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Recently, a new unifying discontinuous formulationwas developed by Huynh [7], and
extended to simplex and hybrid meshes by Wang & Gaf21] for hyperbolic conservation
laws. As with almost all discontinuous methods sucas the discontinuous Galerkin, spectral
volume and spectral difference methods, the new fowlation named CPR (Correction
Procedure via Reconstruction) employs a piece-wighscontinuous polynomial space. In this
paper, a hybrid discontinuous space including polyomial and Fourier bases is employed in
the CPR formulation to compute broad-band waves. Té dispersion and dissipation
properties of this method are investigated througha Fourier analysis. The analysis is also
used to guide the selection of free-parameters tgtimize the resolution of broadband waves
and minimize both dissipation and dispersion errorsThe results are verified with numerical
solutions of the simple scalar advection equationna the two-dimensional acoustic wave
equations.

Keywords: CPR (Correction Procedure via Reconstrudbn), A Hybrid Discontinuous Space,
Wave Propagation Analysis

I. Introduction

H igh-order methods are highly desired for wave pgagian problems including aero-acoustic and
electromagnetic waves. As pointed by Tam [13], @wustic problems are intrinsically unsteady, &mel
dominant frequency is usually high. They differ frogeneral computational fluid dynamics problems.nia
powerful numerical algorithms have been developesbtve computational aeroacoustics (CAA) probleeng, the
dispersion-relation-preserving (DRP) finite difface schemes [14], discontinuous Galerkin method f@]lti-
domain spectral methods [3], spectral volume affftrdince methods [10, 19, 22], compact schemed][Bnd
WENO schemes|2, 5, 20].

High-order methods capable of handling unstructigeds are obviously much more flexible in dealingh
complex geometries. In this paper, we focus oncanediscontinuous unstructured grid formulatiolecaCPR
(Correction Procedure via Reconstruction) [7, 2&jich unifies the DG and SV/SD methods. In mostaiiinuous
methods, local spaces based on polynomials are. ié@a-polynomial bases have been studied in [28f a
demonstrated for problems with special solutiomstHe present study, we employ hybrid bases inctudioth
polynomials and Fourier bases to resolve broad-heank propagation problems. We borrow the ideam ftoe
DRP and upwind DRP schemes in determining the petenfin the Fourier bases to maximize the restdvahve
number given a certain error threshold. The bakea iof DRP scheme is to optimize the scheme caeffi for the
high resolution of short waves with respect to ¢benputational grid instead of the truncation eirofl2, 14, 25,
26]. A suitable grid density can be determined ey ¢rid requirement (points-per-wavelength, PPVipfang the
same procedure as presented in [8, 24] without deyncondition consideration.

The dispersive and dissipative errors were invatgigto analyze the wave propagation performandesach a
method was used for finite difference and finitéuwoe methods [9, 12, 14, 25, 26]. Van den Abee$ flerformed
such an analysis for the 1D spectral volume metodi Hu [6] applied it for the discontinuous Galerknethod.
The CPR method based on hybrid bases is analynegl asimilar method.

This paper is organized as follows. For the sakeoofpleteness, first the CPR method is revieweskation 2.
One-dimensional wave propagation analysis is gimesection 3. The hybrid bases are optimized bgimmzing
dispersion and dissipation integrated errors gieeriain wave numbers and at the same time satisfgigiven
resolution error threshold. Wave propagation prigeiare investigated by using Fourier analysigtieroptimized
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hybrid bases. Then the mesh resolution analysigivien to verify the optimization procedure. In sect 4,
numerical results are presented to demonstratienpirformance of the numerical method with hybrabds.
Concluding remarks are given in section 5.

[I. Review of the CPR Formulation

The CPR formulation was developed in [7] and [2He basic idea is reviewed here. The conservatipmtion
is given as

o) >
S+VFQ =0 (2.1)

whereF is the flux vector. Multiplying (2.1) with an arbétry weighting functiolW and integrating over an element
V; , we obtain

i, (";—f 4V ﬁ(Q)) wav = f, 2wav + [, WF(Q) - fids - f, YW - F(Q)dV =0 2.2)

Let Q! be an approximate solution @ at element. Because the approximate solution is discontinauiess the
element interface, the face flux term is replacét @ common Riemann flux

Fr(Qr Qf 1) ~ Fr(Qf) = F(Q) - (2.3)
whereQ?, is the solution outside the current eleménEquation (2.2) then becomes

aoh ~ R S
J,, Zwav + f,, wF(QF,Ql, ®)ds — [, YW - F(Q)av = 0 (2.4)

Applying integration by parts to the last term, elsain

h > ~
I, ZEwav + [, wv-F(Ql)av + [,, w[F"(al' ol %) — F"(Q})]ds (2.5)

The term[F] = F*(QF, Q7)) — F*(QF") is the normal flux difference and can be viewedagsenalty term. A
correction fields; is introduced using the following lifting operatavhich is defined as

[, W&dv = [,, WIFds. (2.6)

We obtain

J, ["Ql +V-F(QM) + 5{1] wdv =0 (2.7)

Under some mild conditions outlined in [21], (2cBn be reduced to a differential form. Let the degrof freedom
(DOFs) be the solutions at solution points (SPs)tae equation (2.7) is the true at the SPs, i.e.,

Q” +V-F(QL) +8 =0 (2.8)

Equation (2.8) does not involve any epr|C|t suefair volume integrals, and the lifting operator elgls on the
choice of weighting functiolV. The performance of this formulation depends omw béficiently the correction field
4 can be computed.

lll.  One-Dimensional Wave Propagation Analysis

A. Introduction to wave Propagation Analysis
The dispersive and dissipative properties of tretiapdiscretization of the CPR method will be gmed. The
approach is following the methods by Hu [6] and \dam Abeele [18]. In this section, 1D CPR will belyzed.
The 1D scalar advection equation with periodic lotang conditions and a harmonic wave as the instidlition
is given as

ZtaZ=0 (3.1)

u(x, 0) = ekx (3.2)
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\hwherea is the positive wave speed. The dispersion ofsttteemeu(x, t) = iie! **~t represents a sinusoidal
wave train with a wave numbérand a frequency. The exact dispersion relation for (3.1uis= ak. To (3.1), a
(p+1) degree of freedom (DOF) method will be applen a uniform mesh of sizéx. On a local coordinate
& € [-1,1] for each element i, the approximatian = Zj’*} u;;L; can be written as a function of. On the
boundaries between two elements, a Riemann fluges

1+a

FF (D), wa (1) = @ (52w (D) + 5 0 (<) (33)

In (3.3),a = 0 corresponds to a central flux and= 1 corresponds to the upwind flux. Upwind flux is ddwere.
Equation (3.1) then becomes

du;,
S By X Nph gy + B Ny =0, m=1,..,p+1 (3.4)

The matrix eIementN,;} and N,?”. are given by the following expressions:

Ninj = =2 *% mj=1.,p+1 (3.5)

6L]($) Lin(= 1)L,( 1

NS, = Gp+2x————— m,j=1,.,p+1 (3.6)

M~ is the inversion matrix of M, and,,,; = f Ly (&) L;(§)d¢ (m,j =1,--,p + 1). The non-dimensional wave
number and frequency are definedkas: kAx andQ wa/a and the exact dispersion relation is givetfias

K. Substituting the expression of a harmonic wage t) = fie’®**~©% into (3.1), the numerical dispersion relation
determined for upwind flux is given as

det(-IQ+e ™N"T+N°) =0 (3.7)

The quantity- IQ is called the Fourier footprifit and® = RR¢ + iR'™, and the imaginary pa#t™ is a measure of
dispersive properties of the scheme, whereas thlepartRRe represents the diffusive behavior which should be
non-positive to keep the scheme stable. For cldssie difference methods with one DOF, the waweage is
-1 < K <, while with p+1 DOF per cell, the wave range i + 1)n < K < (P + D).

B. Hybrid Bases and Optimization of Free-Parameters

The piecewise polynomial bases are generally usedb@al spaces in most discontinuous methods. Non-
polynomial approximation bases such as exponefitidtions and trigonometric functions for the distiouous
Galerkin (DG) method were developed in [23] to abtaetter approximation for specific types of PDdtsl initial
and boundary conditions. The upwind CPR method dasehybrid bases is studied, with objective obhesg
broad-band wave propagation problems. Hybrid basegiven as

T € span(1,x,x2,x3, -+, sin(al * x), cos(al * x), sin(a2 * x), cos(a2 * x), ) (3.8)

where(al, a2, a3 ---) are free-parameters.

Acoustic problems are governed by the same equatisrthose in aerodynamics such as the Euler aviérNa
Stokes equations. However minimum numerical dispessand dissipations are required to get an ateura
amplitude and phase for numerical calculation ofevaropagation [13]. The optimized schemes sucbeagral
DRP [14] and upwind DRP [25, 26] schemes are toarasthe transform of the scheme be a good apprdximaf
that the partial derivative over a certain rangewave number. The approximation of the first-ordpatial
derivativedu/ dx on uniform grids for a finite difference methodjisen by

(Z—z)i ~ Al—lel\i _naju(x; + jAx) (3.9
The basic idea of DRP is that the coefficients determined by requiring the Fourier transform oé finite
difference scheme on the right of (3.9) to be aelapproximation of the partial derivative on tbife. |

Free-parameters in the hybrid bases for the CPRadedre optimized by mimicking the similar idealiRP
[14, 25] to maximize the resolvable wave numbeegia certain error threshold. The following two ditions are
applied.

*  The optimization process has to allow the normdlizalue ofQ;,,/N — K/N andQg./N to be as close to zero
as possible for certain integration wave numbers.
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E= J;|Qm/N—K/N?dK + A [5|Qre/N|2dK (3.10)

The weight) is set as 0.2 to balance the norm of the truncated errors of dispersion andipiion. And e is a

predetermined optimized range of wave numbers.

* In order to quantify the resolution of the scheset, the dispersion and dissipation errors to tleas 0.5%,
i.e.[6]

|Qm — K| < 0.005 and |Qge| < 0.005 (B)1
Different free-parametera are found to minimize the integration error E tigb numerical searches for a
certain wave number integration range e withk= (1,x,sin(a*x), cos(a*x)) in Table 1. And the maximum
resolvable non-dimensional wave numhb&r are determined using (3.11) for eaghwith respect to a certain

integration wave number in Table R, increases and then decreases with respactbich is related to a certain
integration range.

Table 1 Optimization free-parametera of Fourier bases forT = (l,x, sin(a * x), cos(a * x))

Integration range (e) a E - Dispersion E-diffusion E

m (3.14) 1.4 2.1477e-09 2.7483e-08 7.6444e-09
5*n/4 (3.93) 1.7 1.6503e-07 1.0139e-06 3.6781e-07
3*n/2 (4.71) 2.1 3.8702e-06 2.4832e-05 8.8367e-06
7*m/4 (5.50) 24 6.1540e-05 2.6556e-04 1.1465e-04
2*m (6.28) 2.7 6.5403e-04 2.1424e-03 1.0825e-03

Table 2 Maximum resolvable wave numbeK, for T = (1,x, sin(a * X), cos(a * x))

Integration range a K.

T (3.14) 14 3.9336
5*n/4 (3.93) 1.7 4.2336
3*n/2 (4.71) 2.1 4.8336
7*m/4 (5.50) 24 2.0336

2*1(6.28) 2.7 1.6336

a = 2.1 is referred as the optimized free-parameter, whighimizes the integration error E over a relatvigrge
wave number integration range 4.71 with the disparand dissipation errors to less than 0.5% iraégno (3.11).
The same procedure is applied for the higher DOkerse. o = 4.0 is the optimized free-parameter with the
integration wave number range 8.6 Tor= (1, x,x2,x%, sin(a * x), cos(a * x) ), andal = 4.5 and a2 = 3.0 are the
optimized free-parameters with the integration wauenber 9.42 foll' = (1, %, sin(al * x), cos(al * x), sin(a2 *
x), cos(a2 *x)).

In Fig 1, the upwind CPR scheme with optimized bhse (1,x, sin(2.1 * x), cos(2.1 * x)) is compared with
polynomial space, Tam & Webb’s central DRP and Zigu& Chen’s upwind DRP. This optimization schems ha
less dispersion errors than the polynomial spackthe Tam & Webb’s central DRP scheme, but a litikger
dispersion errors than Zhuang & Chen’s upwind DReme. It is able to resolve the waves with nonetlisional
wave numbers as high as about 1.3 which is vergecto the seven stencil scheme, although it isua $tencil
scheme.
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Fig.1. Comparison of dispersion err@f,,, — K)/N and dissipation erroz./N

C. Mesh Resolution Analysis

In this section, the mesh resolution analysis igliag to verify the optimization procedure by follmg the
ideas in [8, 24]. The number of grid points per slangth (PPW) is presented, with the objective afusately
simulating wave propagation over large distancdse Tesh resolution analysis is based on the ptecipot
0(K,C) = Uy /Um, Where mis the current time step and m+1 is thé time stepK is the non-dimensional wave

number, C is the courant number and PPW is thetppier wave length anePw = % = 2n/(kAx). The
local amplitude and phase errors are, respectively

Error, = (3.12)
(3.13)

where @ = tan~1(0;/0,), ando;, o, are the real and imaginary part ®f respectively. Criterion for comparing
schemes is based on the global amplitude and @hess which are

Error, = ||o|PPW /¢ — 1] < 10% (3.14)
Error, = n * Pp\évw) + 2T[|<10% (3.15)

where n is the number of the wavelength travellddvery small courant number is used just for spatia
consideration. This is a reasonable measure fected a grid density, and reveals the implicatiohsptimization.
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Fig.2. Grid resolution requirements based on ghinelitude and phase errors

In Fig 2, point per wavelength (PPW) requiremem prresented for upwind CPR with respec(lox, sin(a *
x),cos(a*x)). a = 2 is superior up to a distance of travel about 4¥ekengths based on 10% phase error
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criterion. Such behavior is typical of optimizechemes. And usually aggressive optimization leadexzellent
performance for small distances of travel but pperformance for longer distances. This propertgagmwith the
previous analysis that the optimized free-parameter2.1, which is close to 2, shows good dispersive pridger
with the relatively large wave number given a dartasolution error criterion.

The PPW analysis matches the optimization analysifectly, and both methods can be used to vegfyhe
other. Because the schemes are optimized for angiaege of wave number, they required fewer PPWhef
propagation distance is relative short. As the neimbf wavelength traveled increase, the advantdgéhe
optimized schemes diminished as the required PP&ked@se. However if fewer PPW is required, the uke o
optimized scheme not only gives most accurate tebut also results in significant saving of CPiddi

IV. Numerical Tests

A. Exact Solution for 1D Wave Equation With Sine Waveas the Initial Condition
This problem is used to verify the performancehef wave propagation characteristics of CPR in tevhspace
(1,x, sin(ax), cos(ax)) and 1D convective wave equation is considered.

ou ou _
On the uniform mesh with the initial condition iven as follows
u(x,0) = sin(mx) (4.2)

Due to Fourier spaces, the exact dispersion relétie: K is exactly satisfied at a certath For example if the base
T = (1,%,5in(2 *x), cos(2 xx)) is applied, the physical valug = K =k = Af = 2« 2 = 4. An approximation
apace(1, x, sin(ax), cos(ax)) is designed to exactly simulate the equation.
» First set cell size\x and calculate the initial condition’s non-dimemsbwave numbeK; = k * Ax = T *
Ax (k=m).
e Second choose a Spa(c’ex, sin(ax), cos(ocx)) and here K, = a * AZ (At = 2).

. yields
* Finally setk; = k, — a = (1t * Ax) /2.

3 3
= Exact = Exact
& 1,x,sin(X),cos(x) ¢ 1,x,5in(2*X),cos(2*X)
2 @ 1,x,sin(pi*x/2),cos(pi*x/2) 2 @ 1,x,sin(pi*x),cos(pi*x)
B 1,x,5in(3*x),c0S(3*X) 8 1,x,sin(4*x),c0S(4*X)

(a) (b)
Fig 3. (a)a = (1 * Ax) /At = E,AX =1,At=0.01,T=60 (b)a = (m*Ax)/Af = m, Ax=2,At=0.01,T =60

Fig 3 shows that the designed spaces exactly noatlgrsimulate the wave equations (4.1) with thgahcondition
(4.2). () The spacfl, x, sin(m * x/2), cos ( * x/2)) is exactly simulating the wave equation when= 1 (b)
The spac€1,x, sin(m * x), cos (1t * x)) is exactly simulating the wave equation whéxn = 2.

B. A Benchmark Problem — CAA Workshop (2004)
The governing equation is the scalar wave equatitim unit wave speed as defined as equation (dith, the
following initial condition

u(x,0) = [2 + cos(Bx)]exp[—In2(x/10)?], B = 1.7 or 4.6 (4.3)

Two different frequencie = 1.7 and § = 4.6 are considered, and get = 1 for an equivalent 1 DOF. At this grid
resolution, the high frequency wave embedded inirthi@l condition only has about 3.7 and 1.9 psiper-wave
(PPW). It is therefore a challenge for any numéscaeme to adequately resolve the high frequerayew
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Fig 4. Numerical solution of 1D wave equation witle initial condition (5.3)
(T = 450sAx = 3, 4" order DOF upwind scheme)

For B = 1.7, the approximation spac€l,x,sin(ax), cos(ax)) is designedwith a = 2.55and Ax =3 to
exactly simulation the initial wave conditiocos(Bx). Then this approximation space is applied for e
equation with the initial condition of equation 3#in order to get a better simulation. The time iri¢ign was
carried out using a four-stage fourth-order Runggt& scheme and a constant time step of 0.05s e for all
cases. In Fig 44 = 2.55 shows much less dissipative behavior among theepted bases.

4

—Exact —— Exact 35 ——Exact
3 O 1x2x3xx0 s 0 1,xxC sin(4.0*X),cos(4.0%X) ) O_1,xin(3.0"%).c0S(3.0%).5in(4.5*).c0S(4.5"X
3

38 —Exact 35 —Exact
O 1,x,sin(3.0*x),c0s(3.0*X),sin(4.5%X),c0S(4.5*X

40 50 B0 40 -30 20 -10 0 10 20 30 40 50

Fig 5. Numerical solution of 1D wave equation witle initial condition (5.3)
(T =500,Ax = 5, 6th order DOF upwind) and first rows = 1.7 and second roW = 4.6

In Fig 5, the solutions of CPR upwind scheme witle bptimized approximation spa(e,x,xz,x3,sin(4.0*
x),cos(4.0 * X)) and (1, X, sin(4.5 * x), cos(4.5 * x), sin(3.0 * x), cos(3.0 = X)) are compared with the™6order
polynomial approximation space fQg¢ = 1.7 and 4.6, and both schemes show better simulations than the
polynomial approximation space. And the more Fougses terms there are, the more accurate thiésreme.

C. Two — Dimensional Acoustic Wave
This test case was computed for a 2D acoustic pulilse governing equations for this test case axe2fh non-

linear Euler equations
99 , 9E | OF

ot  o9x dy =0 (4'4)

where Q, E and F are vectors given by
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p pu pv

_)pu _ ) pP+p _) rw
Q - pv(’ E = pUv ) F= pUZ + p (45)
pE u(pE +p) v(pE +p)

with p the mass density; andv the velocity components andthe pressure. The total energy E is defined by the
following equation
F=_Ltpu (4.6)
y-1p 2
wherey is set to 1.4 which is the ratio of specific hemtir. The computations are carried out on thiiéferdnt
structure grids (5x5), (10x10) and (20x20) on aasgqulomain [0,1]x[0,1]. The initial solution is anoustic pulse
with a Gaussian profile and is set as same as pheib [15] [16]

- 2 _ 2
0= Po (1 +0.001 * exp (_ w»

7o

P= P, +ci(p—po) G-
u=20
v=_0
And the ambient pressure, mass density and thesidtli of the Gaussian profile are given as follows
Po=1 po=1 1,=0.05 (4.8)
l —
: P
1.00014
I 1.00012
0.8 1.0001
| 1.00008
1.00006
1.00004
I 1.00002
0.6 | 3,99998
> 090994
o 0.99992
0.4
0.2 i
0 L L L L L L L L L L L L
0 0.2 0.4 0.6 0.8 1

X

Fig 6. Structured quadrilateral 10x10 grids (leftid pressure contours (right) based on tensor ptdidisis with
approximation spaced, x, x2, x3)

The exact solution of the LEEs for the acousticspuee field is given as

2

Pac(t,2.y) = P = P, = 0.001 + 22 [ oy (— (%b)z) cos(Ecet)fo (Et)EdE (4.9)

with n = \/(x —0.5)2 + (y — 0.5)% and § is the zero-th order Bessel function of the fikstd which is used as a
reference solution referring to [15] and [16].

Structured quadrilateral 10x10 grids are givenefhdf Fig 6 and pressure contours are given omitie of Fig
6 which is based on tensor product basis with apmration spaceél, x, x2, x3). Then the numerical schemes with
4™ DOF optimized hybrid bases are tested. All nunagriests are carried out witht = 0.0001s, T = 0.3s, and
Gauss-Lobatto points are used as distribution pdarteach element for CPR schemes.

In Fig 7, errors of the optimized bagdsx, sin(2 * x), cos(2 x x)) are smallest among all of approximate bases
shown for the 10x10 grids. This property agreeswhie previous analysis that the optimized hybadds shows
better dispersion and dissipation properties whem-dimensional wave numbers of the schemes arengiva
certain range. In Fig 8 the optimized base stitfqrens better than the corresponding polynomiakkfas the 20x20
grids. It is expected that the polynomial bases$ pé@tform best when the grids are fine enough.
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1.0003 1.0003

[ Exact

r —_———- 1,x,sin(x),cos(x)

1.0002 |- sy~ — — 1.x,sin(2*x),cos(2*x) 1.0002
B ,./ S 1,x,8in(3*x),cos(3*x)
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0'999807 — ‘071‘ — ‘072‘ — ‘073‘ — ‘074‘ — ‘0.5 0'999807 — ‘0.I1‘ — ‘OIZ 0.I3 0I4 0.5
X X
Fig 7. Pressure distribution at y = 0.5 (Tensodpmt bases with%order DOF) on 10x10 grids
1.0002 1.0002

Exact
—e——e 1,x,x"2,x"3
— — — - 1,x,sin(2*x),c0s(2*x)

Exact
—_————— 1,x,sin(x),cos(x)
— — — - 1,x,sin(2*x),cos(2*x)
———— -+ 1,x,sin(3*x),cos(3*x)

1.0001 1.0001
o [a
1 1
PR (TR S SI RIS S )
O'99990 0.1 0.2 0.3 0.4 0.5 O'99990 0.1 0.2 0.3 0.4 0.5
X X

Fig 8. Pressure distribution at y = 0.5 (Tensodpai bases with®4order DOF) on 20x20 grids

V. Conclusion

The CPR (Correction Procedure via Reconstructionjnfilation with a hybrid discontinuous space inahgd
polynomial and Fourier bases is studied. The frresmeters in the hybrid base are optimized basadinimizing
both dispersion and dissipation errors and satigfya certain resolution of dispersion and disgipag¢rrors. The
hybrid bases with optimized free-parameters shomdgeave propagation properties. A comparison wagdenveth
the dispersion and dissipation properties of theree DRP and upwind DRP schemes in 1D. The foumtpgiencil
optimized hybrid bases is able to resolve waves wiin-dimensional wave numbers as high as the geciah
stencil central and upwind schemes. And the moneri€o bases components are used, the less dispeasid
dissipation errors the schemes show. Then the nessitution analysis is given to verify the optindZgybrid bases.
The accuracy of the hybrid bases depends on thelimensional wave number.

Due to the Fourier bases included in the hybridbathe schemes can exactly simulate the waveiequEtsome
specific non-dimensional wave number. This propéstyerified with the case with a sine wave as ithigal
condition. The method has been tested for ProblamQategory 1 (C1P1) on benchmark problem in tharth
Computational Aeroacoustics (CAA) Workshop. It lown that the scheme with optimized Fourier bases ¢
resolve waves more accurately than the polynomgaled at 3.7 PPW. This is followed by the acoustwew
problem in 2D. It is verified again that the adsaggs of the optimized hybrid bases depend on thedimoensional
wave numbers.
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