineeriag5Howe Hallying@iastate.eduAIAA student member.
2 Professor of Aerospace Engineering, 2271 Howe, Hall@iastate.edu, Associate Fellow of AIAA.
1
American Institute of Aeronautics and Astronautics

Copyright © 2010 by Z.J. Wang and Y. Zhou. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



and appropriate boundary conditionsdm. In (2.1),x, y, andz are the Cartesian coordinates dngdy,z) € Q,
t € [0,T] denotes timeQ is the vector of conserved variables, &d:; andH are the fluxes in the, y andz
directions, respectively, which take the followiiagm
p
pu
Q=<pv (2.10)
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pu 0
_ pu’ +p Tox
F=F'—F° = puv - Tyy (2.1d)
puw Txz
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Coordinate transfor mation

Fhyzical element Standard cubic element

Figure 1. Transfor mation from a physical element to a standard element

In the SD method, it is assumed that the computati@lomain is divided into non-overlapping unstaset

hexahedral cells or elements. In order to handteecliboundaries, both linear and quadratic isopatderelements
are employed, with linear elements used in theimtelomain and quadratic elements used near higaracurved
boundaries. In order to achieve an efficient impatation, all physical elemengs, y,z) are transformed into
standard cubic elemet¥,n,¢) € [—-1,1] x [—-1,1] x [—1,1] as shown in Figure 1.
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The transformation can be written as

X K Xi
H=ZM®%44 22)
z4 =1 Zi

whereK is the number of points used to define the phystement(x;,y;, z;) are the Cartesian coordinates of

these points, ant;(¢,7,¢) are the shape functions. For the transformatimergin (2.2), the Jacobian matyix
takes the following form
X Xp o X¢
_0xy2) _ [ l

] = = YE yn yg .
a(m5) 7z, 2z
The governing equations in the physical domaia then transformed into the standard element, thad
transformed equations take the following form

00 oF G oH

at+a€+an+ac—0 (2.3)
where
Q=10l-Q
F $x Sy &) [F
G =|]|[nx Ny Nz|-|G
H Sx Sy Szl LH

Spatial Discretization
In the standard element, two sets of points arme@f namely the solution points and the flux piiltustrated in
Figure 2 for a 2D element. The solution unknownsnéerved variableg§) or degrees-of-freedoms (DOFs) are

stored at the solution points, while fluxes are patad at the flux points. The solution points in &2 chosen to be
the Gauss points defined by

X, = 2s 1 ) =12, ,N 2.4
S—COS ZN nﬁs_ )&y ) . (')
Le s = o4
8 | ] H 8
[ | [ | |
N® EH o HEH g Rm
|

|
[ | L H @& T
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Figure 2. Distribution of solution points (circles) and flux points (squares) in a standard element for a 3"°-
order SD scheme.

o

With solutions ai points, we can construct a degf@e— 1) polynomial in each coordinate direction using the

following Lagrange basis defined as
h(X) = |N| ( : 2.5

s=1,5#i
The reconstructed solution for the conservethbtes in the standard element is just the tepsoducts of the
three one-dimensional polynomials, i.e.,

N N N
Qij,
QEme) =) > N EERE) by - his) (26)
k=17j=1i=1 i
The flux points in 1D are chosen to be fNe— 1) Gauss quadrature points plus the two ending poififith
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fluxes at(N + 1) points, a degre¥ polynomial can be constructed in each coordinagztion using the following
Lagrange bases defined as

N
X — X,
livi2(X) = 1_[ (X—— ;/2 ) (2.7)
$=0.55%i i+1/2 s+1/2
Similarly, the reconstructed flux polynomiaddke the following form:
N N N
FEMS = ) D) Froasailivs/n® - b - hie(s) (280)
k=1 j=1 i=0
N N N
CEMD =D > D Gprasasc @ - hur /o) i) (2.8b)
k=1 j=0i=1
N N N
UADEDW W ALORIORIA® (2.80)

=
Il

0
Because the SD method is based on the dlﬁatefmrm of the governing equations, the impleméata is
straightforward even for high-order curved bouneriAll the operations are basically one-dimengiagmaeach
coordinate direction and each coordinate directibares the collocated solution points with othessulting in
improved efficiency. In summary, the algorithm tongoute the inviscid flux and viscous flux and umdéte
unknowns (DOFs) consists the following steps:
1. Given the conserved variablfg; .} at the solution points, compute the conservedabtes{Q;.,/, ;} at the
flux points using polynomial (2.6).
2. Note that inviscid flux is a function of the consed solution and the viscous flux is a functionboth the
conserved solution and its gradient, taking flufor example:
 F=F-p
il+1/2,j,k = Fl(Qi+1/2.j.k) (2.9)
) Fleajzin = F'(Qiv12,k0 VQis1/2k)
Compute the inviscid fluxel,, , ;,} at the interior flux points using the solutif@;., .} computed at
Step 1. Compute the viscous fludg¥,,,, ;,} using the solutiofQ;.,,,;x} computed at Step 1 and the
gradient of the solution§VQ;,1,j,} computed based di®;1 /2, }-

3. Compute the common inviscid flux at element inteefausing a Riemann solver (2.11), such as thesBloer
and Russanov solvét.

-
1l
[y
..~
)_x

Fi = F(Q,, Q) (211)
whereQ, andQy represent the solutions from the two elementsdieetsie interface.
Compute the common viscous flux at element integagsing a viscous approach (2.12), such as thragac
approach and DG-like approagh

F? = F¥(Q1, Qr, VQ1, VQr) (2.12)
Then compute the derivatives of the fluxes athﬂl$o|ution points by using (2.13).

aF
ZFT+1/2]le+1/2(€L) (21361)

a0 Ny ,

% = Z Girs1/2k Urs1/2 (Wj) (2.13b)
r—O

c’)H
ZHL]r+1/er+1/2(Ck) (2130)

i,jk

4. Update the DOFs using a multistage TVD schemeiriog tntegration of (2.14).
6Qijk 613"' a(';“ + oH 214
ot ae dg (214)

For more details about SD method on hexahedral mleeheaders can referJ{%
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. Simulation Results
Computational grid
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Figure 3. Computational mesh
Figure 3 shows the computational grid for the aurdeES simulation. Refined mesh is designed tocemtrate
near the wall and around the physically importaggion where the separation bubble and vortex bakd
happens. The smallest cells are located at thentraidge corners with dimension (in wall unifg)* = 2.5 in the
direction normal to the walllx* = 25.0 along the chord antizt = 12.0 in spanwise direction. The total number
of elements used here is 78,500, resulting 2,1095@ 5,024,000 degree-of-freedom (per equationpfeorder
and 4"-order SD method respectively.

For the infinite wing assumption, the periothicundary condition is used in spanwise directiod Hre span
width of the wing is set to be 20% of the chord ethivas proved to be wide enoughl?n At the far-field of the
computational domain, a full-state type boundarydition is imposed. And a non-slip, adiabatic baanmyd
condition is applied on the surface of the airfoil.

Averaged and statistical results

The increasing interest on MAV is in the low-Machamber and low-Reynolds-number regime, and many
experimental measurements were conducted undemprassible flow conditions. In the present studshwie SD
method and compressible Navier-Stokes equatiomspuatations are performed at an incoming Mach numbér2.
To verify that this Mach number is low enough, uion with an inflow Mach number of 0.1 is alseepented here.
In Figure 4, the mean pressure coefficient (»p — pw)/épmuo%, and mean skin friction coefficient = ‘r/%pwUfo on the
wing surface of both cases using the 3rd-order ®fhad are compared and little difference has beend. In this
paper, the mean flow field and the statistical itesare obtained by averaging the instantaneouws fileld at each
time step and performed over a non-dimensional timet*/(C/U,) interval of At = 8.0. The mean pressure
coefficient at Mach number 0.1 is also comparedh Wit result obtained by Galbraith etan Figure 5 and good
agreement has been found. Therefore, Mach numBeés @oncluded a satisfactorily low Mach number agdd for
all remaining computations.

A polynomial order (p) refinement study is dedrout by increasing the order of the polynomimaéach element
cell from 2 (resulting in "8-order accuracy) to 3 (resulting iff-brder accuracy). Very good agreement between the
3“order method and"4order method has been found in Figure 6 for bbéhrhean pressure coefficient and mean
skin friction coefficient on the wing surface, thinglicating that the converged mean flow has be#iesed and the
spatial resolution provided by'4rder method is capable to capture the main fleatifres at this Reynolds number.

Table 1 compares the locations of separatiamsttion and reattachment between tfeoBder and the %order
results. The onset location of transition is defigy a critical value of 0.001 of the normalizedyRelds stress
widely used in>2% The differences between the above measuremettte @rd-order and the 4th-order results are
all less than 2%. The results from Galbraith €t ate also listed here and the agreement here igatzh

Table 1. Separation, transition and reattachment locations

Case Separation Transition Reattachment
3“-order 0.223 0.515 0.675
4"-order 0.227 0.521 0.685

Galbraith et al.” 0.23 0.55 0.65
5
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Figure 4. Mean pressure coefficient €, () and mean skin friction coefficient C (b) on the wing surface. Solid
linee Ma=0.1; square symbols: Ma=0.2.
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Figure 5. Mean pressure coefficient €, on the wing surface with comparison to the computations by
previously published results. Solid line: 3rd-order SD results; square symbols: Galbraith et al. o
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Figure 6. Mean pressure coefficient €, (a) and mean skin friction coefficient C (b) on the wing surface.
Square symbols: 3"%-order result; solid line: 4™-order result.
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Figure 7. Mean and statistical results: (a) mean streamlines around the wing and mean streamwise velocity
field; (b) mean spanwise vorticity field; (c) normalized turbulent kinetic energy (T.K.E.) distribution; (d)
normalized Reynolds stress (z,,,) distribution.
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Figure 7.a shows the mean streamlines aroumevilg and the mean streamwise velocity field ayedain both
time and spanwise direction. The mean separatitnblbuand the reattachment of the flow are cleahigwsh. In
Figure 7.b, the low value of the mean spanwiseigibrton the suction surface of the wing at intérva= [0.0,0.6]
represents the laminar shear layer before the flawsits to turbulent. The amplitude of disturbaudceing this
interval has been found to grow exponentially duthe boundary layer instability before separatiod the Kelvin-
Helmholtz instability after separati(}ﬁ'ﬂ. The shear layer ends aroung- 0.65 at the end of the LSB (Figure 7.a)
where the vortex breakdown happens. A turbulenhfary layer forms at interval = [0.75,1.0] thereafter. Figure

7.c and d show the statistical distribution of tteemalized turbulent kinetic enerQy.K. E.=§(ﬁ+ﬁ+ﬁ)) and

the normalized Reynolds stress, = —u'v//U2), respectively. The concentration of both the ndized T. K. E. and
Reynolds stress around~ 0.65 is strongly related to the process of vortex bdeakn, and is discussed in the
following section.

Figure 8 shows the mean flow field velocity files in direction normal to the wall along the ctidine. Profiles
are extruded in the wall's normal direction at eabbrd location. The evolvement of the velocityfileofrom an
attached boundary layer to a detached one is glshdwn. The strong shear layer where the gradikttite velocity
is big detaches away from the wall gradually (ddslee) and the thickness of the shear layer gromtbie chord
line. The separation of the flow appears after 0.25.

0.08
0.06
= 0.04
0.02
olLs /./
0.1 0.2 0.3 04 0.5 3
xc

Figure 8. Mean flow field profilesat x =0.1~0.5

V. Transition Process and M echanism
The transition from the laminar flow to turbulemdvi usually experiences a process of the growtlhefinitial
disturbances inside the laminar flow and vortexakd®wn after the disturbances reach a certain [&véh this
section, the authors try to investigate and distiisgrocess and mechanism of the separated arsitivaal flow
over the SD7003 wing.

Theoriginal disturbances

In the current paper and previously published m&f}élofor the same case, no incoming disturbances #adinced

at the inlet boundaries. However, the transitioocpss happens and is self-sustained once the ¢athfidw forms
over the wing and propagates to the trailing eddsy shown int> 20 Figure 9 shows the pressure spectrums at
x = 0.1 ~ 0.3 and different y locations inside the boundary fayd the samex location the low frequency part
(w < 0.2) is different, while the high frequency pdt > 0.2) of the pressure spectrums at three diffegent
locations is nearly on top of each other. The spetishapes of the high frequency part at differelutcations are
also quite similar.

By using a Fourier transform and inverse Fauriansform with a window filter, the high frequgnpart(w >
0.2) is extracted out. Figure 10 shows the historieghef original pressure disturbances (Figure 10ra) the
extracted high frequency part (Figure 10.b). ltoisnd that the wave shapes and amplitudes of tije thequency
part are nearly the same at three different lonatio= 0.1, 0.2, 0.3 and the wave is actually from downstream to
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upstream (Figure 10.b). It is reasonable to coreclimht the high frequency part is due to the aenastec signal.
The aeroacoustic noise is mainly generated nedrdlimg edge and propagates upstream as in asiggroblem.
The low frequency part is also thought to contdie &eroacoustic signal, but cannot be extractechergt. The
upstream propagating acoustic noise plays as tlie soarce of the initial disturbances to trigges thansition and
keep the transitional process self-sustained eWugh no incoming disturbances are introduced. Tdve

frequency part is thought be the unstable T-S veanediscussed in the following subsection.

05

Figure 9. Spectrum of pressureat x = 0.1~ 0.3
(a) (b)
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Figure 10. Pressure distur bances history (a) and thefiltered high pressure part (b) in timeinterval t =
155 ~ 165

Growth of the disturbances

Usually the disturbances in a laminar flow needtow and reach certain levels before transition hranpeﬁ3. In

the current case, an overall exponential growtthefdisturbances is observed before transitiofi°, lit was found
that atx = 0.1 ~ 0.5 the overall disturbances keep growing exponestiafid the shapes of the disturbance profile
look like a typical T-S wave im = 0.1 ~ 0.3. The results in this paper agree well with theepbation in?® and the
dominant disturbances are found to be of low fregyeefore the vortex shedding and of high frequehereafter.
Figure 11 shows the spectrums of u-velocity atedéht locations from the leading edge to the ttamsionset
location,x = 0.1 ~0.6. A low frequency parfw < 0.2) dominates the spectrum = 0.1 ~ 0.4 and keeps
growing, but a higher frequency pé#t0 < w < 15.0) becomes more and more dominantis 0.4 ~ 0.6.

After x = 0.3, the boundary layer separates and the inflectiomtpappears. The Kevin-Helmholtz type of
inviscid instability takes the dominant role in tisturbance growth and the low frequency distuckacould not
sustain. The vortices shed out in the detachedr séiger during the intervat = 0.3 ~ 0.4 (Figure 12). The size of
the vortices grows gradually after shedding andteefransition. The shedding frequency of the voitenot a
single one but in the continuous band which cowadp to the dominant frequency badd < w < 9.0) in the
spectrums ok = 0.4 ~ 0.6. The dominant frequency band agrees well withptteglictions of the linearized stability
theory (LST) though the mean profile violates tkswamption of parallel flow in LST. Figure 13 shotle unstable
mode atx = 0.3,0.4,0.5 based on LST with the mean profiles. The unstadigon is abou.0 < w < 15 for all
three locations and it is shown in the spectrums-eélocity that only the paft0 < w < 15 is excited, and the part
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w > 15 is stable and remains unexcited. In Figure 11fltve is found to be more unstable4t0 < w < 9.0. In the
spectrums, the part 10 < w < 9.0 gradually dominates the spectrums after 0.4. Another main part0.0 <
w < 15.0 is also observed in the spectrums after 0.4 and it might be the double harmonic waves exditgthe
fundamental waves d@f.0 < w < 9.0. The partw > 15.0 of the double harmonic waves exceeds the unstablen
predicted by LST and is not excited.
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Figure 12. Instantaneous contour lineof @ = 1 at timet = 155.32~156.44

Figure 14 shows the disturbances amplitude reGgure and v-velocity at= 0.1 ~0.6 andz =0.1. The
disturbances amplitude is defined&3) = v(x,y,t)"? & p(x,y,t)'? for v-velocity and pressure respectively, and
the average is taken in bathdirection and time. The averaged and statistiesiliits are achieved based on 20 probe
points, which are equally placed inside the boupdayer as the disturbances mainly exist inside ghearing
boundary layer. In Figure 14, the vertical coortings set to be the logarithm of the disturbanceplaude
normalized by the disturbance amplitude of thet fiosationx = 0.1. The solid line in Figure 14.a for v-velocity
shows a linear increase in= 0.1 ~ 0.6 representing an exponential growth of the overalkelocity disturbance
which agrees well with result itf. The disturbances amplitude of the low frequenast fw < 0.2) and the rest
frequency par{mainly 4.0 < w < 15.0) are also presented here. It is clearly shown thteaethe low frequency
part is dominant and responsible for the exponkmgtiawth of the overall disturbances in the eadggex =

10
American Institute of Aeronautics and Astronautics




0.1 ~ 0.3, while the higher frequency part takes over thenidant role in the exponential growth of the overal
disturbances in the later stage= 0.5 ~ 0.6. In the interval whex = 0.3 ~ 0.5, a transient process happens where
the growth of the low frequency part slows down tha growth of the high frequency part increaseskiys The
intervalx = 0.3 ~ 0.4 corresponds to the region where the sheddingeof/tiitices happens as discussed before. In
this interval the disturbance energy is transporfiesn the low frequency disturbances to higher diestcy
disturbances through the vortex shedding. The riahce amplitude of pressure also shows a simméadt(Figure
14.b). However, the overall pressure disturbanasdwt show an exponential growth which is duéhédcoustic

noises existing in the flow field.
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Figure 13. Unstable modesat x = 0.3,0.4,0.5 based on LST
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Figure 14. Distur bances amplitude of v-velocity (a) and pressure(b) at x = 0.1 ~ 0.6

Breakdown of the shedding vortices
A LSB forms after the flow separates and two dinmemel vortices shed. The LSB in the current case lca

classified as a long one according to the clasgifa in 22 It is observed that the quasi two dimensionakesor
break down to small scale structures during theruail x = 0.55 ~ 0.75, as shown in Figure 12. This interval
corresponds to the transition onset region, whieeeskin friction and the wall pressure increasedsudy. It is
observed in Figure 12 that the shedding vortexKstean process carries gradually from the bottortheotop and
the small scale structures attaching to the wall at0.5 ~ 0.6 with negative u-velocity play an important role. A
thin layer of small scale structures stay nearvth#t atx = 0.5 ~ 0.6 right below the shedding vortex. As the thin
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layer stays inside the separation bubble, the ssnalk structures move upstream with small negativelocity and
then are upcasted by the circulation of the sepdrfidw. When the shedding vortex propagates pgessetgion, the
bottom part of the shedding vortex meets and ioteraith the upstream going small scale structufés. bottom
part of the vortex breaks down to small scale simes first, then the upper part of the vortexrizdgially affected
and breaks down by the spin of the vortex itselthis way, the vortex tube breaks down from thiédwo to the top.
Figure 15 shows the w-velocity history at the thild&erenty locations with the same chord locatior= 0.6. Three
points are put equally spaced inside the mean sagar. The w-velocity history near the wall is hiig oscillatory
while away from the wall it remains close to zefthis also indicates that the shedding vortices three
dimensional small scale structures at the bottoingoiasi two-dimensional large structures at the dapng the
breakdown process at= 0.6. After the breakdown of the large scale vortexoismall scale eddies, the flow
becomes more and more turbulent and propagatessti@am.
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Figure 15. w-velocity history at timeinterval t = 155 ~ 160
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>

A O

B

Input: shedding vortices due to Kevin-Helmholtztatmslity
Output: reattached turbulent boundary layer
A: breakdown of the vortices
B: small scale structures attached on the wall wébative velocities
Figure 16. The negative feedback mechanism in breakdown of the flow over SD7003

The traditional description of the separatiamsition-reattachment type of flow is as followse flow separates
and transitions to turbulent then reattaches tovta# downstrearfi. Here, a hypothesis of a negative feedback
mechanism is proposed and supplements the tragit@escription for this particular case. In therent case, the
transition onset and the vortex breakdown are chus# only by the growth and evolution of the amigi
disturbances but also the upstream-propagatingl soale structures. The origin of the small scatacsures is
from the turbulent flow after breakdown. The feedlbop is connected by the upstream-propagatingllssoale
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structures with negative u-velocity as shown inurégl6.

The negative feedback is also called a ballae The instantaneous transition point is balagdiack and forth
around the mean transition point and does not nfiortber upstream or downstream with the negatiaif@ack.
Two-dimensional shedding vortices and upstreamggeinall scale structures are the two key essdatigirs in the
transition with the separation bubble. The traasitbccurs where the two dimensional shedding estigrow big
enough and the upstream-propagating small scaletstes are strong enough to trigger the vorteakstewn. So
the transition does not happen further downstrefamd. the transition does not happen further upstrbacause the

amplitude of the shedding vortices are not big ghoand the strength and velocity of the upstreamggemall
scale structures decay on the way upstream.

Theturbulent vortical packet

After the vortex breakdown, the flow reattachesthe wall and forms a turbulent boundary layer. Vidlial
turbulent vortical packets are found to form in thgionx = 0.6 ~ 0.7 and propagate downstream after formation.
As shown in both Figure 12 and 17, during the tintervalt = 155.32~157.56 a turbulent vortical packet, noted
by the dashed circle in Figure 17, develops graguster breakdown. The mean u-velocity in the oegi =

0.6 ~ 0.7 is low and close to zero (Figure 7.a). The shegldortex breaks down around this region and thé&oair
packet forms and moves very slowly downstreans @liserved that more upstream shedding vorticehirgathis
region breaks down and joins the current vorticatket. The shedding vortices merge together anduttoalent
vortical packet becomes bigger and stronger. Agtushe almost non-moving turbulent packet providas

upstream-propagating small scale structures whaimse the breakdown of the shedding vortices asridedc
previously.
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Figure 17. Instantaneous contour lineof Q = 1 at timet = 156.76~157.56

F

Figure 18. | so-surface of Q-criterion colored by streamwise velocity at timet = 157.56
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The characteristics of the pressure and skitidn on the wall are strongly associated with fbienation of the
turbulent packet. Figure 19 shows the instantan€pudC, during the time interval = 155.32~156.56. The
instantaneous, shows that a small separation regios 0.6 ~ 0.7 nearly does not move during the time interval.
Meanwhile, this region corresponds to the suddepjof the instantaneou (Figure 19.a). And this also accounts
for the featured characters of the mégrandC; as shown in Figure 20 and also in Figure 6.

The formation and evolution of the turbulenttigal packet are also responsible for the charaaté the mean
spanwise vorticity, the normalizdd K. E. and the normalized Reynolds str¢sg,) as shown in Figure 7. The
regionx = 0.6 ~ 0.7 corresponds with the region where the separatedrdhyer ends (Figure 7.b), the source of
T.K.E. (Figure 7.c) and the high concentration of the riddgs stress (Figure 7.d).

After reaching certain strength, the turbulent iatt packet leaves the regian= 0.6 ~ 0.7 and propagates

downstream (Figure 17). And a new turbulent vottpaecket noted by the solid circle in Figure 17ndl 48 forms in
the same region.
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Figure 19. Instantaneous pressure coefficient €, (a) and skin friction C (b) during thetimeinterval t =
155.32~156.56
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Figure 20. The zoom-in pressure coefficient €, (a) and skin friction € (b) of Figure 6

V. Conclusion
The separated and transitional flow over a SD708@) W numerically investigated in this paper. Bweraged and
statistical results agree well with the previoysbiplished results and good agreement is also fauadp-type grid
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refinement study. The SD method with unstructurexlahedral mesh together with ILES captures the aBd@the
transition process well over the suction side efwling.

The process and mechanism of the separationhenansitional flow are described and discus$®e. acoustic
noises are found to act as the original disturbsirioside the laminar boundary layer. The disturkangrow
exponentially inside the shear layer owing to tlirglary layer T-S instability and then the KevinkHeoltz
instability. And the disturbances are found to bow frequency before separation and of high festpy thereafter.
Individual turbulent packets form after the breakdoand shedding vortices also merge to form lagyess. The
turbulent packet moves slowly within the breakdawgion and the small scale structures move upstredmthe
negative u-velocity inside the LSB. During the lkekawvn process of the shedding vortices, the upstrgaing
small scale structures near the wall play an ingsdrtole and a hypothesis of a negative feedbaatharésm is
proposed, which appears to be supported by an ism@e.
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