
 

 

American Institute of Aeronautics and Astronautics 
 

 

1

A high order Spectral Volume method for moving boundary 

problems 

R. Kannan
1
  

CFD Research Corporation, Huntsville, Alabama, 35806 

and 

 

Z.J. Wang
2
 

Department of Aerospace Engineering, Ames, Iowa, 50011 

In this paper, we obtain inherently unsteady solutions to the Navier-Stokes equations 

involving moving boundaries. We employ a mapping function to map the grid and the flow 

features between a fixed reference frame and a moving reference frame. The actual 

equations of conservation (applicable on the moving reference frame) are then rewritten so 

as to form an altered set of equations, which are valid in the fixed reference frame. These 

altered set of equations are discretized and then solved using the high order spectral volume 

method (SV). The time advancement is carried out using the three stage Runge Kutta 

method. Simulations are performed to demonstrate the proof of the above concept and the 

ability of this method to handle more complicated motions. 

Nomenclature 

SV  = spectral volume 

CV =   control volume 

Q  = vector of conserved variables 

Finv  = inviscid flux vector 

jiQ ,   = CV averaged conserved variable for Cij                      

Fvis = viscous flux vectorpressure coefficient 

N = Number of CVs in a SV 

L(x,y) = Shape functions used for building a polynomial in a SV satisfy 

q
r

 = Auxilliary variable; is u∇  

u , q
r

   = Numerical fluxes used for diffusion 

R    = Function mapping a fixed reference frame ),,( ZYX  to a moving reference frame ),,( zyx  

J    = Jacobian matrix : RX∇  

g    = Determinant of J  

w    = Time derivative of R  

Q̂    = Altered conserved variable 

invF̂   = Altered inviscid flux vector 

visF̂   = Altered viscous flux vector 
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I. Introduction 

he spectral volume (SV) method was originally developed by Wang, Liu et al and their collaborators 

for hyperbolic conservation laws on unstructured grids. 
22,23,24,25,26,14

 The spectral volume method is a 

subset of the Godunov type finite volume method, which is the starting block for the development of 

a plethora of methods such as the k-exact finite  

volume
2,7

, MUSCL
20,21

, and the essentially non-oscillatory (ENO)
1,8

 methods. The spectral volume 

method can be viewed as an extension of the Godunov method to higher order by adding more degrees-

of-freedom (DOFs) in the form of subcells in each  

cell (simplex). The simplex is referred to as a spectral volume (SV) and the subcells are referred to as 

control volumes (CV). Every simplex in the SV method utilizes a “structured” pattern to construct the 

subcells (CVs). As in the finite volume method, the unknowns (or DOFs) are the subcell-averaged 

solutions. A finite volume procedure is employed to update the DOFs. The spectral volume method shares 

many simular properties with the discontinuous Galerkin (DG)
3,4

 and the spectral difference (SD)
13,17

 

methods, such as discontinuous solution space and compactness. They mainly differ on how the DOFs are 

chosen and updated. Since the DG is a derivative of the finite element method, most implementations use 

the elemental nodal values as DOF, though some researchers use the equally valid modal approaches. 

Although both of the above approaches are mathematically identical, at least for linear equations, 

different choices of DOFs are used by various researchers result in different efficiency and numerical 

properties. The spectral volume being a derivative of the finite volume has subcell averages as its DOF 

while the spectral difference has point wise values as DOF. In terms of complexity, DG requires both 

volume and surface integrations. In contrast, SV requires only surface integrations and the SD requires 

differentiations.      

The SV method was successfully implemented for 2D Euler
25

 and 3D Maxwell equations
14

. Recently 

Sun et al
18

 implemented the SV method for the Navier Stokes equations using the LDG
6
 approach to 

discretize the viscous fluxes. Kannan and Wang
12

 conducted some Fourier analysis for a variety of 

viscous flux formulations. An implicit LU-SGS algorithm was implemented in conjunction with a p-

multigid algorithm
12

. Even more recently, Kannan
10 

 extended the spectral volume formulation to solve 

the moment model equations in semiconductor device simulations. 

 In this paper, we extend the SV method to tackle moving boundary problems. Most of the real life 

applications involve time varying geometries. Examples of the above involve rotor-stator applications, 

thrust production in birds by flapping of wings and cases involving fluid-structure interaction. The high 

order DG method has been used in the past to accurately account for the time variation of the solution 

domain
15

. The Geometric Conservation Law (GCL) was used to ensure the preservation of constant flow 

solutions, under arbitrary grid deformations. However for some simple motions (including pure 

translations and some rotations), the GCL is automatically satisfied. This paper focuses on such types of 

moving problems.  

In this paper, we follow a similar approach to that presented using the above DG formulations
15,9

. The 

spatial discretization is carried out using the SV method on a mesh of triangles, and the time integration is 

done with an explicit multi-stage strong stability preserving Runge–Kutta scheme. The equations are 

discretized on a fixed reference frame. A continuous function maps this fixed reference frame to a moving 

reference frame. The Jacobian matrix of the above transformation is given by RJ X∇=  and the 

determinant of this Jacobian matrix is g . As mentioned earlier, we restrict our simulations to those 

problems, wherein GCL is automatically satisfied. This eliminates the need to solve an additional scalar 

equation (for time evolution of g ).  

The paper is, therefore, arranged in the following manner. In the next section, we review the basics of 

the SV method. The fundamentals of extending the SV to moving grids are presented in section 3. Section 

4 presents with the two test cases conducted in this study. Finally conclusions from this study are 

summarized in Section 5.    
 

T
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II. Basics of the spectral volume method 

 

Consider the general conservation equation: 

                           

0)),()(( =∇−⋅∇+
∂

∂
QQFQF

t

Q
visinv ,                                      (2.1) 

in domain Ω  with appropriate initial and boundary conditions . In (2.1), Q is the vector of conserved 

variables, and Finv and Fvis are the inviscid and viscous flux vectors. Domain Ω is discretized into I non-

overlapping triangular (2D) cells. In the SV method, the simplex grid cells are called SVs, denoted Si, 

which are further partitioned into CVs, denoted Cij, which depend on the degree of the polynomial 

reconstruction. Figure 1 shows linear, quadratic and cubic partitions in 2D. 

 

 
 

 

 

 We need N unknown control volume solution averages (or DOFs) to construct a degree k polynomial. 

N is calculated using the below formula (in 2D) 

                    
2

)2)(1( ++
=

kk
N ,                                                       (2.2) 

where k is the degrees of the polynomial, constructed using the CV solution averages. The CV averaged 

conserved variable for Cij is defined as 

                    ∫=

jiCji

ji
QdV

V
Q

,
,

,

1
, j=1…N, i=1…I,                                  (2.3) 

where Vi,j is the volume of Cij. Given the CV averaged conserved variables, a degree k polynomial can be 

constructed such that it is (k+1)
th
 order approximation to Q.  In other words, we can write the polynomial 

as 

                    ji

N

j

ji QyxLyxp ,

1

),(),( ∑
=

= ,                                            (2.4) 

where the shape functions Lj(x,y) satisfy 

                    nj

C

n

ji
ji

dVyxL
V

,

,
,

),(
1

δ=∫ .                                             (2.5) 

Equation 2.1 is integrated over the Cij. This results in the following equation 

 
                             a                                                         b                                                         c 

Figure 1. Partitions of a triangular SV . Linear, quadratic and cubic reconstructions are shown 

in a, b and c respectively. 
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=
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r Arji
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Q rr
,                                          (2.6) 

where F
r

= ),( vivi ggff −−  where Ar  represents the r
th
  face of Cij,  n

r
 is the outward unit normal vector 

of Ar  and K is the number of faces in Cij. The surface integration on each face is done using a (k+1)
th
 

order accurate Gauss quadrature formula. The fluxes are discontinuous across the SV interfaces. The 

inviscid fluxes are handled using a numerical Riemann flux such as the Rusanov flux, the Roe flux or 

AUSM flux.  The handling of the viscous fluxes is discussed in the next section.  

 

A. Spectral volume formulation for the diffusion equation 

 

 The following 2D diffusion equation is considered first in domain Ω with appropriate initial and 

boundary conditions 

                                          0)( =∇⋅∇−
∂

∂
u

t

u
µ ,                                                  (2.7) 

where µ is a positive diffusion coefficient. We define an auxiliary variable  

uq ∇=
r

.                                                              (2.8) 

Equation 2.7 then becomes 

0)( =⋅∇−
∂

∂
q

t

u r
µ .                                                     (2.9) 

Using the Gauss-divergence theorem, we obtain 

∫∑ ⋅=
= Ar

K

r

ijij dAnuVq
rr

1

,                                                   (2.10) 

0
1

=⋅−∑ ∫
=

K

r A

ij

ij

r

dAnqV
dt

ud rr
µ ,                                             (2.11) 

where  ijq
r

 and iju  are the CV averaged gradient and solution in Cij. As the solution u is cell-wise 

continuous, u and q
r

 at SV boundaries are replaced by numerical fluxes q
r

 and u . The above 

equations thus become 

∫∑ ⋅=
= Ar

K

r

ijij dAnuVq
rr

1

,                                      (2.12) 

∑∫
=

=⋅−
K

r

ij

ij
dAnqV

dt

ud

1

0
rr

µ .                                            (2.13) 

  

The commonly used approach for obtaining the numerical fluxes is the LDG approach. This procedure 

was developed by Cockburn and Shu
5,6

. This method dealt with rewriting a second-order equation as a 

first-order system and then discretize the first-order system using the DG formulation. Their simplicity 

and effectiveness have made them the main choice for discretizing the viscous fluxes. In this approach, 

the numerical fluxes are defined by alternating the direction in the following manner
18

 

Luu = ,                                                       (2.14) 

Rqq
rr

= ,                                                            (2.15) 
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where Lu and Ru are the left and right state solutions of the CV face in consideration and  Lq
r

and Rq
r

are 

the left and right state solution gradients of the face (of the CV) in consideration. Thus if the CV face lies 

on the SV boundary, Lu ≠ Ru and Lq
r
≠ Rq
r

.  

 

All the simulations performed during the course of this study employed the LDG formulation for 

discretizing the viscous flux. 
 

III. Extending SV to moving grids 

Persson et al
15

 was one of the first few researchers to use an Arbitrary lagrangian-Eulerian (ALE) 

formulation for high order simulations. A discontinuous Galerkin (DG) formulation was used by the 

above researchers. More recently Jameson et al
9
 used the ALE formulation to perform simulations of 

unsteady flow past a plunging airfoil using a high order spectral difference (SD) method.  

 

A. The transformation 

 

 Let R denote a continuous function which maps a fixed reference frame ),,( ZYX  to a moving 

reference frame ),,( zyx  ; thus in other words, ),,,(),,( tZYXRzyx = .  The Jacobian matrix of the 

above transformation is given by RJ X∇=  and the determinant of this Jacobian matrix is g . The 

mapping velocity w is the time derivative of the transformation R . This is the velocity with which the 

body moves (can be translation, rotation or deformation) in space. 

 

B. The altered equations 

 

 The equations of conservation (valid in the moving reference frame) can be rewritten so as to enable 

equally mathematically valid altered conservation equations in the fixed reference frame.  The altered 

equations can be written in the following manner: 

0))ˆ,ˆ(ˆ)ˆ(ˆ(
ˆ

=∇−⋅∇+
∂

∂
QQFQF

t

Q
visinv ,                                      (3.1) 

where gQQ =ˆ , wJQFgJF invinv

11 ˆˆ −− −=  and visvis FgJF
1ˆ −= . 

 

 

C. Geometric conservation law 

 

 

 The conservation of a constant flow is a necessary condition for any viable numerical scheme. 

Otherwise mass, momentum or energy would be produced unphysically by the numerical simulation. A 

constant solution should be preserved inspite of all the extra terms created by the grid motion. This is the 

so-called Geometric Conservative Law. 

Persson et al
15

 showed that for arbitrary mappings, a constant solution in the physical domain is not 

necessarily a solution of the discretized equations in the fixed reference frame. They were able to pin 

point the creation of the associated error in the integration step of the determinant g . The following 

equation represents the time advancement of the determinant g : 
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0)( 1 =⋅∇+
∂

∂ −
wgJ

t

g
,                                                (3.2) 

 For trivial cases (like pure translations, rotations), the above equation is automatically satisfied. For 

more complicated cases, the above equation needs to be integrated using a numerical scheme. More 

details on the above can be found in Persson et al
15

. 

 

D. Special case scenario 

 

 As mentioned earlier, for some cases, equation 3.2 is automatically satisfied. More specifically for 

pure translation based motions, the Jacobian matrix ][IJ = . This implies that 1=g . The altered 

equations can be written in the following manner: 

0)),()(ˆ( =∇−⋅∇+
∂

∂
QQFQF

t

Q
visinv ,                                            (3.3) 

where QwFF invinv −=ˆ . 

The inviscid numerical flux is obtained using the Rusanov formulation i.e.  

2

)(

2

))(ˆ)(ˆ(~
ˆ LRRinvLinv

inv

QQQFQF
F

−
−

+
= α ,                                  (3.4) 

where invF
~
ˆ is the numerical inviscid flux, )).((|

)(ˆ
|max nwvabsc

Q

QFinv rrr
−+=

∂

∂
=α , c is the sound 

speed and v
r

is the velocity vector.  

 

The LDG formulation is used to discretize the viscous flux.  
 

 

IV. Time integration algorithms 

All the simulations performed in this paper use a three stage SSP SSP Runge kutta scheme. The three-

stage explicit SSP Runge Kutta
16

 can be written as follows: 

);(
)1( n

i

n

ii utRuu ∆−=  

 )];([
4

1

4

3 )1()1()2(
utRuuu ii

n

ii ∆−+=   

  )]([
3

2

3

1 )2()2(1
utRuuu ii

n

i

n

i ∆−+=
+

.                                           (4.1)  

 

V. Test results 

In this Section, the recently adapted SV method is tested for some moving boundary flow problems. 

The following two cases are presented. 

A. Flow over a moving airfoil 

 

This case was selected to validate the moving grid SV solver. An airfoil moves from right to left in 

quiescent air with a Mach number of 0.6. If the reference frame is fixed on the moving airfoil, the flow 

field should reach a steady state after the initial transients propagate out of the solution domain. The 

computational grid (SV grid) is shown in figure 2.   
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A.1 Inviscid flow over a moving airfoil 

     The outer boundary of the computational grid is located 20 times the chord length away from the 

centroid of the airfoil. The pressure distributions at two different times are displayed in Figures 3 and 4. 

Note that initially a very high/low pressure region was created on the left/right side of the airfoil due to 

the sudden motion. As time goes, the flow field becomes nearly “steady” for an observer stationed on the 

airfoil. In fact, the pressure field created by the moving airfoil after a long time is compared with that 

created by a free stream of Mach 0.6 over a stationary airfoil in Figure 3 and 4. It is observed that the 

pressure fields are very similar.  

 

 

 

 

 

 
 

 
                              

Figure 2. SV Grid (72*24*2) used for the subsonic flow over the NACA 0012 
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(a)                                                                  (b) 

 

     
                                       (c)                                                                    (d)      

Figure 3. Inviscid pressure distribution obtained by second order simulations. Case (a): Initial 

transient obtained for flow over a stationary airfoil; Case (b): Initial transient obtained by using the 

moving body method. Case (c): Steady state pressure obtained for flow over a stationary airfoil; 

Case (d): Steady state pressure obtained by the moving body method.  
 

 

 

 

 

     
                                    (a)                                                                                 (b)      

 

     
                                   (c)                                                                                   (d)      

Figure 4. Inviscid pressure distribution obtained by third order simulations. Case (a): Initial 

transient obtained for flow over a stationary airfoil; Case (b): Initial transient obtained by using the 

moving body method. Case (c): Steady state pressure obtained for flow over a stationary airfoil; 

Case (d): Steady state pressure obtained by the moving body method.  
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A.2 Laminar flow over a moving airfoil 

 For this simulation, the airfoil was moved from the right to the left in quiescent air. The fluid was 

assumed to be laminar. The Reynolds number was 1000. As time goes, the flow field becomes nearly 

“steady” for an observer stationed on the airfoil. This is seen in Figure 5. In general, the match between 

the moving case and the stationary case was very good. 
 

 

                    
                                     (a)                                                                               (b)      

                    
                                     (c)                                                                               (d)      

Figure 5. Laminar pressure distribution over an airfoil.  Case (a): Steady state pressure obtained 

for flow over a stationary airfoil using second order simulations ; Case (b): Steady state pressure 

obtained by the moving body method using second order simulations; Case (c): Steady state 

pressure obtained for flow over a stationary airfoil using third order simulations ; Case (d): Steady 

state pressure obtained by the moving body method using third order simulations. 
 

 

B. The plunging airfoil problem 

 

   We consider the plunging airfoil problem test problem. This has been a standard test case for 

moving body simulations
11,15,9

. The airfoil in consideration is a NACA-0012 airfoil.  It is exposed to an 

incoming flow at Mach 0.2 and the Reynolds number based on the incoming flow velocity is 1850. The 

airfoil plunges according to the prescribed formula: )sin(* wthY =  . A value of 1.15 for w and 0.08c 

for h  was used. This corresponds to a Strouhal number of 0.46.  

 

 Figure 6 shows the coefficient of drag (from pressure) obtained using the 2
nd

 and the 3
rd

 order 

formulations. It can be seen that the above is periodic and a time averaging of the drag coefficient results 

in a negative number. It is observed that the airfoil generates thrust and not drag. Vortices shed by the 

airfoil during the first downstroke and upstroke motions are shown in figures 7 and 8 respectively. It can 

be seen that the 2
nd

 order simulations cause much higher dissipation of the shed vortices than the 3
rd

 order 

simulations. This alignment of the vortices results in a positive x component of velocity (behind the 

airfoil). This corresponds to a thrust indicative pattern as explained by Von Karman
19

.  
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Figure 6. Coefficient of drag due to pressure for the heaving airfoil (Strouhal number = 0.46). 

 

 

       
                                       a                                                                                           b                                                 

Figure 7. Vortex shed by the airfoil during the first downstroke motion. Case (a): 2nd order 

simulation; Case (b): 3rd order simulation.  
 

       
                                      a                                                                                         b                                                 

Figure 8. Vortex shed by the airfoil during the first upstroke motion. Case (a): 2nd order 

simulation; Case (b): 3rd order simulation.  
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 Two other simulations, with progressively larger heaving frequencies were attempted: corresponding 

to Strouhal numbers of 0.628 and 0.942. The coefficient of drag due to pressure for the above cases is 

shown in figures 9 and 10. It can be inferred that an increase in Strouhal number increases the amount of 

thrust produced. 
 

 
Figure 9. Coefficient of drag due to pressure for the heaving airfoil (Strouhal number = 0.628). 

 

 
Figure 10. Coefficient of drag due to pressure for the heaving airfoil (Strouhal number = 0.942). 
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VI. Conclusions 

 

In this paper, we extended the SV method to tackle some basic moving boundary problems. The 

spatial discretization is carried out using the SV method on a mesh of triangles, and the time integration is 

done with an explicit multi-stage strong stability preserving Runge–Kutta scheme. The equations are 

discretized on a fixed reference frame. A continuous function maps this fixed reference frame to a moving 

reference frame. As mentioned earlier, we restrict our simulations to those problems, wherein GCL is 

automatically satisfied.  

The flow over an airfoil was simulated to validate the moving grid SV solver. The pressure field 

created by the moving airfoil was compared with that created by a free stream of Mach 0.6 over a 

stationary airfoil. The pressure fields were identical.  

 The moving grid SV solver was used to solve the plunging airfoil problem test problem.  The airfoil 

was exposed to an incoming flow at Mach 0.2 and the Reynolds number based on the incoming flow 

velocity was 1850. The airfoil plunges according to the prescribed formula: )sin(* wthY = . Vortices 

shed by the airfoil during the first downstroke and upstroke motions were captured. The 2
nd

 order 

simulations caused much higher dissipation of the shed vortices than the 3
rd

 order simulations. This 

alignment of the vortices resulted in a positive x component of velocity (behind the airfoil). This 

corresponds to a thrust indicative pattern as explained by Von Karman
19

.  

  

Future work would involve high-order accurate simulations of laminar flow past flapping wing micro 

air vehicles (MAVs) with more complex motions. 
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