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There does not exist a definite best strategy to advance high-order discretizations of
inviscid compressible flows to steady state. The need for a wide range of possible time-
relaxation strategies is determined by different possible difficulties: stability issues, stiffness
of the matrix, memory limitations, ill-conditioning, and slow convergence. We outline the
main available methods and identify the kind of problems for which they are more suitable.
We extensively describe the idea of the matrix-free Squared Preconditioning and apply it
for the first time also to a Newton iteration nonlinearly preconditioned by means of the
flow solver. We apply this approach to inviscid flows in order to study the tuning of its
many parameters and to assess its potential.

I. Introduction

In the recent past, research effort has been focused on the development of numerical methods for con-
servation laws which are locally conservative, high-order accurate in smooth regions of the solution, geo-
metrically flexible, computationally efficient, and simply formulated. Some desired features are still open to
improvements, such as the ability to show sharp and monotone shock transitions and the comparability of
computational times with low-order methods.

Our attention concentrates on high-order local discontinuous semidiscretization methods. The Spectral
Difference (SD) method for conservation laws on unstructured grids utilizes the concept of discontinuous
and high-order local representations to achieve conservation and high accuracy in a manner similar to the
Discontinuous Galerkin1–6 (DG) and Spectral Volume7–10 (SV) methods, but is based on the finite difference
formulation. Actually it can be seen as a quadrature-free DG method.11 The SD method has been developed
by Liu et al.12,13 and Wang et al.14 As a matter of fact, the DG, SV, and SD methods are similar in that
they share the same solution space, i.e., the space of piecewise-continuous polynomials, and that Riemann
solvers are used at the element interfaces to provide solution coupling between the discontinuous elements
and appropriate numerical dissipation necessary to achieve stability. In addition, all of these approaches are
locally conservative at the element level, making them suitable for problems with discontinuities. They differ
on how the degrees of freedom are chosen, and how they are updated. The SD method has an important
advantage over the DG and SV methods, namely that no integrals have to be evaluated to compute the
residuals.

Our flow solver is based on a spatial discretization of SD type15,16 on triangular grids. In 2008 Van den
Abeele et al. demonstrated that the SD discretization can lead in some cases to a weak instability.17 Hence,
one of our current research interests is other (stable) types of discretization, such as the CPR (Correction
Procedure via Reconstruction) formulation,18 and a new formulation of SD using an approximation of the
divergence operator on Raviart-Thomas elements.19 While no instability arises in the solution of flows that we
are considering even with the standard SD discretization, we decided to also consider the DG discretization.
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The first DG method was introduced in 1973 by Reed and Hill and a major development was carried out
by Cockburn et al. in a series of papers,1–5 in which they established a framework to easily solve nonlinear
time-dependent hyperbolic conservation laws using a DG discretization in space with exact or approximate
Riemann solvers at interface fluxes and TVB limiter to achieve nonoscillatory properties for strong shocks.

In this article though, we deal with the phase which follows the spatial discretization of the equations,
i.e. the relaxation in pseudo-time performed in order to reach steady-state solutions. Starting from the
initial application of time-explicit multistage schemes, we cover the main phases till the development of
hybrid relaxation techniques. As a further step, we enclose the flow solver into a Nonlinear GMRES method
(which we call ‘Nonlinear Preconditioning approach’). This is possible by seeing the flow solver as a fixed-
point iteration and by then solving it using a Nonlinear GMRES algorithm.20,21 For this approach a large
number of parameters have to be chosen and tuned: we carry out parametric studies and consider scenarios
of different kinds, such as matrix-explicit/matrix-free. Numerical simulations of inviscid flow along a smooth
bump are performed: for a stretched mesh the Nonlinear Preconditioning approach performs better than
standard flow solver without nonlinear preconditioning.

The remainder of this article is structured in the following way. In the next section, we outline the
techniques that are commonly applied for time-integration in this context. Section III describes extensively
the idea of matrix-free Squared Preconditioning, which was first presented in Ref. 22. Section IV describes our
approach, i.e., nonlinear preconditioning for a matrix-free Newton-Krylov method. The results of numerical
experiments are presented in Section V: effort was invested for validation of the new approach and better
understanding of the trade-off of parameters.

II. Time-Explicit and Time-Implicit Flow Solvers

The Euler equations can be written as nonlinear conservation laws of the form:

∂u
∂t

+∇ · f(u) = 0, (1)

where u is the vector of the conservative variables. The attention is here focused on steady-state solutions,
obtained by advancing the equations in a so-called ‘pseudo-time’ variable t∗

∂u
∂t∗

+∇ · f(u) = 0. (2)

The nonlinear equations which are taken into consideration derive from the spatial semidiscretization of
Eq. (2) and look like this

dU
dt∗

+ R(U) = 0, (3)

where U is the global vector of all the degrees of freedom, and R is the nonlinear residual vector of the
spatial semidiscretization terms.

For this kind of equations there is not a definite solution strategy that shows to be the best in all situations.
Many factors determine a certain solution method to be more suitable than the other. In the first place,
time-explicit relaxation can be considered. Runge-Kutta multistage schemes have been widely used.6,23 For
steady-state problems, which receive our attention here, time accuracy during the relaxation process is of no
importance, so that the chosen CFL number can be determined just by stability considerations. Moreover,
geometric multigrid is well-known to be an efficient convergence accelerator in this context. Limitations
are given, however, by stability limits: the linear stability limit for the combination of Runge-Kutta time
stepping together with SD and DG discretization applied to the one-dimensional linear advection equation
decays as m−2 for growing order of accuracy m. Moreover, multigrid has problems in some situations: when
the problem is stiff (near stagnation points, at shocks, across the sonic line and when high-aspect-ratio cells
are used inside the boundary layer) and when the flow aligns itself with the computational mesh (directional
decoupling).

The previously mentioned problems suggested to take into consideration time-implicit relaxation too,
which happens to outperform time-explicit integration for high orders of approximation.24 As noted before,
we are interested in steady-state solutions, i.e., in solutions to the system of nonlinear equations

R(U) = 0. (4)
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Therefore, one possibility for time-implicit integration is given by Newton’s method :

∂R
∂U

∣∣∣∣
n

(
Un+1 −Un

)
= −R(Un), (5)

which can also be written as
∂R
∂U

∣∣∣∣
n

∆Un = −R(Un),

Un+1 = Un + ∆Un.

(6)

In Eqn. (6) one can clearly distinguish the two steps: computation of the Newton update ∆Un by solving
a linear system and Newton update of the solution Un. When the linear system is solved by means of a
Krylov subspace method, the method is called a Newton-Krylov method. If a GMRES method is used to
solve the linear system, the name Nonlinear GMRES method has also been used.21

Newton’s method only works if the initial value U0 is close enough to the true zero of the functions
R(U). Numerical experiments show that the time necessary to reach the Newton’s convergence bubble is
often too large, so that other methods become of interest. The backward Euler (or damped Newton) method
gives a better condition number to the linear system to be solved:(

1
∆t∗

I +
∂R
∂U

∣∣∣∣
n

)
∆Un = −R(Un),

Un+1 = Un + ∆Un,

(7)

where ∆t∗ is the timestep. The superscript ∗ denotes that we are not dealing with the real time, but pseudo-
time. By letting the timestep ∆t∗ go to infinity, one recovers the Newton’s method. We solve the linear
system in Eqs. (7) by a GMRES algorithm.25 Algorithm II.1 shows the nested structure of the iterations in
these methods.

Algorithm II.1 Newton-Krylov method
Given U0:

1. Outer iteration. For n = 0, 1, 2, . . . Do

2. Compute the right-hand side −R(Un)

3. If (converged) Stop

4. Inner iteration. Solve the linear system
∂R

∂U

∣∣∣∣
n

∆Un = −R(Un) (Newton’s method) or(
1

∆t∗
I +

∂R

∂U

∣∣∣∣
n

)
∆Un = −R(Un) (damped Newton method) by GMRES method

5. Un+1 = Un + ∆Un

6. EndDo

Implicit time-integration usually requires the storage of the residual Jacobian matrix
∂R
∂U

∣∣∣∣
n

. In particular,

the matrix is often computed and ‘frozen’ for a certain number of iterations for computational efficiency.
This matrix becomes very large when dealing with high-order discretization of 2D and 3D flows. To overcome
the restrictions imposed by the necessity to store such large matrices, both Jacobian-free and matrix-free
methods have been considered and developed.26 Attention should be paid to the terminology: ‘matrix-free’
implies that no matrix of any type is formed or stored. However, usually, a matrix (or a set of matrices) is
formed for preconditioning purposes. These matrices can be simpler than the true Jacobian of the problem,
so the algorithm is then properly and in a more general meaning said to be ‘Jacobian-free’.
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III. A Matrix-Free Newton-Krylov Method: Squared Preconditioning

Let us present here the main steps which characterize the matrix-free time-implicit flow solver presented
in Ref. 22. Let us focus on the solution of the linear system arising by the application of the (damped) Newton

method (step 4 of Algorithm II.1). At each Newton iteration n let us define A(n) =
∂R
∂U

∣∣∣∣
n

if we choose the

Newton’s method and A(n) =
1

∆t∗
I +

∂R
∂U

∣∣∣∣
n

if we take the damped Newton method. Let b(n) = −R(Un)

and x(n) = ∆Un. When not necassary we drop the superscript (n) for the sake of simplicity.
The considered problem is to solve a linear system Ax = b. Preconditioning is needed. Here we imagine

the preconditioner to be an operator, since we may not always be able to write the preconditioner as a
matrix. The left-preconditioned GMRES algorithm is the GMRES algorithm applied to the system

P−1Ax = P−1b, (8)

where P is the preconditioner at the outer Newton iteration n. One usually assumes that the preconditioning
matrix P is fixed, i.e., it does not change from one inner GMRES iteration to the following. However, in
some cases, the matrix P is not available explicitly. Instead, the operation P−1q, where q is a vector, is
the result of some unspecified computation, possibly another iterative process. In such cases, it may well
happen that P is not a constant operator, i.e., Pj , where j is the index for the linear iteration.

In the literature different GMRES-like iterations schemes have been proposed, where it is allowed to take
a different preconditioner in each linear step. One of them, proposed and analyzed by Van der Vorst,27 is a
recursive variant of the GMRES algorithm, called Recursive GMRES (GMRESR). We choose the Flexible
GMRES algorithm (FGMRES), introduced in Ref. 28.

Since we are using the GMRES algorithm, only a matrix-vector product routine has to be provided and
the matrix A does not need to be explicitly built. This is true for the preconditioner as well. Whenever in the
GMRES algorithm a vector q needs to be preconditioned, we solve Pjqprecond = q, where Pj := Pj(A) is the
polynomial that is implicitly constructed in a few iteration steps of GMRES. In this way, the preconditioner
Pj is an approximation of the matrix A. The number of GMRES steps nKrylov(j) can be different at each
iteration j and is low in comparison with the global number of Krylov vectors used to solve the linear system
Ax = b.

Let r be the restart parameter. Algorithm III.1 describes the inner iterations of step 4 in Algorithm II.1
for the outer Newton iteration n.

Algorithm III.1 Flexible GMRES with Left Preconditioning

1. s0 = [P0(A)]−1 (b−Ax0), β = ‖s0‖2, and v1 =
s0

β

2. For j = 1, . . . , r, Do

3. zj = Avj and w = [Pj(A)]−1zj

4. For i = 1, . . . , j, Do

5. hi,j = (w, vi)

6. w = w− hi,jvi

7. EndDo

8. hj+1,j = ‖w‖2 and vj+1 =
w

hj+1,j

9. EndDo

10. Vr = [v1, . . . , vr], H̄r = {hi,j}1≤i≤j+1, 1≤j≤r

11. yr = arg min
y
‖βe1 − H̄ry‖2 and x = x0 + Vryr
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12. If satisfied Stop, else set x0 := x and go to step 1

May et al.22 named this method Squared Preconditioning, because the preconditioning is realized by
applying the GMRES method on two nested levels:

(i) Ax = b solved by GMRES, left-preconditioned by the preconditioning operator Pj(A) at inner GMRES
iteration j;

(ii) w = [Pj(A)]−1zj ≈ A−1zj computed by unpreconditioned GMRES with a low number nKrylov(j) of
Krylov vectors.

We said that in the GMRES context we do not need the explicit matrix A, but we did not mention yet
which matrix-vector product routine we want to consider. Let us go back to our original system of nonlinear
equations to be solved. Both for the Newton’s method (6) and for the damped Newton method (7), the

matrix A in the linear system contains the residual Jacobian
∂R
∂U

∣∣∣∣
n

. A common approach substitutes the

matrix-vector product by a first-order series approximation:

∂R
∂U

∣∣∣∣
n

q ≈ R(Un + εq)−R(Un)
ε

, (9)

with ε small. This is what Chan and Jackson called Directional Differencing Discrete Newton (DDDN)
method.29 We choose in particular ε :=

√
‖Un‖ · εrel, with εrel close to the machine round-off error. This

eliminates the need to store the entire matrix, at the expense of one additional residual evaluation for each
matrix-vector product performed. The Flexible GMRES28 framework affords the opportunity to extend the
matrix-free approach to the preconditioner as well. Also in this case one can recognize two nested levels (i)
and (ii), where, however, on both levels the GMRES algorithm is performed matrix-free.

Memory efficiency is realised through this method, as the need to store matrices is eliminated at both
the linear solver and preconditioner levels. The final matrix-free Newton-Krylov method is presented in
Algorithm III.2 (where the superscript n has again been introduced).

Algorithm III.2 Matrix-free Newton-Krylov method
Given U0:

1. Outer iteration. For n = 0, 1, 2, . . . Do

2. Compute the right-hand side bn = −R(Un)

3. If (converged) Stop

4. x
(n)
0 = 0

5. Inner iteration.

(a) s0 =
[
P0(A(n))

]−1
(
b(n) −A(n)x

(n)
0

)
(b) β = ‖s0‖2, and v1 =

s0

β

(c) For j = 1, . . . , r, Do

(d) zj = A(n)vj

(e) w =
[
Pj(A(n))

]−1
zj.

(f) For i = 1, . . . , j, Do

(g) hi,j = (w, vi)

(h) w = w− hi,jvi

(i) EndDo

(j) hj+1,j = ‖w‖2 and vj+1 =
w

hj+1,j
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(k) EndDo
(l) Vr = [v1, . . . , vr], H̄r = {hi,j}1≤i≤j+1, 1≤j≤r

(m) yr = arg min
y
‖βe1 − H̄ry‖2 and x(n) = x0 + Vryr

(n) If satisfied Stop, else set x
(n)
0 = x(n) and go to step 5a

6. ∆Un = x(n)

7. Un+1 = Un + ∆Un

8. EndDo

At steps 5a and 5d of Algorithm III.2 the matrix-vector products A(n)x(n)
0 and A(n)vj are performed by

using Eq. (9). In the steps 5a and 5e of the algorithm, applying
[
Pj(A(n))

]−1
corresponds to solving the

linear system A(n)s0 = b(n)−A(n)x(n)
0 (respectively, A(n)w = zj) by matrix-free unpreconditioned GMRES

with a number nKrylov(j) of Krylov vectors.

IV. Nonlinear Preconditioning for the Newton-Krylov Method

As flows get more complicated, numerical methods to solve them become more expensive, both on a
storage and on a computational point of view. We already spent some words on stability issues which limit
the allowed timestep, stiffness of the matrix, memory limitations which do not allow to store the residual
Jacobian matrix, ill-conditioning issues, slow convergence. The larger the number of ‘difficulties’ in the
problem to be solved, the larger the number of choices to be done (which combination of methods leads to
the solution in the cheapest way) and the number of parameters to be tuned.

Here we deal with an idea which works as a nonlinear preconditioner for a Newton-Krylov method. We
present the idea in two different manners.

IV.A. Fixed-Point Iteration

In this case the method is seen as a fixed-point iteration for a function F(U), depending on R(U). In 1997
Wang21 applied the idea of Nonlinear GMRES to a generic CFD code, following an idea given in Ref. 20.
Any CFD code which makes use of time relaxation to reach steady state can be expressed as the action of
an arbitrary operator M:

Uk+1 = M(Uk). (10)

Here M can be imagined to be any kind of iterative solver, such as time-explicit multigrid scheme or time-
implicit Newton-Krylov method. The linear system in the Newton-Krylov method can be preconditioned, for
example by means of an ILU(p) decomposition or by Squared Preconditioning, as described in Section III.
Equation (10) can be seen as a fixed-point iteration corresponding to the Newton iteration (6) for R(U) = 0.

By defining F(U) := U−M(U), solving Eq. (10) is equivalent to finding the roots of F :

F(U) = 0. (11)

(Convergence is obtained when Uk+1 = Uk.) System (11) can then be solved by Newton’s method:

∂F
∂U

∣∣∣∣
k

∆Uk = −F(Uk),

Uk+1 = Uk + ∆Uk,

(12)

or by damped Newton method.
One could point out that this approach does not produce any benefit, because any method used to solve

Eqn. (11) approximately can be applied to the original nonlinear system in Eq. (4) as well. However, there
is a difference in the convergence behavior. Regarding Eqn. (11), regardless of the method used to solve
it, the outer method, the driver, is still Newton’s method, and thus quadratic convergence is achievable.
Whereas, if the same method is applied to Eqn. (4) directly, that method determines the convergence of
the outer loop and the resulting method may converge less rapidly and, in particular, quadratic convergence
may be lost.
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IV.B. Nonlinear Left-Preconditioning Operator

Here we apply a nonlinear operator to the residual: instead of solving R(U) = 0 we solve

P−1 (R(U)) = 0. (13)

Let us see the residual R as an operator:

R : D ⊆ RNDOF → RNDOF

U 7→ R(U),
(14)

where NDOF is the number of global degrees of freedom. We then introduce a definition for the operator
P−1 : RNDOF → RNDOF as follows:

P−1 ◦R : D ⊆ RNDOF → RNDOF

U 7→ (P−1 ◦R)(U) = P−1 (R(U)) := U−M(U).
(15)

From the definition follows
∂

(
P−1(R)

)
∂U

= I − ∂M
∂U

, (16)

Hence Newton’s method applied to Eq. (13) gives(
I − ∂M

∂U

∣∣∣∣
k

)
∆Uk = M(Uk)−Uk,

Uk+1 = Uk + ∆Uk,

(17)

which corresponds exactly to Eq. (12).

Let us stress here that in this paper we use only matrix-free GMRES to solve (17), because we do not

have direct ways to compute the Jacobian matrix
∂M
∂U

∣∣∣∣
k

. The algorithm is analogous to Algorithm III.2,

with A(k) = I − ∂M
∂U

∣∣∣∣
k

, b(k) = M(Uk)−Uk, and P(k)
j being given by the identity operator because Squared

Preconditioning is not applied here. As regards the choice of the operator M we have different options. In
the past Chan and Jackson29 chose the SSOR method, while Bijl and Carpenter used the nonlinear multigrid
method.30 We have in our code the option of choosing both matrix-explicit and matrix-free GMRES solvers,
as also time-explicit relaxation techniques.

V. Implementation and Numerical Results

We implemented the Nonlinear Preconditioning framework in our code. Comparison of performances is
now possible: in fact, the solution possibilities at our disposal are now several and vary on different levels
within the solver M itself. We introduce here the solution methods and the corresponding notations that
we will be using.

TE (time-explicit) 3-stage Runge-Kutta (RK3) method is used. Multigrid can be incorporated as con-
vergence accelerator thanks to the Full Approximation Storage algorithm.31 Parameters to be tuned
are:

• CFL number on the fine grid;
• if multigrid is used:

– number of grids,
– type of multigrid cycle (saw-tooth or W-cycle),
– CFL number on the coarsest grid.

TIME (time-implicit matrix-explicit) Matrix-explicit Newton-Krylov method is used. In particular,
GMRES method is used to solve the linear system. Newton or damped Newton’s method is used:
in the latter case one can tune the way the CFL number is increased. Preconditioning for the linear
system is performed by ILU decomposition. Parameters to be tuned are:
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• if damped Newton’s method is used, CFL number;

• relative tolerance and maximum number of iterations as stopping criteria for the GMRES algo-
rithm;

• restart parameter for the GMRES algorithm;

• fill-in level p in the preconditioner ILU(p);

TIMF (time-implicit matrix-free) Matrix-free Newton-Krylov method is used. In particular, GMRES
method is used to solve the linear system. Newton or damped Newton’s method is used: in the latter
case one can tune the way the CFL number is increased. Preconditioning for the linear system is
performed by Squared Preconditioning. Parameters to be tuned are:

• if damped Newton’s method is used, CFL number;

• relative tolerance and maximum number of iterations as stopping criteria for the GMRES algo-
rithm;

• restart parameter for the GMRES algorithm;

• number of Krylov methods in the squared preconditioner;

TENP (TE as nonlinear preconditioner) Additional parameters to be tuned are:

• relative tolerance and maximum number of iterations as stopping criteria for the GMRES algo-
rithm;

• restart parameter for the GMRES algorithm;

• number of calls to the flow solver to which M corresponds.

TIMENP (TIME as nonlinear preconditioner) See TENP. ILU(p) preconditioning for the linear sys-
tems arising in the matrix-explicit Newton-Krylov method to solve R(U) = 0 can be applied (‘w/
PC’) or not (‘no PC’).

TIMFNP (TIMF as nonlinear preconditioner) See TENP. Squared Preconditioning for the linear sys-
tems arising in the matrix-free Newton-Krylov method to solve R(U) = 0 can be applied (‘w/ SP’) or
not (‘no PC’).

This large flexibility in the combination of the elements of the solver is essential to develop best-practice
strategies for different cases.

In the implementation of the time-implicit relaxation we let the library PETSc32 drive the GMRES
algorithm, to solve both Eq. (4) (when solved time-implicitly) and Eq. (11). The default convergence test
in PETSc is based on the l2-norm of the residual. If we refer to the solution of a linear system Ax = b, we
have convergence at n-th iterationa if

‖b−Axn‖2
‖b‖2

≤ rtol. (18)

So one of the parameters to be fixed is the relative tolerance rtol. We also have to fix M , the maximum
number of iterations (i.e., computed Krylov vectors) within the GMRES algorithm, and the number of
iterations after which the GMRES algorithm is restarted (i.e., number of stored Krylov vectors). When
solving Eq. (11), we also have to choose N , the number of calls to the flow solver to which the operator M
corresponds. Typically N = 1, because of computational costs. Let us recall that the fixed-point iteration
is always performed as a matrix-free unpreconditioned GMRES.

V.A. Specral Difference Discretization for Flow over a Smooth Bump

We first consider an SD discretization. In this section we focus on the inviscid flow over a smooth bump
(see Fig. 1) at free stream Mach number M∞ = 0.3. We consider here the flow over a bump of very slight
slope. The reason why we consider such a low bump is that we want also to perform computations on a
stretched grid. Since our code does not allow for curved elements, taking a ‘stretched’ bump is the only
way to also obtain a stretched grid valid for computations. These are performed using the SD scheme on a
regular triangular mesh consisting of 1482 elements. In our simulations we choose order of accuracy m = 3.

aHere a simplified version of the convergence test has been given. See Ref. 32 for the complete test.
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Figure 1. Smooth bump: Detail of the computational mesh (1482 elements) and Mach contour lines. The height of the
bump is so slight (the crest is about y = 0.00069 at x = 0.5) that it can hardly be seen in the picture.

V.A.1. Effect of Nonlinear Preconditioning on GMRES

First of all we consider the effect of the nonlinear preconditioner on the matrix-free Newton-Krylov method.
In Fig. 2 the convergence history of different solvers for the first linear system to be solved is shown. We
iterate until the norm of the residual has dropped by 3 orders of magnitude. The linear system solved is
∂R
∂U

∣∣∣∣
0

∆U0 = −R(U0) in the TIMF case, and
∂F
∂U

∣∣∣∣
0

∆U0 = −F(U0) for the other test cases. The black

solid line corresponds to matrix-free GMRES without preconditioning; in fact, it shows the slowest conver-
gence. The other two solid lines correspond to matrix-free GMRES with Squared Preconditioning, while the
dotted lines represent test cases where the approach presented in Section IV is applied. It can be observed
that, analogously to Squared Preconditioning, this approach accelerates the convergence rate.

Figure 2. Linear residual vs. Linear iterations for the first linear system to be solved. Residuals are, independently for
each test case, normalized with respect to the first residual, in order to highlight the convergence behavior. PC stands
for preconditioning, SP for Squared Preconditioning and Kr. for the number of Krylov vectors used in the Squared
Preconditioning, 3W MG stands for W-cycle multigrid on 3 grids.
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V.A.2. Parameter Selection for Solution Schemes

As we observed at the beginning of this section, the different solution schemes studied in this work contain
a number of parameters which must be chosen optimally in order to fully exploit the potentiality of each
scheme. Multiple levels of iteration nesting are involved, hence the selection of these parameters requires
extreme care. Let us consider the test case TIMENP w/ PC. Different parameters have to be tuned for the
Newton strategy and the GMRES solver on the two nested levels. We restrict here to 3 of these parameters,
namely the number of Krylov vectors in the two GMRES strategies (we do not use restart and we use the
maximum number of iterations as stopping criterion) and the level of fill-in in the ILU(p) preconditioning.
We first fix the maximum number of Krylov vectors to be 5 in the GMRES method solving Eq. (12) and
to be 10 in the GMRES in Eq. (7). Fig. 3 shows the behavior for different values of fill-in in the ILU
preconditioning. As expected, the best preconditioning effect is given by high levels of fill-in. If we take

Figure 3. Effect of changing the level of fill-in in the test case TIMENP. Left: reduction of the residual against runtime.
Right: reduction of the residual against the number of Newton iterations.

into account runtime as well, ILU(3) is the computationally optimal preconditioner for the problem under
consideration.

Having fixed the level of fill-in to be 3, we now want to determine the best number of search directions
in the GMRES method for the Newton-Krylov method in Eq. (12). Fig. 4 shows the behavior for different
numbers of search directions. On the one side, increasing the number of search directions provides a more

Figure 4. Effect of changing the number of search directions in the GMRES method to solve F(U) = 0 in the test
case TIMENP. Left: reduction of the residual against runtime. Right: reduction of the residual against the number of
Newton iterations.

accurate solution to the linear system, which arises at every step of the Newton’s method. Therefore, the
Newton’s method approaches quadratic convergence as the number of search directions, i.e., Krylov vectors,
is increased. On the other side, a larger number of search directions means computational overhead. As a
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compromise we fix the number of search directions in the Newton-Krylov method of Eq. (12) to be 5.
Finally, we study the number of search directions in the GMRES method in Eq. (7). Fig. 5 shows

the behavior for different numbers of search directions. The best choice seems to be 10 Krylov vectors. In

Figure 5. Effect of changing the number of search directions in the GMRES method to solve R(U) = 0 in the test
case TIMENP. Left: reduction of the residual against runtime. Right: reduction of the residual against the number of
Newton iterations.

fact, in order to reach the steady-state solution, solving accurately the linear systems in the Newton-Krylov
method is not the best option. Such linear systems should be solved exactly in the context of an exact
Newton’s method in order to reach the quadratic convergence, but here we are using a damped Newton
method with finite CFL numbers. We have observed that in the time needed by Newton’s method to reach
the ball of quadratic convergence, the damped-Newton strategy has usually already converged to levels of
accuracy commonly required by engineering applications. This is the reason why low values for the relative
tolerance and for the maximum number of search directions give the most competitive computational times.

This parametric study has been introduced as an example of the complex kind of tuning that is required
for these methods. Here the goal was solely to minimize the runtime required to converge the system of
equations F(U) = 0 to a given tolerance level. However, one could conduct similar studies with other goal in
minds, such as the convergence of integral quantities, and obtaining a different outcome. Material constraints
such as memory can play a role too. For instance, we started from these results to tune the parameters for the
simulation TIMENP w/ PC (see Table 3). There, however, we tuned the whole set of available parameters
(including the relative tolerance, for example) and we aimed at the best possible compromise between fast
convergence and memory storage. This explains why there we take p = 1 level of fill-in instead of p = 3.

Parametric studies analogous to the previous one deepened our knowledge of the approach. As concerns
multigrid techniques, when the TENP case is chosen, multigrid accelerates the convergence with respect to
M being simple multistage Runge-Kutta without multigrid. However, in our experience, TENP showed to
be the slowest converging technique in most of the cases and using multigrid did not change this fact. In
order to get some benefit from multigrid, we tried choosing M to be a few iterations (2 to 10) of multigrid
Runge-Kutta relaxation. Even though this reduced the number of nonlinear iterations necessary to converge,
the computational time increased till it often became larger than the computational time without multigrid.
In our experience, the best strategy for using multigrid is to choose M to be 2 multistage Runge-Kutta
iterations with multigrid. Section V.B.1 focuses on multigrid. As regards TIMENP and TIMFNP, we tried
to apply the Hybrid Multilevel method ,33 but that did not accelerate the convergence.

V.A.3. Effect of Nonlinear Preconditioning on Nonlinear Iterations

Let us now give a global overview to the most meaningful test cases run for the bump of Fig. 1. The flow
here considered is quite simple, hence we expect the classical solution strategies, built without Nonlinear
Preconditioning, to achieve better performance. In Fig. 6 and Fig. 7 the most interesting test cases
are plotted. Solid (respectively, dotted) lines denote test cases without (respectively, with) Nonlinear
Preconditioning. We look at the results from 3 different perspectives. Fig. 6 (left) shows time-to-residual-
reduction perspective. In Fig. 7 (left) we plotted the time-to-CL-convergence aspect.
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Figure 6. Smooth bump with SD discretization: residual reduction.
‖R(Un)‖∞
‖R(U0)‖∞

vs. time. Right:
‖R(Un)‖∞
‖R(U0)‖∞

vs. non-

linear iterations in the Newton-Krylov method. PC stands for preconditioning, SP stands for Squared Preconditioning.
Solid (respectively, dotted) lines denote test cases without (respectively, with) Nonlinear Preconditioning.

Figure 7. Smooth bump with SD discretization: CL convergence. Left: Lift coefficient CL vs. time. Right: Lift
coefficient CL vs. nonlinear iterations in the Newton-Krylov method. PC stands for preconditioning, SP stands for
Squared Preconditioning. Solid (respectively, dotted) lines denote test cases without (respectively, with) Nonlinear
Preconditioning.
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Memory requirement offers a third point of view (see Table 1). For all the computations we gave an

Test case Memory (MB)

TE 1.0

TIME 100.2

TIMF 16.9

TENP 13.2

TIMENP w/ PC 95.6

TIMENP no PC 59.9

TIMFNP w/ SP 16.9

TIMFNP no PC 15.3

Table 1. Estimates of memory requirement for flow over a smooth bump with SD discretization.

estimate of the memory needed to store the vectors and (in matrix-explicit computations) the matrices
having dimension proportional to

NDOF = 4×Nm ×Ne, (19)

where Nm is the number of solution nodes in each element for order of accuracy m and Ne is the number of
elements in the triangulation. Table 2 contains the estimates that we used. We indicate by #RestartR and
#RestartF the restart parameter for the GMRES algorithm in the Newton-Krylov method in Eq. (12) and
in Eq. (7), repectively. #KrylovSP is the number of Krylov vectors used for the Squared Preconditioning.
The storage needed for the system matrix and the ILU preconditioner is deduced thanks to the PETSc
−log summary profiling option.32 All the computations have been executed in double precision, i.e., 8 bytes

Type of method Entries to be stored

RK3 w/o MG 3× NDOF

RK3 w/ MG on L grids 3×
LX

`=0

N
(`)
DOF

ME GMRES PETSc matrices storage+#RestartR × NDOF

MF GMRES (#RestartR + #KrylovSP )× NDOF

if w/ Nonlinear Preconditioning add #RestartF × NDOF

Table 2. Estimates of the number of entries to be stored for vectors and matrices whose dimension is proportional to
NDOF .

of memory have been counted for each entry to be stored.
Memory limitations can be an important factor in the choice of the solution method. Here the fastest

converging method, i.e., TIME, is also the one which needs more memory. Table 3 lists at great length the
parameters for the simulations that we ran. For each single computation the parameters have been tuned in
order to obtain a good compromise between fast convergence and storage requirement.

As suggested, the flow considered here is very simple, and therefore Nonlinear Preconditioning brings
no advantage if compared to ‘simple’ flow solvers (TE, TIME and TIMF). In particular, TIME is the
best-practice strategy if one is interested both in residual reduction and in the convergence of the integral
quantities. However, if memory limitations are present TIMF or TE would be the solution methods of choice.

V.B. Discontinuous Galerkin Discretization for Flow over a Smooth Bump

As we already mentioned, the SD discretization has proved to be weakly unstable in some cases. Hence, we
implemented a DG discretization as well. We considere here the same test case as in Section V.C. However,
we now use a DG discretization. We consider here the flow of Section V.A. In particular, we use a DG
discretization for the inviscid flow over the bump represented in Fig. 1.

V.B.1. Effect of Multigrid on the Nonlinear Preconditioning Approach

We focus here on the test case TENP with different settings. We assigned different values to N , i.e.,
the number of 3-stage Runge-Kutta steps in the solver M. We ran simulations with multigrid on 3 grids
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Test solve F(U) = 0 solve R(U) = 0

rtolF MF RestF N Relax- Sto- rtolR MR RestR PC MG CFL

ation rage

TE - Shu- - - - - - 3 gr. 2.7

RK3 s.t.

TIME - GMRES ME 1e-2 30 30 ILU(1) - 1e5

TIMF - GMRES MF 1e-2 40 40 SP w/ - 1e5

15 Kr.

TENP 1e-2 40 40 2 Shu- - - - - - 3 gr. 2.7

RK3 s.t.

TIMENP w/ PC 1e-1 5 5 1 GMRES ME 1e-1 10 10 ILU(1) - 1000

TIMENP no PC 1e-1 30 30 1 GMRES ME 1e-1 90 30 - - 1000

TIMFNP w/ SP 1e-1 30 30 1 GMRES MF 1e-1 20 20 SP w/ - 1000

5 Kr.

TIMFNP no PC 1e-2 20 20 1 GMRES MF 1e-2 30 30 - - 1000

Table 3. Simulations of the flow over a smooth bump, SD discretization. In a GMRES algorithm, rtol is the relative
tolerance used as stopping criterion, M the maximum number of iterations, and Rest is the number of iterations
after which the GMRES algorithm is restarted. N is the number of calls to the flow solver to which the operator M
corresponds. As regards the storage of the matrix of the system, ME stands for matrix-explicit and MF for matrix-free.
ILU(p) indicates the Incomplete LU factorization with p-level of fill-in. SP indicates Squared Preconditioning with the
corresponding number of search directions Kr. Shu-RK3 indicates Shu’s 3-stage Runge-Kutta scheme.6 In the multigrid
procedure s.t. stands for saw-tooth cycle.

(respectively, 1482, 342, and 72 elements on each grid) and we tried saw-tooth cycle and W-cycle. Fig. 8
and Fig. 9 report the results.

Figure 8. Smooth bump with DG discretization: residual reduction. Left:
‖R(Un)‖∞
‖R(U0)‖∞

vs. time. Right:
‖R(Un)‖∞
‖R(U0)‖∞

vs.

nonlinear iterations in the Newton-Krylov method. N is the number of smoothing steps in the solver M. MG stands
for multigrid, s.t. denotes the saw-tooth cycle and W the W-cycle.

The residual decreases in a similar way for the simulation withM being N = 1 step of 3-stage RK method
without multigrid and for the simulation with M being N = 2 steps of 3-stage RK method with multigrid.
This is the reason why we also tried a simulation where we started running the first kind of simulation and
we then switched to the second kind of simulation when the residual had dropped of 2 orders of magnitude
(see ‘N=1,2, s.t.’ in the figures). Larger values of N penalize time performances, because one single Newton
iteration becomes more expensive. At the same time, large values of N accelerate the convergence of the lift
coefficient.

V.C. Spectral Difference Discretization for Flow over a Smooth Bump with Stretched Mesh

We want now to test the new approach on a more difficult test case. Here we adopt again the SD discretiza-
tion. One known difficulty is represented by stiff problems, arising for example when highly-stretched cells
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Figure 9. Smooth bump with DG discretization: CL convergence. Left: Lift coefficient CL vs. time. Right: Lift
coefficient CL vs. nonlinear iterations in the Newton-Krylov method. N is the number of smoothing steps in the solver
M. MG stands for multigrid, s.t. denotes the saw-tooth cycle and W the W-cycle.

are present in the grid. For this reason we consider a highly-stretched mesh (see Fig. 10). The inviscid flow

Figure 10. Flow over a smooth bump: stretched computational mesh (342 elements) on the left; detail of the bump
and Mach contour lines on the right (m = 3). The height of the bump is so slight (the crest is at about y = 0.00069)
that it can hardly be seen in the picture.

has free-stream Mach number M∞ = 0.3. In this case as well we plot the behavior of the most relevant test
cases in Fig. 11 and Fig. 12. Simple time-explicit test cases have here not been reported because too slow
to converge. Table 4 reports storage requirement. Details on the choice of the parameters are reported in
Table 5.

Here we can basically distinguish between matrix-explicit methods (TIME and TIMENP w/ PC) and
matrix-free methods (TIMF, TENP and TIMFNP w/ SP). In both cases the Nonlinear Preconditioning
framework performs better. In fact, when considering the reduction of the residual norm, TIMENP w/ PC
is the fastest among the matrix-explicit methods and TENP is the fastest among the matrix-free ones.

V.C.1. Higher Order of Accuracy

Given the previous results, we choose then to perform the same computations for order of accuracy m = 4
as well. The results, shown in Fig. 13, confirm the previous outcome.
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Figure 11. Smooth bump with stretched mesh and SD discretiazione: residual reduction. Left:
‖R(Un)‖∞
‖R(U0)‖∞

vs. time.

Right:
‖R(Un)‖∞
‖R(U0)‖∞

vs. nonlinear iterations in the Newton-Krylov method. PC stands for preconditioning, SP stands

for Squared Preconditioning. Solid (respectively, dotted) lines denote test cases without (respectively, with) Nonlinear
Preconditioning.

Figure 12. Smooth bump with stretched mesh and SD discretization: CL convergence. Left: Lift coefficient CL vs.
time. Right: Lift coefficient CL vs. nonlinear iterations in the Newton-Krylov method. PC stands for preconditioning,
SP stands for Squared Preconditioning. Solid (respectively, dotted) lines denote test cases without (respectively, with)
Nonlinear Preconditioning.

Test case Memory (MB)

TIME 22.9

TIMF 4.6

TENP 3.3

TIMENP w/ PC 21.8

TIMFNP w/ SP 6.5

Table 4. Estimates of memory requirement for flow over a smooth bump with stretched mesh and SD discretization.
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Test solve F(U) = 0 solve R(U) = 0

rtolF MF RestF N Relax- Sto- rtolR MR RestR PC MG CFL

ation rage

TIME - GMRES ME 1e-4 150 30 ILU(1) - 1e4

(fr = 2)

TIMF - GMRES MF 1e-2 50 50 SP w/ - 550

10 Kr.

TENP 1e-2 40 40 1 Shu- - - - - - - 2.5

RK3

TIMENP w/ PC 1e-2 5 5 1 GMRES ME 1e-2 10 10 ILU(1) - 1000

TIMFNP w/ SP 1e-2 5 5 1 GMRES MF 1e-2 150 50 SP w/ - 1000

30 Kr.

Table 5. Simulations of the flow over a smooth bump, with stretched mesh and SD discretization. In a GMRES
algorithm, rtol is the relative tolerance used as stopping criterion, M the maximum number of iterations, and ResT is
the number of iterations after which the GMRES algorithm is restarted. N is the number of calls to the flow solver to
which the operator M corresponds. As regards the storage of the matrix of the system, ME stands for matrix-explicit
and MF for matrix-free. fr indicates for how many linear iterations the stored matrix is frozen. ILU(p) indicates
the Incomplete LU factorization with p-level of fill-in. SP indicates Squared Preconditioning with the corresponding
number of search directions Kr. Shu-RK3 indicates Shu’s 3-stage Runge-Kutta scheme.6 In the multigrid procedure
s.t. stands for saw-tooth cycle.

Figure 13. Smooth bump with stretched mesh and Sd discretization, order of accuracy m = 4. Left:
‖R(Un)‖∞
‖R(U0)‖∞

vs.

time. Right: Lift coefficient CL vs. time. PC stands for preconditioning, SP stands for Squared Preconditioning. Solid
(respectively, dotted) lines denote test cases without (respectively, with) Nonlinear Preconditioning.
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V.D. Discontinuous Galerkin Discretization for Flow over a Smooth Bump with Stretched
Mesh

We considere here the same test case as in Section V.C. However, we now use the DG discretization. The
algorithm implemented for the DG discretization differs from the SD algorithm in two details of the Newton-
Krylov algorithm: the CFL number and the relative tolerance can now increase adaptively with increasing
nonlinear iterations. Results are shown in Fig. 14 and in Fig. 15. Table 6 summarizes the parameters

Figure 14. Smooth bump with stretched mesh and DG discretization: residual reduction. Left:
‖R(Un)‖∞
‖R(U0)‖∞

vs. time.

Right:
‖R(Un)‖∞
‖R(U0)‖∞

vs. nonlinear iterations in the Newton-Krylov method. PC stands for preconditioning, SP stands

for Squared Preconditioning. Solid (respectively, dotted) lines denote test cases without (respectively, with) Nonlinear
Preconditioning.

Figure 15. Smooth bump with stretched mesh and DG discretization: CL convergence. Left: Lift coefficient CL vs.
time. Right: Lift coefficient CL vs. nonlinear iterations in the Newton-Krylov method. PC stands for preconditioning,
SP stands for Squared Preconditioning. Solid (respectively, dotted) lines denote test cases without (respectively, with)
Nonlinear Preconditioning.

relative to the test cases that we ran.
Here the approaches without Nonlinear Preconditioning win. We observed the same for higher orders of

accuracy (m = 4 and m = 5). In particular, focusing on the matrix-explicit approaches, we observed that
the modified algorithm implemented for the DG discretization accelerates the convergence of the residual in
the TIME test case of a factor of about 8 (respectively, 5) for m = 3 (respectively, m = 4) with respect to
the algorithm for the SD discretization. At the same time the test case TIMENP w/ PC is accelerated only
of a factor 1 or 2, so that TIME overperforms TIMENP w/ PC. Analogous considerations can be made in
the matrix-free context.
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Test solve F(U) = 0 solve R(U) = 0

rtolF MF RestF N Relax- Sto- rtolR MR RestR PC MG CFL

ation rage

TE - Shu- - - - - - - 2.2

RK3

TIME - GMRES ME 1e-2 20 20 ILU(2) - adap

TIMF - GMRES MF 1e-2 40 40 SP w/ - adap

(εrel = 20 Kr.

10−3)

TENP 1e-2 40 40 1 Shu- - - - - - - 1.8

RK3

TIMENP w/ PC 1e-2 40 40 1 GMRES ME 1e-2 20 20 ILU(2) - 1000

TIMENP no PC 1e-2 40 40 1 GMRES ME 1e-2 20 20 - - 1000

TIMFNP w/ SP 1e-1 30 30 1 GMRES MF 1e-1 30 30 SP w/ - 1000

20 Kr.

TIMFNP no PC 1e-2 40 40 1 GMRES MF 1e-2 20 20 - - 1000

(εrel = (εrel =

10−3) 10−3)

Table 6. Simulations of the flow over a smooth bump with stretched mesh, DG discretization. In a GMRES algorithm,
rtol is the relative tolerance used as stopping criterion, M the maximum number of iterations, and Rest is the number
of iterations after which the GMRES algorithm is restarted. N is the number of calls to the flow solver to which the
operator M corresponds. As regards the storage of the matrix of the system, ME stands for matrix-explicit and MF
for matrix-free. εrel is the parameter in the matrix-free approximation of Eq. (9). ILU(p) indicates the Incomplete
LU factorization with p-level of fill-in. SP indicates Squared Preconditioning with the corresponding number of search
directions Kr. Shu-RK3 indicates Shu’s 3-stage Runge-Kutta scheme.6 In the multigrid procedure s.t. stands for
saw-tooth cycle. adap means that we used an adaptive CFL number, increasing for decreasing residual norm.

VI. Conclusion

In this paper we merged two ideas: the matrix-free Squared Preconditioning introduced by May et al.
in Ref. 22 and the Nonlinear GMRES algorithm implemented as an ‘envelope’ to a flow solver, proposed
by Wigton et al. in Ref. 20 and resumed by Wang in Ref. 21. As a result, we implemented a matrix-
free Newton-Krylov method, in which our flow solver is nested. In this way, the flow solver works as a
‘preconditioner’ for the Newton-Krylov driver and introduces more freedom in the process of tuning the
best-practice strategy for solving a flow.

Numerical tests explored different aspects, such as parametric studies and the role played by multigrid
in this approach. We solved inviscid flows along a smooth bump and we also considered a stretched grid as
example of a stiff problem. We considered both SD and DG discretizations. For the stretched grid on SD
discretization the new approach outperformed the other methods. We however believe that the test cases
here considered are yet not representative of what we think could be the full potential of the presented
approach, which is supposed to emerge in the solution of more complex flows.

Other aspects could be explored. The parameter ε in the matrix-free approximation of Eq. (9) seems to
play a non-negligible effect on the convergence of the method. Different choices have been suggested in the
literature and could be applied on the matrix-free approximation of the Jacobian matrix both of R and F .
Moreover, here we only considered left nonlinear preconditioning and Birken et al. suggested right nonlinear
preconditioning to be potentially more favorable.34 Its implementation in our framework would offer the
chance to verify this conjecture.
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19May, G. and Schöberl, J., “Analysis of a Spectral Difference Scheme with Flux Interpolation on Raviart-Thomas Ele-
ments,” Tech. Rep. AICES-2010/04-8, AICES, http://www.aices.rwth-aachen.de/research/preprints, April 2010.

20Wigton, L. B., Uy, N. J., and young, D. P., “”GMRES Acceleration of Computational Fluid Dynamics Codes”,” AIAA-
85-1494 , 1985.

21Wang, Z. J., “A Global GMRES/Multi-Grid Scheme for an Adaptive Cartesian/Quad Grid Flow Solver on Distributed
Memory Machines,” AIAA 13th Computational Fluid Dynamics Conference, Snowmass Village, CO, June-July 1997 , No.
2048, AIAA, 1997.

22May, G., Iacono, F., and Jameson, A., “A Hybrid Multilevel Method for High-Order Discretization of the Euler Equations
on Unstructured Meshes,” J. Comput. Phys., Vol. 229, 2010, pp. 3938–3956.

23Jameson, A., “Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method,” Appl.
Math. Comput., Vol. 13, 1983, pp. 327–356.

24Iacono, F. and May, G., “Convergence Acceleration for Simulation of Steady-State Compressible Flows Using High-
Order Schemes,” 19th AIAA Computational Fluid Dynamics Conference, San Antonio, TX , AIAA, http://www.aices.rwth-
aachen.de:8080/aices/preprint/documents/AICES-2009-14.pdf, 2009.

25Saad, Y. and Schultz, M. H., “GMRES: a Generalized Residual Algorithm for Solving Nonsymmetric Linear Systems,”
SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, 1986, pp. 856–869.

26Knoll, D. A. and Keyes, D. E., “Jacobian-Free Newton-Krylov Methods: a Survey of Approaches and Applications,” J.
Comput. Phys., Vol. 193, 2004, pp. 357–397.

27der Vorst, H. A. V., “GMRESR: a Family of Nested GMRES methods,” Num. Lin. Alg. Appl., Vol. I, No. 4, 1994,
pp. 369–386.

28Saad, Y., “A Flexible Inner-Outer Preconditioned GMRES Algorithm,” Tech. Rep. umsi-91-279, Minnesota Supercom-
puter Institute, University of Minnesota, Minneapolis, Minnesota, http://www-users.cs.umn.edu/ saad/PDF/umsi-91-279.pdf,
1991.

29Chan, T. F. and Jackson, K. R., “Nonlinearly Preconditioned Krylov Subspace Methods for Discrete Newton Algorithms,”
SIAM J. Sci. Stat. Comput., Vol. 5, No. 3, 1984, pp. 533–542.

20 of 21

American Institute of Aeronautics and Astronautics



30Bijl, H. and Carpenter, M. H., “Iterative Solution Techniques for Unsteady Flow Computations Using Higher Order Time
Integration Schemes,” Int. J. Numer. Meth. Fluids, Vol. 47, No. 8-9, 2005, pp. 857–862.

31Brandt, A., “Multi-Level Adaptive Solutions to Boundary-Value Problems,” Math. Comput., Vol. 31, No. 138, 1977,
pp. 333–390.

32Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L. C., Smith, B., and
Zhang, H., PETSc Users Manual , Argonne National Laboratory, http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-
current/docs/manual.pdf, December 2008.

33May, G., Iacono, F., and Jameson, A., “Efficient Algorithms for High-Order Discretizations of the Euler and Navier-Stokes
Equations,” 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, No. AIAA
Paper 2009-182, January 2009.

34Birken, P. and Jameson, A., “On Nonlinear Preconditioners in Newton-Krylov Methods for Unsteady Flows,” Int. J.
Numer. Meth. Fluids, Vol. 62, No. 5, 2010, pp. 565–573.

21 of 21

American Institute of Aeronautics and Astronautics


