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The transitional flow with a laminar separation bubble over a SD7003 wing at a low 
Reynolds number �� = � × ���  and angle of attack ��� = �. � 	�
  is numerically 
computed using implicit large eddy simulation with a spectral difference method on 
unstructured hexahedral meshes. The averaged and statistical results are compared with 
previously published results. A laminar separation bubble forms after the flow detaches 
from the suction side of the wing. After the vortex breakdown, the separated flow transitions 
to turbulent flow and reattaches to the wall. The origin and growth of the initial 
disturbances are investigated. The vortex breakdown process and the transition mechanism 
are described and discussed. 

I. Introduction 
Low Reynolds number flow has been of interest for decades because of the development of Micro Air Vehicles 
(MAV). A numerical investigation of the flow over the SD7003 wing at angle of attack ��� = 4.0 
��.  and 
Reynolds number �� = 6 × 10� is presented in this paper. The SD7003 wing and flow conditions are chosen due to 
the availability of high-resolution numerical and experimental data 15,20,24,25.  
    High-order methods on unstructured grids are known for their advantages of accuracy and flexibility in the 
numerical simulation of multi-scale flow with complex geometries. In the last two decades, there have been 
intensive research efforts on high-order methods for unstructured grids1-13. In this paper, a high-order SD method for 
the three dimensional Navier-Stokes equations on unstructured hexahedral grids developed by Sun et al.13 is used. 
Both the attached/detached laminar flow and the reattached turbulent flow exist on the suction side of the wing at the 
current flow condition. The Implicit Large Eddy Simulation (ILES) approach is employed to capture the laminar 
separation and the vortex breakdown.  
    Since laminar boundary layers are less resistible to the significant adverse pressure gradient, laminar separation 
bubbles (LSB) are widely found over the suction side of low-Reynolds-number airfoils at moderate incidences. The 
behavior of the LSB is known to significantly affect the aerodynamic performance of the airfoils. After separation, 
the separated laminar boundary layers rapidly transition to turbulence. Attached turbulent boundary layers form after 
the vortex breakdown. But the details of the breakdown process are not clearly understood yet. A good physical 
understanding of the formation of the LSB and the mechanism of the vortex breakdown would help improve the 
aerodynamic performance of MAVs.  
    The rest of the paper is organized as follows. In the next section, the numerical method is briefly reviewed. In 
section III, averaged and statistical results are presented, and comparisons with the results from previously published 
data are made. In section IV, the transition process including the origin and growth of the initial disturbances, the 
breakdown mechanism and the formation of the turbulent vortex packet are extensively investigated and discussed. 
Concluding remarks are given in section V. 
 

II. Review of Multidomain Spectral Difference (SD) Method 
Governing equations 
Consider the three-dimensional compressible non-linear Navier-Stokes equations written in the conservation form as  ���� +

���� +
���� +

���� = 0                                                              (2.1�) 

on domain � × [0, �] and � ⊂ �� with the initial condition ���, �, �, 0� = ��(�, �, �)                                                              (2.1�) 
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and appropriate boundary conditions on ��. In (2.1), �, �, and � are the Cartesian coordinates and (�, �, �) ∈ Ω, � ∈ [0, �] denotes time. �  is the vector of conserved variables, and � , �  and �  are the fluxes in the � , � and � 
directions, respectively, which take the following form 
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Coordinate transformation 

 
Figure 1. Transformation from a physical element to a standard element 

 
In the SD method, it is assumed that the computational domain is divided into non-overlapping unstructured 
hexahedral cells or elements. In order to handle curved boundaries, both linear and quadratic isoparametric elements 
are employed, with linear elements used in the interior domain and quadratic elements used near high-order curved 
boundaries. In order to achieve an efficient implementation, all physical elements (�, �, �) are transformed into 
standard cubic element �5, 6, 7� ∈ 8−1,19 × 8−1,19 × 8−1,19 as shown in Figure 1.  
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    The transformation can be written as 

:���; = < =��5, 6, 7��

��


>������ ?                                                               (2.2) 

where @ is the number of points used to define the physical element, ��� , �� , ��� are the Cartesian coordinates of 
these points, and =��5, 6, 7� are the shape functions. For the transformation given in (2.2), the Jacobian matrix A 
takes the following form 

A =
���,	,
�

��� ,�,��
= >�� �� ���� �� ���� �� ��?. 

    The governing equations in the physical domain are then transformed into the standard element, and the 
transformed equations take the following form ��B�� +

��B�5 +
��B�6 +

��C�7 = 0                                                              (2.3) 

where �B = |A| ∙ � 

>�B�B�C? = |A| >5� 5	 5
6� 6	 6
7� 7	 7
? ∙ >���? 

 
Spatial Discretization 
In the standard element, two sets of points are defined, namely the solution points and the flux points, illustrated in 
Figure 2 for a 2D element. The solution unknowns (conserved variables �) or degrees-of-freedoms (DOFs) are 
stored at the solution points, while fluxes are computed at the flux points. The solution points in 1D are chosen to be 
the Gauss points defined by E� = +�F 32F − 1

2G ∙ H4 , F = 1,2, ⋯ , G.                                            (2.4) 

 
Figure 2. Distribution of solution points (circles) and flux points (squares) in a standard element for a 3rd-

order SD scheme. 
 

    With solutions at G points, we can construct a degree �G − 1� polynomial in each coordinate direction using the 
following Lagrange basis defined as 

ℎ��E� = I 3 E − E�E� − E�

4�

��
,���

                                                              (2.5) 

    The reconstructed solution for the conserved variables in the standard element is just the tensor products of the 
three one-dimensional polynomials, i.e., 

��5, 6, 7� = < < < �B�,�,�JA�,�,�J
�
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�
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�
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ℎ��5� ∙ ℎ��6� ∙ ℎ��7�                                         (2.6) 

    The flux points in 1D are chosen to be the �G − 1� Gauss quadrature points plus the two ending points. With 
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fluxes at �G + 1� points, a degree G polynomial can be constructed in each coordinate direction using the following 
Lagrange bases defined as 

K��
 �⁄ �E� = I L E − E��
 �⁄E��
 �⁄ − E��
 �⁄

M�

���,���

                                                 (2.7) 

    Similarly, the reconstructed flux polynomials take the following form: 

�B�5, 6, 7� = < < < �B��
 �⁄ ,�,�

�

���

�

��


�

��


K��
 �⁄ �5� ∙ ℎ��6� ∙ ℎ��7�                               (2.8�) 

�B�5, 6, 7� = < < < �B�,��
 �⁄ ,�

�

��


�

���

�

��


ℎ��5� ∙ K��
 �⁄ �6� ∙ ℎ��7�                               (2.8�) 

�C�5, 6, 7� = < < < �C�,�,��
 �⁄

�

��


�

��


�

���

ℎ��5� ∙ ℎ��6� ∙ K��
 �⁄ �7�                               (2.8+) 

    Because the SD method is based on the differential form of the governing equations, the implementation is 
straightforward even for high-order curved boundaries. All the operations are basically one-dimensional in each 
coordinate direction and each coordinate direction shares the collocated solution points with others, resulting in 
improved efficiency. In summary, the algorithm to compute the inviscid flux and viscous flux and update the 
unknowns (DOFs) consists the following steps: 
1. Given the conserved variables N��,�,�O at the solution points, compute the conserved variables N���
 �⁄ ,�,�O at the 

flux points using polynomial (2.6). 
2. Note that inviscid flux is a function of the conserved solution and the viscous flux is a function of both the 

conserved solution and its gradient, taking flux �B for example: 

P �B = �B � − �B��B��
 �⁄ ,�,�
� = �B �Q���
 �⁄ ,�,�R�B��
 �⁄ ,�,�

� = �B�Q���
 �⁄ ,�,� , ∇���
 �⁄ ,�,�R                                    (2.9) S 
Compute the inviscid fluxes N�B��
 �⁄ ,�,�

� O at the interior flux points using the solution N���
 �⁄ ,�,�O computed at 

Step 1. Compute the viscous fluxes N�B��
 �⁄ ,�,�
� O  using the solution N���
 �⁄ ,�,�O  computed at Step 1 and the 

gradient of the solutions  NT���
 �⁄ ,�,�O computed based on N���
 �⁄ ,�,�O. 
3. Compute the common inviscid flux at element interfaces using a Riemann solver (2.11), such as the Roe solver 

and Russanov solver 13. �B � = �B ���� , ���                                                              (2.11) 
where �� and �� represent the solutions from the two elements beside the interface. 
Compute the common viscous flux at element interfaces using a viscous approach (2.12), such as the averaged 
approach and DG-like approach 13. �B� = �B����, �� , ∇�� , ∇���                                                      (2.12) 
Then compute the derivatives of the fluxes at all the solution points by using (2.13). 

L��B�5 M
�,�,�
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�
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4. Update the DOFs using a multistage TVD scheme for time integration of (2.14). ��B�,�,��� = − L��B�5 +

��B�6 +
��C�7 M

�,�,�

                                         (2.14) 

For more details about SD method on hexahedral mesh, the readers can refer to 13. 
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III. Simulation Results 
Computational grid 

 
Figure 3. Computational mesh 

Figure 3 shows the computational grid for the current ILES simulation. Refined mesh is designed to concentrate 
near the wall and around the physically important region where the separation bubble and vortex breakdown 
happens. The smallest cells are located at the trailing edge corners with dimension (in wall units) ∆�� = 2.5 in the 
direction normal to the wall, ∆�� = 25.0 along the chord and ∆�� = 12.0 in spanwise direction. The total number 
of elements used here is 78,500, resulting 2,119,500 and 5,024,000 degree-of-freedom (per equation) for 3rd-order 
and 4th-order SD method respectively.  
    For the infinite wing assumption, the periodic boundary condition is used in spanwise direction and the span 
width of the wing is set to be 20% of the chord which was proved to be wide enough in 15. At the far-field of the 
computational domain, a full-state type boundary condition is imposed. And a non-slip, adiabatic boundary 
condition is applied on the surface of the airfoil.  
 
Averaged and statistical results 
The increasing interest on MAV is in the low-Mach-number and low-Reynolds-number regime, and many 
experimental measurements were conducted under incompressible flow conditions. In the present study with the SD 
method and compressible Navier-Stokes equations, computations are performed at an incoming Mach number of 0.2. 
To verify that this Mach number is low enough, a solution with an inflow Mach number of 0.1 is also presented here. 
In Figure 4, the mean pressure coefficient �� = �� − ��� �

�
����

��  and mean skin friction coefficient �� = � �

�
����

�⁄  on the 
wing surface of both cases using the 3rd-order SD method are compared and little difference has been found. In this 
paper, the mean flow field and the statistical results are obtained by averaging the instantaneous flow field at each 
time step and performed over a non-dimensional time � = �∗ �U V�⁄ �⁄  interval of ∆� = 8.0. The mean pressure 
coefficient at Mach number 0.1 is also compared with the result obtained by Galbraith et al.15 in Figure 5 and good 
agreement has been found. Therefore, Mach number 0.2 is concluded a satisfactorily low Mach number and used for 
all remaining computations.  
    A polynomial order (p) refinement study is carried out by increasing the order of the polynomial in each element 
cell from 2 (resulting in 3rd-order accuracy) to 3 (resulting in 4th-order accuracy). Very good agreement between the 
3rd-order method and 4th-order method has been found in Figure 6 for both the mean pressure coefficient and mean 
skin friction coefficient on the wing surface, thus indicating that the converged mean flow has been achieved and the 
spatial resolution provided by 4th-order method is capable to capture the main flow features at this Reynolds number. 
    Table 1 compares the locations of separation, transition and reattachment between the 3rd-order and the 4th-order 
results. The onset location of transition is defined by a critical value of 0.001 of the normalized Reynolds stress 
widely used in 15-20. The differences between the above measurements of the 3rd-order and the 4th-order results are 
all less than 2%. The results from Galbraith et al.15 are also listed here and the agreement here is also good. 

Table 1. Separation, transition and reattachment locations 
Case Separation Transition Reattachment 

3rd-order 0.223 0.515 0.675 
4th-order 0.227 0.521 0.685 

Galbraith et al. 15 0.23 0.55 0.65 
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Figure 4. Mean pressure coefficient X� (a) and mean skin friction coefficient X  (b) on the wing surface. Solid 
line: Ma=0.1; square symbols: Ma=0.2. 

 
Figure 5. Mean pressure coefficient X� on the wing surface with comparison to the computations by 

previously published results. Solid line: 3rd-order SD results; square symbols: Galbraith et al. 15 
 

 
Figure 6. Mean pressure coefficient X� (a) and mean skin friction coefficient X  (b) on the wing surface. 

Square symbols: 3rd-order result; solid line: 4th-order result. 
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Figure 7. Mean and statistical results: (a) mean streamlines around the wing and mean streamwise velocity 
field; (b) mean spanwise vorticity field; (c) normalized turbulent kinetic energy ��. @. '. � distribution; (d) 
normalized Reynolds stress (.�	) distribution. 
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    Figure 7.a shows the mean streamlines around the wing and the mean streamwise velocity field averaged in both 
time and spanwise direction. The mean separation bubble and the reattachment of the flow are clearly shown. In 
Figure 7.b, the low value of the mean spanwise vorticity on the suction surface of the wing at interval � = 80.0,0.69 
represents the laminar shear layer before the flow transits to turbulent. The amplitude of disturbance during this 
interval has been found to grow exponentially due to the boundary layer instability before separation and the Kelvin-
Helmholtz instability after separation 19-21. The shear layer ends around � = 0.65 at the end of the LSB (Figure 7.a) 
where the vortex breakdown happens. A turbulent boundary layer forms at interval � = 80.75,1.09 thereafter. Figure 
7.c and d show the statistical distribution of the normalized turbulent kinetic energy 
 �.�.
. =

�

�
��′����� + �′����� + �′�������� and 

the normalized Reynolds stress ���� = −�′�′����� ��
�� �, respectively. The concentration of both the normalized �. @. '. and 

Reynolds stress around � ≈ 0.65 is strongly related to the process of vortex breakdown, and is discussed in the 
following section. 
    Figure 8 shows the mean flow field velocity profiles in direction normal to the wall along the chord line. Profiles 
are extruded in the wall’s normal direction at each chord location. The evolvement of the velocity profile from an 
attached boundary layer to a detached one is clearly shown. The strong shear layer where the gradient of the velocity 
is big detaches away from the wall gradually (dashed line) and the thickness of the shear layer grows in the chord 
line. The separation of the flow appears after � = 0.25.  

 
Figure 8. Mean flow field profiles at  Y = �. � ~ �. Z 

 
IV. Transition Process and Mechanism 

The transition from the laminar flow to turbulent flow usually experiences a process of the growth of the initial 
disturbances inside the laminar flow and vortex breakdown after the disturbances reach a certain level 23. In this 
section, the authors try to investigate and discuss the process and mechanism of the separated and transitional flow 
over the SD7003 wing. 
 
The original disturbances 
In the current paper and previously published papers15, 20 for the same case, no incoming disturbances are introduced 
at the inlet boundaries. However, the transition process happens and is self-sustained once the turbulent flow forms 
over the wing and propagates to the trailing edge, also shown in 15, 20. Figure 9 shows the pressure spectrums at � = 0.1 ~ 0.3 and different y locations inside the boundary layer. At the same � location the low frequency part �[ < 0.2�  is different, while the high frequency part �[ ≥ 0.2�  of the pressure spectrums at three different � 
locations is nearly on top of each other. The spectrum shapes of the high frequency part at different x locations are 
also quite similar. 
    By using a Fourier transform and inverse Fourier transform with a window filter, the high frequency part �[ ≥
0.2� is extracted out. Figure 10 shows the histories of the original pressure disturbances (Figure 10.a) and the 
extracted high frequency part (Figure 10.b). It is found that the wave shapes and amplitudes of the high frequency 
part are nearly the same at three different locations � = 0.1, 0.2, 0.3 and the wave is actually from downstream to 
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upstream (Figure 10.b). It is reasonable to conclude that the high frequency part is due to the aeroacoustic signal. 
The aeroacoustic noise is mainly generated near the trailing edge and propagates upstream as in a subsonic problem. 
The low frequency part is also thought to contain the aeroacoustic signal, but cannot be extracted out here. The 
upstream propagating acoustic noise plays as the main source of the initial disturbances to trigger the transition and 
keep the transitional process self-sustained even though no incoming disturbances are introduced. The low 
frequency part is thought be the unstable T-S wave and discussed in the following subsection. 

 

Figure 9. Spectrum of pressure at Y \ �. � ~ �. ` 

 
Figure 10. Pressure disturbances history (a) and the filtered high pressure part (b) in time interval a \�ZZ ~ ��Z 

 
Growth of the disturbances 
Usually the disturbances in a laminar flow need to grow and reach certain levels before transition can happen23. In 
the current case, an overall exponential growth of the disturbances is observed before transition. In 20, it was found 
that at � \ 0.1 ~ 0.5 the overall disturbances keep growing exponentially and the shapes of the disturbance profile 
look like a typical T-S wave in � \ 0.1 ~ 0.3. The results in this paper agree well with the observation in 20, and the 
dominant disturbances are found to be of low frequency before the vortex shedding and of high frequency thereafter. 
Figure 11 shows the spectrums of u-velocity at different locations from the leading edge to the transition onset 
location, x \ 0.1 ~ 0.6 . A low frequency part �[ h 0.2�  dominates the spectrum in � \ 0.1 ~ 0.4  and keeps 
growing, but a higher frequency part �4.0 h [ h 15.0� becomes more and more dominant in � \ 0.4 ~ 0.6.      
    After � \ 0.3 , the boundary layer separates and the inflection point appears. The Kevin-Helmholtz type of 
inviscid instability takes the dominant role in the disturbance growth and the low frequency disturbance could not 
sustain. The vortices shed out in the detached shear layer during the interval � \ 0.3 ~ 0.4 (Figure 12). The size of 
the vortices grows gradually after shedding and before transition. The shedding frequency of the vortex is not a 
single one but in the continuous band which corresponds to the dominant frequency band �4.0 h [ h 9.0� in the 
spectrums of � \ 0.4 ~ 0.6. The dominant frequency band agrees well with the predictions of the linearized stability 
theory (LST) though the mean profile violates the assumption of parallel flow in LST. Figure 13 shows the unstable 
mode at � \ 0.3,0.4, 0.5 based on LST with the mean profiles. The unstable region is about 0.0 m [ m 15 for all 
three locations and it is shown in the spectrums of u-velocity that only the part 0.0 m [ m 15 is excited, and the part 
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[ n 15 is stable and remains unexcited. In Figure 11, the flow is found to be more unstable in 4.0 m [ m 9.0. In the 
spectrums, the part in 4.0 m [ m 9.0 gradually dominates the spectrums after � \ 0.4. Another main part 10.0 m[ m 15.0 is also observed in the spectrums after � \ 0.4 and it might be the double harmonic waves excited by the 
fundamental waves of 4.0 m [ m 9.0. The part [ n 15.0 of the double harmonic waves exceeds the unstable region 
predicted by LST and is not excited. 

 
Figure 11. Spectrum of u-velocity at Y \ �. � ~ �. � 

 

 
Figure 12. Instantaneous contour line of o \ � at time a \ �ZZ. `p~�Z�. �� 

 
    Figure 14 shows the disturbances amplitude of pressure and v-velocity at � \ 0.1 ~ 0.6  and � \ 0.1 . The 
disturbances amplitude is defined as ���� \ %��, �, ��′�rrrrrrrrrrrrr &  -��, �, ��′�rrrrrrrrrrrrr for v-velocity and pressure respectively, and 
the average is taken in both �-direction and time. The averaged and statistical results are achieved based on 20 probe 
points, which are equally placed inside the boundary layer as the disturbances mainly exist inside the shearing 
boundary layer. In Figure 14, the vertical coordinate is set to be the logarithm of the disturbance amplitude 
normalized by the disturbance amplitude of the first location � \ 0.1. The solid line in Figure 14.a for v-velocity 
shows a linear increase in � \ 0.1 ~ 0.6 representing an exponential growth of the overall v-velocity disturbance 
which agrees well with result in 20. The disturbances amplitude of the low frequency part �[ h 0.2� and the rest 
frequency part �mainly 4.0 h [ h 15.0� are also presented here. It is clearly shown there that the low frequency 
part is dominant and responsible for the exponential growth of the overall disturbances in the early stage � \
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0.1 ~ 0.3, while the higher frequency part takes over the dominant role in the exponential growth of the overall 
disturbances in the later stage � \ 0.5 ~ 0.6. In the interval wher � \ 0.3 ~ 0.5, a transient process happens where 
the growth of the low frequency part slows down but the growth of the high frequency part increases quickly. The 
interval � \ 0.3 ~ 0.4 corresponds to the region where the shedding of the vortices happens as discussed before. In 
this interval the disturbance energy is transported from the low frequency disturbances to higher frequency 
disturbances through the vortex shedding. The disturbance amplitude of pressure also shows a similar trend (Figure 
14.b). However, the overall pressure disturbance does not show an exponential growth which is due to the acoustic 
noises existing in the flow field. 
 

 
Figure 13. Unstable modes at Y \ �. `, �. �, �. Z based on LST 

 
Figure 14. Disturbances amplitude of v-velocity (a) and pressure (b) at Y \ �. � ~ �. � 

 
Breakdown of the shedding vortices 
A LSB forms after the flow separates and two dimensional vortices shed. The LSB in the current case can be 
classified as a long one according to the classification in 22. It is observed that the quasi two dimensional vortex 
break down to small scale structures during the interval � \ 0.55 ~ 0.75, as shown in Figure 12. This interval 
corresponds to the transition onset region, where the skin friction and the wall pressure increase suddenly. It is 
observed in Figure 12 that the shedding vortex breakdown process carries gradually from the bottom to the top and 
the small scale structures attaching to the wall at � \ 0.5 ~ 0.6 with negative u-velocity play an important role. A 
thin layer of small scale structures stay near the wall at � \ 0.5 ~ 0.6 right below the shedding vortex. As the thin 
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layer stays inside the separation bubble, the small scale structures move upstream with small negative u-velocity and 
then are upcasted by the circulation of the separated flow. When the shedding vortex propagates pass the region, the 
bottom part of the shedding vortex meets and interacts with the upstream going small scale structures. The bottom 
part of the vortex breaks down to small scale structures first, then the upper part of the vortex is gradually affected 
and breaks down by the spin of the vortex itself. In this way, the vortex tube breaks down from the bottom to the top.  
Figure 15 shows the w-velocity history at the three different � locations with the same chord location � \ 0.6. Three 
points are put equally spaced inside the mean shear layer. The w-velocity history near the wall is highly oscillatory 
while away from the wall it remains close to zero. This also indicates that the shedding vortices are three 
dimensional small scale structures at the bottom but quasi two-dimensional large structures at the top during the 
breakdown process at � \ 0.6. After the breakdown of the large scale vortex into small scale eddies, the flow 
becomes more and more turbulent and propagates downstream. 

 
Figure 15. w-velocity history at time interval a \ �ZZ ~ ��� 

 
Input: shedding vortices due to Kevin-Helmholtz instability 
Output: reattached turbulent boundary layer 
A: breakdown of the vortices 
B: small scale structures attached on the wall with negative velocities 

Figure 16. The negative feedback mechanism in breakdown of the flow over SD7003 
 

    The traditional description of the separation-transition-reattachment type of flow is as follows: the flow separates 
and transitions to turbulent then reattaches to the wall downstream19. Here, a hypothesis of a negative feedback 
mechanism is proposed and supplements the traditional description for this particular case. In the current case, the 
transition onset and the vortex breakdown are caused not only by the growth and evolution of the original 
disturbances but also the upstream-propagating small scale structures. The origin of the small scale structures is 
from the turbulent flow after breakdown. The feedback loop is connected by the upstream-propagating small scale 
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structures with negative u-velocity as shown in Figure 16.  
    The negative feedback is also called a balance loop. The instantaneous transition point is balancing back and forth 
around the mean transition point and does not move further upstream or downstream with the negative feedback. 
Two-dimensional shedding vortices and upstream going small scale structures are the two key essential factors in the 
transition with the separation bubble. The transition occurs where the two dimensional shedding vortices grow big 
enough and the upstream-propagating small scale structures are strong enough to trigger the vortex breakdown. So 
the transition does not happen further downstream. And the transition does not happen further upstream because the 
amplitude of the shedding vortices are not big enough and the strength and velocity of the upstream going small 
scale structures decay on the way upstream.  
 
The turbulent vortical packet 
After the vortex breakdown, the flow reattaches to the wall and forms a turbulent boundary layer. Individual 
turbulent vortical packets are found to form in the region � \ 0.6 ~ 0.7 and propagate downstream after formation. 
As shown in both Figure 12 and 17, during the time interval � \ 155.32~157.56 a turbulent vortical packet, noted 
by the dashed circle in Figure 17, develops gradually after breakdown. The mean u-velocity in the region � \0.6 ~ 0.7 is low and close to zero (Figure 7.a). The shedding vortex breaks down around this region and the vortical 
packet forms and moves very slowly downstream. It is observed that more upstream shedding vortices reaching this 
region breaks down and joins the current vortical packet. The shedding vortices merge together and the turbulent 
vortical packet becomes bigger and stronger. Actually, the almost non-moving turbulent packet provides the 
upstream-propagating small scale structures which cause the breakdown of the shedding vortices as described 
previously.  
 

 
Figure 17. Instantaneous contour line of o \ � at time a \ �Z�. {�~�Z{. Z� 

 

 
Figure 18. Iso-surface of Q-criterion colored by streamwise velocity at time a \ �Z{. Z� 
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    The characteristics of the pressure and skin friction on the wall are strongly associated with the formation of the 
turbulent packet. Figure 19 shows the instantaneous U! and U"  during the time interval � \ 155.32~156.56. The 
instantaneous U" shows that a small separation region � \ 0.6 ~ 0.7 nearly does not move during the time interval.  
Meanwhile, this region corresponds to the sudden jump of the instantaneous U! (Figure 19.a). And this also accounts 
for the featured characters of the mean U! and U" as shown in Figure 20 and also in Figure 6.  
    The formation and evolution of the turbulent vortical packet are also responsible for the characters of the mean 
spanwise vorticity, the normalized �. @. '. and the normalized Reynolds stress �.�	� as shown in Figure 7. The 
region � \ 0.6 ~ 0.7 corresponds with the region where the separated shear layer ends (Figure 7.b), the source of T. K. E. (Figure 7.c) and the high concentration of the Reynolds stress (Figure 7.d). 

After reaching certain strength, the turbulent vortical packet leaves the region � \ 0.6 ~ 0.7  and propagates 
downstream (Figure 17). And a new turbulent vortical packet noted by the solid circle in Figure 17.d and 18 forms in 
the same region. 

 

 
Figure 19. Instantaneous pressure coefficient X� (a) and skin friction X  (b) during the time interval  a \�ZZ. `p~�Z�. Z� 

 

 
Figure 20. The zoom-in pressure coefficient X� (a) and skin friction X  (b) of Figure 6 

 
V. Conclusion 

The separated and transitional flow over a SD7003 wing is numerically investigated in this paper. The averaged and 
statistical results agree well with the previously published results and good agreement is also found in a p-type grid 
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refinement study. The SD method with unstructured hexahedral mesh together with ILES captures the LSB and the 
transition process well over the suction side of the wing. 
    The process and mechanism of the separation and the transitional flow are described and discussed. The acoustic 
noises are found to act as the original disturbances inside the laminar boundary layer. The disturbances grow 
exponentially inside the shear layer owing to the boundary layer T-S instability and then the Kevin-Helmholtz 
instability. And the disturbances are found to be of low frequency before separation and of high frequency thereafter. 
Individual turbulent packets form after the breakdown and shedding vortices also merge to form larger ones. The 
turbulent packet moves slowly within the breakdown region and the small scale structures move upstream with the 
negative u-velocity inside the LSB. During the breakdown process of the shedding vortices, the upstream going 
small scale structures near the wall play an important role and a hypothesis of a negative feedback mechanism is 
proposed, which appears to be supported by an iso-Q movie.  
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