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A Frequency-optimized Discontinuous Formulation for 
Wave Propagation Problems 

Yi Li 1 and Z. J. Wang2 
Department of Aerospace Engineering and CFD Center, Iowa State University, Ames, IA 50011 

Recently, a new unifying discontinuous formulation was developed by Huynh [7], and 
extended to simplex and hybrid meshes by Wang & Gao [21] for hyperbolic conservation 
laws. As with almost all discontinuous methods such as the discontinuous Galerkin, spectral 
volume and spectral difference methods, the new formulation named CPR (Correction 
Procedure via Reconstruction) employs a piece-wise discontinuous polynomial space. In this 
paper, a hybrid discontinuous space including polynomial and Fourier bases is employed in 
the CPR formulation to compute broad-band waves. The dispersion and dissipation 
properties of this method are investigated through a Fourier analysis. The analysis is also 
used to guide the selection of free-parameters to optimize the resolution of broadband waves 
and minimize both dissipation and dispersion errors. The results are verified with numerical 
solutions of the simple scalar advection equation and the two-dimensional acoustic wave 
equations.  

Keywords: CPR (Correction Procedure via Reconstruction), A Hybrid Discontinuous Space, 
Wave Propagation Analysis 

I.  Introduction 
igh-order methods are highly desired for wave propagation problems including aero-acoustic and 
electromagnetic waves. As pointed by Tam [13], aero-acoustic problems are intrinsically unsteady, and the 

dominant frequency is usually high. They differ from general computational fluid dynamics problems. Many 
powerful numerical algorithms have been developed to solve computational aeroacoustics (CAA) problems, e.g. the 
dispersion-relation-preserving (DRP) finite difference schemes [14], discontinuous Galerkin method [6], multi-
domain spectral methods [3], spectral volume and difference methods [10, 19, 22], compact schemes [1, 4] and 
WENO schemes[2, 5, 20]. 

High-order methods capable of handling unstructured grids are obviously much more flexible in dealing with 
complex geometries. In this paper, we focus on a recent discontinuous unstructured grid formulation called CPR 
(Correction Procedure via Reconstruction) [7, 21], which unifies the DG and SV/SD methods. In most discontinuous 
methods, local spaces based on polynomials are used. Non-polynomial bases have been studied in [23], and 
demonstrated for problems with special solutions. In the present study, we employ hybrid bases including both 
polynomials and Fourier bases to resolve broad-band wave propagation problems. We borrow the ideas from the 
DRP and upwind DRP schemes in determining the parameters in the Fourier bases to maximize the resolvable wave 
number given a certain error threshold. The basic idea of DRP scheme is to optimize the scheme coefficients for the 
high resolution of short waves with respect to the computational grid instead of the truncation error in [12, 14, 25, 
26]. A suitable grid density can be determined by the grid requirement (points-per-wavelength, PPW) following the 
same procedure as presented in [8, 24] without boundary condition consideration. 

The dispersive and dissipative errors were investigated to analyze the wave propagation performance and such a 
method was used for finite difference and finite volume methods [9, 12, 14, 25, 26]. Van den Abeele [18] performed 
such an analysis for the 1D spectral volume method and Hu [6] applied it for the discontinuous Galerkin method. 
The CPR method based on hybrid bases is analyzed using a similar  method.  

This paper is organized as follows. For the sake of completeness, first the CPR method is reviewed in section 2. 
One-dimensional wave propagation analysis is given in section 3. The hybrid bases  are optimized by minimizing 
dispersion and dissipation integrated errors given certain wave numbers and at the same time satisfying a given 
resolution error threshold. Wave propagation properties are investigated by using Fourier analysis for the optimized 
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hybrid bases. Then the mesh resolution analysis is given to verify the optimization procedure. In section 4, 
numerical results are presented to demonstration the performance of the numerical method with hybrid bases. 
Concluding remarks are given in section 5. 

II.  Review of the CPR Formulation 
 The CPR formulation was developed in [7] and [21]. The basic idea is reviewed here. The conservation equation 
is given as 

��

��
+ ∇ ∙ ����� = 0                                                                     (2.1) 

where ��  is the flux vector. Multiplying (2.1) with an arbitrary weighting function W and integrating over an element 
Vi , we obtain   
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Let ��� be an approximate solution to Q at element i. Because the approximate solution is discontinuous across the 
element interface, the face flux term is replaced with a common Riemann flux 

 ������� ,���� ,�
�� ≈ ������� = ������� ∙ �
�                                                     (2.3) 

where ����  is the solution outside the current element Vi. Equation (2.2) then becomes  
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Applying integration by parts to the last term, we obtain  
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The term ���� = ������� ,���� ,�
�� − ������� is the normal flux difference and can be viewed as a penalty term. A 

correction field ��  is introduced using the following lifting operator, which is defined as 

 � 	��
� = � 	����
�
�����

.                                                             (2.6) 

We obtain 

� �����
��

+ ∇ ∙ ������� + ����	
� = 0
��

                                                   (2.7) 

Under some mild conditions outlined in [21], (2.7) can be reduced to a differential form. Let the degrees of freedom 
(DOFs) be the solutions at solution points (SPs) and the equation (2.7) is the true at the SPs, i.e., 

���,�
�

��
+ ∇ ∙ ����� ,	� � + ��,	� = 0                                                         (2.8) 

Equation (2.8) does not involve any explicit surface or volume integrals, and the lifting operator depends on the 
choice of weighting function W. The performance of this formulation depends on how efficiently the correction field � can be computed. 

III.  One-Dimensional Wave Propagation Analysis 

A. Introduction to wave Propagation Analysis 
The dispersive and dissipative properties of the spatial discretization of the CPR method will be analyzed. The 

approach is following the methods by Hu [6] and Van den Abeele [18]. In this section, 1D CPR will be analyzed.  
The 1D scalar advection equation with periodic boundary conditions and a harmonic wave as the initial solution 

is given as 

�


��
+ � �


��
= 0                                                                         (3.1) ���, 0� = ����                                                                        (3.2) 
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\hwhere � is the positive wave speed. The dispersion of the scheme ���, �� = ���
������� represents a sinusoidal 
wave train with a wave number � and a frequency  . The exact dispersion relation for (3.1) is  = ��. To (3.1), a 
(p+1) degree of freedom (DOF) method will be applied on a uniform mesh of size ∆x. On a local coordinate ! ∈ �−1, 1� for each element i, the approximation �� = ∑ ��,	#	���

	��  can be written as a function of  !. On the 
boundaries between two elements, a Riemann flux is used 

������1�,�����−1�� = � ����
�
���1� +

���

�
�����−1��                                     (3.3) 

In (3.3), $ = 0 corresponds to a central flux and $ = 1 corresponds to the upwind flux. Upwind flux is used here. 
Equation (3.1) then becomes ∑ ��	 �
�,���

���
	�� + ∑ %�	�����

	�� ����,	 + ∑ %�	����
	�� ��,	 = 0,     & = 1, … , ' + 1                     (3.4) 

The matrix elements %�	�� ��
 %�	�  are given by the following expressions: 

%�	�� = −2 ∗
�����������

���
                      &, ( = 1, … , ' + 1                             (3.5) 

%�	� = 2 ∗
������

��
�!�� + 2 ∗

������������

���
       &, ( = 1, … , ' + 1                        (3.6) 

)�� is the inversion matrix of M, and )�	 =  � #��!��

��
#	�!�
!  ( &, ( = 1, ⋯ , ' + 1). The non-dimensional wave 

number and frequency are defined as * = �∆� and Ω =  ∆� �⁄ , and the exact dispersion relation is given as Ω =*. Substituting the expression of a harmonic wave ���, �� = ���
������� into (3.1), the numerical dispersion relation 
determined for upwind flux is given as 
���−,Ω + ��
�%�� + %� � = 0                                                            (3.7) 

The quantity – ,Ω is called the Fourier footprint ℜ and ℜ = ℜ ! + -ℜ"#, and the imaginary part ℜ"#
 is a measure of 

dispersive properties of the scheme, whereas the real part ℜ ! represents the diffusive behavior which should be 
non-positive to keep the scheme stable. For classic finite difference methods with one DOF, the wave range is 
– . < * < ., while with p+1 DOF per cell, the wave range is – �/ + 1�. < * < �/ + 1�..  

B. Hybrid Bases and Optimization of Free-Parameters 
The piecewise polynomial bases are generally used as local spaces in most discontinuous methods. Non-

polynomial approximation bases such as exponential functions and trigonometric functions for the discontinuous 
Galerkin (DG) method were developed in [23] to obtain better approximation for specific types of PDEs and initial 
and boundary conditions. The upwind CPR method based on hybrid bases is studied, with objective of resolving 
broad-band wave propagation problems. Hybrid bases are given as  

T ∈ span�1, x, x�, x$, ⋯ , sin�α1 ∗ x� , cos�α1 ∗ x�, sin�α2 ∗ x� , cos�α2 ∗ x�, ⋯ �                    (3.8) 

where �α1, α2, α3 ⋯ � are free-parameters.  
Acoustic problems are governed by the same equations as those in aerodynamics such as the Euler and Navier-

Stokes equations. However minimum numerical dispersions and dissipations are required to get an accurate 
amplitude and phase for numerical calculation of wave propagation [13]. The optimized schemes such as central 
DRP [14] and upwind DRP [25, 26] schemes are to assure the transform of the scheme be a good approximation of 
that the partial derivative over a certain range of wave number. The approximation of the first-order spatial 
derivative ∂u/ ∂x on uniform grids for a finite difference method is given by  0%&

%'
1
(

≈
�

∆'
∑ a)u�x( + j∆x�*
)� �+                                                           (3.9) 

The basic idea of DRP is that the coefficients are determined by requiring the Fourier transform of the finite 
difference scheme on the right of (3.9) to be a close approximation of the partial derivative on the left. 

Free-parameters in the hybrid bases for the CPR method are optimized by mimicking the similar idea of DRP 
[14, 25] to maximize the resolvable wave number given a certain error threshold. The following two conditions are 
applied.   
� The optimization process has to allow the normalized value of Ω"# N⁄ − K N⁄  and Ω ! N⁄  to be as close to zero 

as possible for certain integration wave numbers.  
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E =  � |Ω"# N⁄ − K N⁄ |�dK +  λ
!

�
� |Ω ! N⁄ |�dK
!

�
                                            (3.10) 

The weight λ is set as 0.2 to balance the L2 norm of the truncated errors of dispersion and dissipation. And e is a 
predetermined optimized range of wave numbers.   
� In order to quantify  the resolution of the scheme, set the dispersion and dissipation errors to less than 0.5%, 

i.e.[6]  |Ω"# − K| < 0.005 ��
 |Ω !| < 0.005                                               (3.11) 

Different free-parameters α are found to minimize the integration error E through numerical searches for a 
certain wave number integration range e with 3 = �1, x, sin�α ∗ x�, cos�α ∗ x�� in Table 1. And the maximum 
resolvable non-dimensional wave number K, are determined using (3.11) for each α with respect to a certain 
integration wave number in Table 2. K, increases and then decreases with respect to α which is related to a certain 
integration range. 

Table 1 Optimization free-parameter 4 of Fourier bases for 5 =  �6, 7, 89:�4 ∗ 7�, ;<8�4 ∗ 7�� 
Integration range (e) α E - Dispersion E-diffusion E 

π (3.14) 1.4 2.1477e-09 2.7483e-08 7.6444e-09 

5*π/4 (3.93) 1.7 1.6503e-07 1.0139e-06 3.6781e-07 

3*π/2 (4.71) 2.1 3.8702e-06 2.4832e-05 8.8367e-06 

7*π/4 (5.50) 2.4 6.1540e-05 2.6556e-04 1.1465e-04 

2*π (6.28) 2.7 6.5403e-04 2.1424e-03 1.0825e-03 

 

Table 2 Maximum resolvable wave number =-  for 5 =  �6, 7, 89:�4 ∗ 7�, ;<8�4 ∗ 7�� 
Integration range α K, 

π (3.14) 1.4 3.9336 

5*π/4 (3.93) 1.7 4.2336 

3*π/2 (4.71) 2.1 4.8336 

7*π/4 (5.50) 2.4 2.0336 

2*π(6.28) 2.7 1.6336 

 
α = 2.1 is referred as the optimized free-parameter, which minimizes the integration error E over a relatively large 
wave number integration range 4.71 with the dispersion and dissipation errors to less than 0.5% in equation (3.11). 
The same procedure is applied for the higher DOF scheme. α = 4.0 is the optimized free-parameter with the 
integration wave number range 8.6 for T =  �1, x, x�, x$, sin�α ∗ x�, cos�α ∗ x��, and α1 = 4.5 and α2 = 3.0 are the 
optimized free-parameters with the integration wave number 9.42 for T =  �1, x, sin�α1 ∗ x�, cos�α1 ∗ x�, sin�α2 ∗

x� , cos�α2 ∗ x��. 
In Fig 1, the upwind CPR scheme with optimized base T =  �1, x, sin�2.1 ∗ x�, cos�2.1 ∗ x�� is compared with 

polynomial space, Tam & Webb’s central DRP and Zhuang & Chen’s upwind DRP. This optimization scheme has 
less dispersion errors than the polynomial space and the Tam & Webb’s central DRP scheme, but a little larger 
dispersion errors than Zhuang & Chen’s upwind DRP scheme. It is able to resolve the waves with non-dimensional 
wave numbers as high as about 1.3 which is very close to the seven stencil scheme, although it is a four stencil 
scheme.  
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Fig.1. Comparison of dispersion errors �Ω"# − K�/N and dissipation errors Ω !/%   

C. Mesh Resolution Analysis 
 In this section, the mesh resolution analysis is applied to verify the optimization procedure by following the 

ideas in [8, 24]. The number of grid points per wavelength (PPW) is presented, with the objective of accurately 
simulating wave propagation over large distances. The mesh resolution analysis is based on the principle root >�*,?� = ����/��, where m is the current time step and m+1 is the next time step. * is the non-dimensional wave 

number, C is the courant number and PPW is the points per wave length and PPW =
./0!1!2345

∆'
= 2π/(k∆x). The 

local amplitude and phase errors are, respectively 

Error/ = |σ| − 1                                                                         (3.12) 

Error6 = −
∅

78
− 1                                                                       (3.13) 

where ∅ = tan��(σ(/σ9), and σ(,  σ9 are the real and imaginary part of σ, respectively. Criterion for comparing 
schemes is based on the global amplitude and phase errors which are 

Error: = @|σ|;;<∗2/8 − 1@ < 10%                                                   (3.14) 

Error6 = n ∗ A;;<∗∅

8
+ 2πA<10%                                                      (3.15) 

where n is the number of the wavelength travelled. A very small courant number is used just for spatial 
consideration. This is a reasonable measure for selecting a grid density, and reveals the implications of optimization.  

 

 

Fig.2. Grid resolution requirements based on globe amplitude and phase errors 

In Fig 2, point per wavelength (PPW) requirement are presented for upwind CPR with respect to �1, x, sin�α ∗

x� , cos�α ∗ x��. α = 2 is superior up to a distance of travel about 45 wavelengths based on 10% phase error 
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criterion. Such behavior is typical of optimized schemes. And usually aggressive optimization leads to excellent 
performance for small distances of travel but poor performance for longer distances. This property agrees with the 
previous analysis that the optimized free-parameter α = 2.1, which is close to 2, shows good dispersive properties 
with the relatively large wave number given a certain resolution error criterion.  

The PPW analysis matches the optimization analysis perfectly, and both methods can be used to verify each 
other. Because the schemes are optimized for a given range of wave number, they required fewer PPW if the 
propagation distance is relative short. As the number of wavelength traveled increase, the advantage of the 
optimized schemes diminished as the required PPW increase. However if fewer PPW is required, the use of 
optimized scheme not only gives most accurate results but also results in significant saving of CPU time.  

IV.  Numerical Tests 

A. Exact Solution for 1D Wave Equation With Sine Wave as the Initial Condition 
This problem is used to verify the performance of the wave propagation characteristics of CPR in terms of space �1, �, �-��$��, BC��$��� and 1D convective wave equation is considered.  

�


��
+ � �


��
= 0 (� = 1)                                                                    (4.1) 

On the uniform mesh with the initial condition is given as follows ���, 0� = �-��.��                                                                        (4.2) 

Due to Fourier spaces, the exact dispersion relation Ω = * is exactly satisfied at a certain *. For example if the base 
T = �1, x, sin�2 ∗ x� , cos�2 ∗ x�� is applied, the physical value Ω = K = k ∗ ∆ξ = 2 ∗ 2 = 4. An approximation 
apace �1, �, �-��$��, BC��$��� is designed to exactly simulate the equation.  
• First set cell size ∆x and calculate the initial condition’s non-dimensional wave number K� = k ∗ ∆x =  π ∗

∆x   (k = π). 
• Second choose a space �1, x, sin�αx� , cos�αx��  and here K� = α ∗ ∆ξ (∆ξ = 2). 

• Finally set K� = k�
=(!1>?DEEFα = �π ∗ ∆x�/2.  

 
                                   (a)                                                                               (b) 

Fig 3. (a) α = �π ∗ ∆x� ∆ξ⁄ =
@

�
, ∆x = 1, ∆t = 0.01, T = 60 (b) α = �π ∗ ∆x� ∆ξ⁄ =  π, ∆x = 2, ∆t = 0.01, T = 60 

Fig 3 shows that the designed spaces exactly numerically simulate the wave equations (4.1) with the initial condition 
(4.2). (a) The space �1, x, sin�π ∗ x/2� , cos �π ∗ x/2�� is exactly simulating the wave equation when ∆x = 1 (b) 
The space �1, x, sin�π ∗ x� , cos �π ∗ x�� is exactly simulating the wave equation when  ∆x = 2. 

B. A Benchmark Problem – CAA Workshop (2004) 
The governing equation is the scalar wave equation with unit wave speed as defined as equation (4.1), with the 

following initial condition ���, 0� = �2 + BC��G�����'�−H�2�� 10⁄ ���,   G = 1.7 CI 4.6                                   (4.3) 

Two different frequencies β = 1.7 and β = 4.6 are considered, and set ∆x = 1 for an equivalent 1 DOF. At this grid 
resolution, the high frequency wave embedded in the initial condition only has about 3.7 and 1.9 points-per-wave 
(PPW). It is therefore a challenge for any numerical scheme to adequately resolve the high frequency wave.  
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Fig 4. Numerical solution of 1D wave equation with the initial condition (5.3) 
 (T = 450s,∆x = 3, 4th order DOF upwind scheme) 

For β = 1.7,  the approximation space �1, x, sin�αx�, cos�αx�� is designed with � = 2.55 and ∆x = 3  to 
exactly simulation the initial wave condition cos�βx�. Then this approximation space is applied for the wave 
equation with the initial condition of equation (4.3) in order to get a better simulation. The time integration was 
carried out using a four-stage fourth-order Runge-Kutta scheme and a constant time step of 0.05s was used for all 
cases. In Fig 4, � = 2.55 shows much less dissipative behavior among the presented bases.  

 

Fig 5. Numerical solution of 1D wave equation with the initial condition (5.3) 
 (T = 500, ∆x = 5, 6th order DOF upwind) and first row G = 1.7 and second row G = 4.6           

In Fig 5, the solutions of CPR upwind scheme with the optimized approximation space �1, x, x�, x$, sin�4.0 ∗

x� , cos�4.0 ∗ x�� and �1, x, sin�4.5 ∗ x� , cos�4.5 ∗ x�, sin�3.0 ∗ x� , cos�3.0 ∗ x�� are compared with the 6th order 
polynomial approximation space for G = 1.7 ��
 4.6, and both schemes show better simulations than the 
polynomial approximation space. And the more Fourier bases terms there are, the more accurate the results  are.                       

C. Two – Dimensional Acoustic Wave 
This test case was computed for a 2D acoustic pulse. The governing equations for this test case are the 2D non-

linear Euler equations 
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= 0                                                                              (4.4) 

where Q, E and F are vectors given by 
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� = J KK�KLKMN ,    M =  O K�K�� + 'K�L��KM + '�P ,    � = O KLK�LKL� + 'L�KM + '�P                                         (4.5) 

with K the mass density, � and L the velocity components and ' the pressure. The total energy E is defined by the 
following equation 

M =
�

D��

�

E
+


��F�

�
                                                                             (4.6) 

where Q is set to 1.4 which is the ratio of specific heat to air. The computations are carried out on three different 
structure grids (5x5), (10x10) and (20x20) on a square domain [0,1]x[0,1]. The initial solution is an acoustic pulse 
with a Gaussian profile and is set as same as one by Kris [15] [16] 

K = KG R1 + 0.001 ∗ ��' 0−
����.H����C��.H��

I
�

�
1S/ =  /G + BG� �K − KG�� = 0L = 0

                                                (4.7) 

And the ambient pressure, mass density and the half-width of the Gaussian profile are given as follows /G = 1,     KG = 1,    I� = 0.05                                                             (4.8) 

                

Fig 6. Structured quadrilateral 10x10 grids (left) and pressure contours (right) based on tensor product basis with 
approximation spaces �1, �, ��, �$� 

The exact solution of the LEEs for the acoustic pressure field is given as   

/�J��, �. T� = / − /G = 0.001 ∗
J�
� K�

�
� ��' �− 0�K

�
1�� BC��!BG��U��!��!
!�G

�
            (4.9) 

with V = W�� − 0.5�� + �T − 0.5�� and J0 is the zero-th order Bessel function of the first kind which is used as a 
reference solution referring to [15] and [16]. 

Structured quadrilateral 10x10 grids are given on left of Fig 6 and pressure contours are given on the right of Fig 
6 which is based on tensor product basis with approximation spaces �1, �, ��, �$�. Then the numerical schemes with 
4th DOF optimized hybrid bases are tested. All numerical tests are carried out with ∆� = 0.0001�, 3 = 0.3�, and 
Gauss-Lobatto points are used as distribution points for each element for CPR schemes. 

In Fig 7, errors of the optimized bases �1, �, sin�2 ∗ �� , BC��2 ∗ ��� are smallest among all of approximate bases 
shown for the 10x10 grids. This property agrees with the previous analysis that the optimized hybrid bases shows 
better dispersion and dissipation properties when non-dimensional wave numbers of the schemes are given in a 
certain range. In Fig 8 the optimized base still performs better than the corresponding polynomial base for the 20x20 
grids. It is expected that the polynomial bases will perform best when the grids are fine enough.   
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Fig 7. Pressure distribution at y = 0.5 (Tensor product bases with 4th order DOF) on 10x10 grids 

           
Fig 8. Pressure distribution at y = 0.5 (Tensor product bases with 4th order DOF) on 20x20 grids 

V. Conclusion 
The CPR (Correction Procedure via Reconstruction) formulation with a hybrid discontinuous space including 

polynomial and Fourier bases is studied. The free-parameters in the hybrid base are optimized based on minimizing 
both dispersion and dissipation errors and satisfying  a certain resolution of dispersion and dissipation errors. The 
hybrid bases with optimized free-parameters show good wave propagation properties. A comparison was made with 
the dispersion and dissipation properties of the central DRP and upwind DRP schemes in 1D. The four-point stencil 
optimized hybrid bases is able to resolve waves with non-dimensional wave numbers as high as the seven-point 
stencil central and upwind schemes. And the more Fourier bases components are used, the less dispersion and 
dissipation errors the schemes show. Then the mesh resolution analysis is given to verify the optimized hybrid bases. 
The accuracy of the hybrid bases depends on the non-dimensional wave number.  

Due to the Fourier bases included in the hybrid bases, the schemes can exactly simulate the wave equation at some 
specific non-dimensional wave number. This property is verified with  the case with a sine wave as the initial 
condition. The method has been tested for Problem 1 in Category 1 (C1P1) on benchmark problem in the Fourth 
Computational Aeroacoustics (CAA) Workshop. It is shown that the scheme with optimized Fourier bases can 
resolve waves more accurately than the polynomial bases at 3.7 PPW. This is followed by the acoustic wave 
problem in 2D. It is verified again that the advantages of the optimized hybrid bases depend on the non-dimensional 
wave numbers. 
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