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 An analysis of the accuracy and stability properties of the 3D spectral volume 
method on tetrahedral grids is presented. In the SV method, each simplex grid cell is 
called a spectral volume (SV), and the SV is further partitioned into polyhedral (3D) 
control volumes (CVs) to support high-order data reconstructions. In general, the 
partitioning of an SV into CVs is not uniquely defined, and thus it is of great 
importance to select a partition which yields favorable stability properties, and 
results in an interpolation polynomial of high quality. Here we present an approach 
to efficiently locate stable partitions by means of constrained minimization. This is 
motivated by the fact that, at present, an exhaustive search approach to SV 
partition design would be prohibitively costly and thus not feasible. Once stable 
partitions are located, a high quality interpolation polynomial is then assured by 
subsequently minimizing the dissipation and dispersion errors of the stable 
partitions. Results presented demonstrate the potential of this method for 
significantly reducing the strength of the weak instability currently present in the 
3rd order scheme, and possibly even removing it completely.  

 

I.     Introduction 
he spectral volume (SV) method is a recently developed finite volume method for hyperbolic 
conservation laws on  unstructured grids.1, 2, 3, 4, 5, 6, 7 The SV method belongs to a general class of 

Godunov-type finite volume method,8, 9 which has been under development for several decades, and is 
considered to be the current state-of-the-art for the numerical solution of hyperbolic conservation laws. For 
a more detailed review of the literature on the Godunov-type method, refer to Wang,1 and the references 
therein. Many of the most popular numerical methods, such as the k-exact finite volume,10, 11 the essentially 
non-oscillatory (ENO),12, 13 and weighted ENO14 methods are also Godunov-type methods. A thorough 
review and comparison of these methods can be found in Wang.15 The SV method is also closely related to 
the discontinuous Galerkin (DG)16, 17, 18, 19, 20 method, a popular finite-element method for conservation 
laws. Both the SV and DG methods employ multiple degrees of freedom within a single element, but the 
SV method avoids the volume integral required in the DG method. Each simplex in the SV method utilizes 
a “structured” set of sub-cells, or control volumes (CVs), to support a polynomial reconstruction for the 
conserved variables, and a nodal set to support a polynomial reconstruction for the flux vector. For a more 
thorough comparison of the SV and DG methods, refer to Wang.1, 15 
 The partitioning of an SV into CVs has been one of the greatest challenges in the implementation of 
the SV method since its inception. This partitioning defines the reconstruction stencil, and thus plays a vital 
role in determining the accuracy and stability properties of the scheme. Early on, several researchers 
focused on using the Lebesgue constant as a means to design accurate SV partitions. In particular, the work 
of Wang,2 Liu,5 and Chen21, 22 is of relevance. While this criteria may be used to find partitions with lower 
error bounds, it does not guarantee that a particular scheme will be more or less accurate, and it offers no 
information about the stability of the scheme. A positive step towards addressing the issue of stability was 
given by Van den Abeele et al.23, 24, 25 In this work, some previously used SV partitions were found to be 
weakly unstable, and several new stable partitions were proposed. It was also shown that the new partitions 
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had lower dissipation and dispersion errors than some previously used partitions despite having larger 
Lebesgue constants. This showed that although the Lebesgue constant should be small to ensure a lower 
upper bound on the error, it need not be minimal for a scheme to possess superior accuracy.  
 This paper is organized as follows. In Section 2, we review the basic formulation of the SV method. 
After that, the framework for stability analysis of the SV method on tetrahedral grids is described in detail 
in Section 3. Next, the methodology for partition design and optimization is outlined in Section 4. Results 
for optimization and numerical validation studies are then given in Section 5. Finally, conclusions are 
summarized in Section 6. 
 

II.     Review of the spectral volume method 
 Consider the multidimensional conservation law 
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on domain Ω × [0,T] and 3R⊂Ω  with the initial condition  
                                                         ),,,()0,,,( 0 zyxQzyxQ =                                                              (2) 
and appropriate boundary conditions on ∂Ω. In Eq. (1), x, y, and z are the Cartesian coordinates and (x,y,z) 
∈  Ω, t ∈  [0,T] denotes time, Q is the vector of conserved variables, and f, g and h are the fluxes in the x, y 
and z directions, respectively. Domain Ω is discretized into I non-overlapping triangular (2D), or tetrahedral 
(3D) cells. In the SV method, the simplex grid cells are called SVs, denoted Si, which are further 
partitioned into CVs, denoted Ci,j, which depend on the degree of the polynomial reconstruction. Volume-
averaged conserved variables on the CVs are then used to reconstruct a high-order polynomial inside the 
SV. To represent the solution as a polynomial of degree m, we need N pieces of independent information, 
or degrees of freedom (DOFs). Where N is calculated as follows: 
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where d is the spatial dimension of the problem. The DOFs in the SV method are the volume-averaged 
conserved variables at the N CVs. Define the CV-averaged conserved variable for Ci,j as 
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where Vi,j is the volume of Ci,j. Given the CV-averaged conserved variables for all CVs in Si, a polynomial 
pi(x,y,z) ∈  Pm (the space of polynomials of at most degree m) can be reconstructed such that it is a (m+1)th 
order accurate approximation to Q(x,y,z) inside Si. 
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where h is the maximum edge length of all the CVs. This reconstruction can be solved analytically by 
satisfying the following condition: 
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This polynomial pi(x,y,z) is the (m+1)th order approximation we are looking for as long as the solution 
Q(x,y,z) is smooth in the region covered by Si. The reconstruction can be expressed more conveniently as  
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where Lj(x,y,z) ∈  Pm  are the shape functions which satisfy 
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Integrating Eq. (1) in Ci,j, we obtain 
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where F
r

= (f,g,h), Ar  represents the rth face of Ci,j , n
r  is the outward unit normal vector of Ar, and K is the 

number of faces in Ci,j. More details of this, including representative plots of the shape functions can be 
found in Wang.2 The integral in Eq. (9) can be computed using Gauss quadrature, or using the quadrature-
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free approach outlined in Harris et al.7 For time integration, we use either the 2nd- or 3rd-order SSP Runge-
Kutta scheme from Gottlieb et al.26 Some recent accomplishments in the development and application of 
the SV method can be found in Harris and Wang27 and the references therein. 
 It was shown in Wang and Liu2 that the so-called Lebesgue constant computed as 
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gives a simple method of bounding the interpolation polynomial for the SV method. Thus the smaller the 
Lebesgue constant ΠΓ , the better the interpolation polynomial in terms of error bounds. However, 
although this criteria can be helpful in finding accurate SV partitions, it carries no information about the 
stability properties of the resulting scheme, and is thus a necessary but not sufficient tool for designing SV 
partitions.  
 

III.     Formulation for stability analysis 
 The wave propagation properties associated with a particular SV partition and Riemann flux carry 
information about both the accuracy and stability of the numerical scheme. Recent work by Van den 
Abeele et al.23, 24, 25 has utilized the so-called Fourier footprint to facilitate the design of stable SV partitions 
with favorable wave propagation properties. A similar analysis is employed here, with the distinction that 
here we couple the analysis with a constrained minimization procedure to intelligently locate stable and 
accurate partitions. 
 Consider the 3D linear advection equation 
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with periodic boundary conditions, where a
r

= a(sinφcosψ, sinφsinψ, cosφ) is the wave propagation 
velocity, ψ and φ are the wave propagation angles measured counterclockwise from the positive x-axis and 
down from the positive z-axis, respectively. The initial solution is taken to be a harmonic plane wave 
                                                      ( ) ( )θθ sincos0,, yxikeyxQ += ,     (12) 
with wave number k and orientation angle θ. SV method is then applied to Eq. (11) on a grid comprised of 
hexahedral cells which have each been subdivided into six tetrahedral cells. The simplest unit which 
produces the entire grid when periodically repeated, commonly referred to as the generating pattern (GP), is 
shown in Figure 1.  

 
Figure 1. Generating pattern for regular tetrahedral grid. 

 
The GP contains 6 SVs and is completely defined by the vectors 1B

r
, 2B
r

, and 3B
r

. The choice of 6 SVs in 
the GP rather than 5 facilitates the solution of a periodic problem by avoiding a face mismatch. On the 
boundary between the SVs, the following Riemann flux is employed 
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where QL is the solution due to the SV to the left of the face, QR is the solution due to the SV to the right of 
the face, and φ is an upwinding parameter, where φ = 0 gives rise to a central flux, and φ = 1 results in a 
simple upwind flux. After applying the SV method to Eq. (11), we obtain 
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where ∆B is the magnitude of 1B
r

, a is the magnitude of a
r

, V’ is the volume of an SV nondimensionalized 
by ∆B2, the index m varies from 1 to 6N, and the indices i, j and k are standard Cartesian indices to denote a 
particular GP in the grid. The variables nkjiQ ;,,  for n = 1 to 6N are the CV-averages for all SVs in the 
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functions of the wave propagation direction. Substitution of the harmonic plane wave 
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where K is the nondimensional wave number, the primed quantities denote non-dimensionalization by ∆B, 
and Ω~  is the nondimensional numerical frequency. The numerical dispersion relation can then be written 
as 
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from which Ω
~  can be readily computed. The quantity Ω−

~i  is the so-called Fourier footprint 
ImRe ℜ+ℜ=ℜ i of the discretization, Imℜ  being a measure of the dispersive properties of the scheme, and 

Reℜ  being a measure of the diffusive properties. To ensure stability, Reℜ should be nonpositive for all K, 
θ, and ψ.  
 

IV.     Partition design and optimization 
  
 The families of SV partitions considered here are inspired by the partitions presented in Chen.22 Figure 
2a shows a partition from Chen22 supporting a 3rd-order scheme. We use this partition for the basic 
definition of the topology of the SV. There are 2 parameters that uniquely define the 3rd-order partition 
shown in Figure 2a. Essentially, these are two of the node locations for an internal quadrilateral face of the 
corner hexahedral CV. The remainder of the node locations are computed based on symmetry and the 
requirement that the nodes defining a face remain co-planar. Additionally, for a more general 3 parameter 
SV, we can subdivide the internal quadrilateral faces of the hexahedral cells into triangles, as shown in 
Figure 2b and 2c, and the co-planar face requirement is automatically satisfied. For clarity, a close-up view 
of all three of the aforementioned partitions is shown in Figure 3. The stability properties of these partitions 
will be addressed in the following section.  
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                              (a)                                                   (b)                                                    (c)                   

Figure 2. 3rd-order partitions of an SV used for definition of basic topology for 
optimization. (a) Original partition from Chen22; (b), (c) Partitions created by 

subdividing the hexahedral corner CVs into triangles in either direction. 
 
 

                 
                                 (a)                                                 (b)                                                 (c)                   

Figure 3. Close-up view of partitions shown in Figure 2. Internal faces of hexahedral 
corner CVs are quadrilaterals in (a) but split into triangles in (b) and (c).  

 
 
 An automated procedure has been developed to inspect the CV-partitioning of a tetrahedron and 
determine the minimum number of parameters that can be used to uniquely describe the partition. Once this 
information has been obtained, the constrained minimization program called CONMIN28 is employed to 
optimize the SV partitions. CONMIN is a gradient-based optimizer which utilizes the method of Feasible 
Directions29 to find the Feasible Direction, and then move in that direction to update the control parameters. 
The objective or cost function for CONMIN is taken to be the maximum real part of the Fourier footprint of 
the scheme Re

maxℜ . Since CONMIN is used for minimization, it will attempt to drive Re
maxℜ to as low a value 

as possible by manipulating the parameters that define the partition, and if it reaches a nonpositive value, a 
stable partition has been discovered. Then, upon discovery of many stable partitions, those with the lowest 
dissipation and dispersion errors are deemed likely to be suitable for simulation.  
   

V.     Results 
 
Optimization of 3rd order partition using constrained minimization 
 
 The constrained minimization approach outlined above is now applied to the 3rd order partitions shown 
in Figure 2. The Fourier footprint for the initial partition is shown in Figure 4, and t is apparent that the 
initial partition has a very small positive real part, which indicates that it suffers from a weak instability.   
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Figure 4. Fourier footprint for initial 3rd order partition shown in Figure 2a (left); 

Close-up view to illustrate weak instability (right). 
 

 Hundreds of different initial guess values for the parameters that define the partitions were employed 
to gain confidence into whether a local or global minimum is discovered. Thus far, several different 
partitions have been discovered with smaller maximum real Fourier footprint values over the original 
partition. The new partitions are shown in Figures 5-6 and are denoted as H1, H2, H3, and H4. The Fourier 
footprints for these cases are shown in Figures 7-8. While it is difficult to tell from the plots, the max real 
part of the Fourier footprint for partitions H1-H4 has been reduced by 10-20% from the initial value.  The 
analytical results presented here will be verified in the following section by a series of numerical tests. 
 
 
 

     
                                                (a)                                                                        (b) 



 7 of 13 
――――――― 

American Institute of Aeronautics and Astronautics Paper 2010-0720 

     
                                                (c)                                                                        (d) 

Figure 5. Partitions resulting from optimization that give rise to weaker instabilities; 
Denote partitions as (a) H1; (b) H2; (c) H3; (d) H4. 

 
 
 

             
                                             (a)                                                                                  (b) 
 

               
                                             (c)                                                                                  (d) 

Figure 6. Close-up view of partitions shown in Figure 5. 
 
 



 8 of 13 
――――――― 

American Institute of Aeronautics and Astronautics Paper 2010-0720 

     
                                              H1                                                                                  H2 
 

    
                                              H3                                                                                  H4 

Figure 7. Fourier footprints for partitions shown in Figure 5. 
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                                                        H1                                                        H2 

 
                                                        H3                                                        H4 

Figure 8. Close-up view of Fourier footprints shown in Figure 7. 
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Linear advection of a Gaussian pulse 
 

To numerically verify improvements in the stability properties obtained in the previous section, the 
linear advection of a Gaussian pulse is considered. The equation to be solved is Eq. (11), and the initial 
solution is taken to be a Gaussian pulse with a half-width of 1/10 given as follows: 
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The coordinates x0 and y0 are the initial position of the maximum of the pulse. The numerical solution is 
carried out on grids comprised entirely of cubes, each split into 6 tetrahedral SVs. An upwind Riemann 
solver is used for the convective fluxes, and for time integration we use the 3rd order Strong Stability-
Preserving (SSP) Runge-Kutta scheme.26  The computational grid and initial solution used for this problem 
is shown in Figure 9. The grid contains 600 cells and periodic boundary conditions are assumed on all sides 
of the domain so as to avoid any additional errors due to implementation of numerical boundary conditions. 
Two different wave speeds, )0,1(=ar  and )1,1(=ar , are considered here and the pulse is allowed to 
convect until the instability is sufficiently observed by monitoring the L2 norm of the residual. 
 

       
Figure 9. Grid (left) and Grid with initial contours (right) for Gaussian pulse case (600 SVs).  

 
 The residual histories for this case are shown in Figure 10. Results for the partition from Chen22 and 
the optimized partitions H1-H4 shown in Figure 5 are displayed for comparison purposes. The weak 
instability is apparent for all cases, so the optimization process has not been able to completely stabilize the 
scheme at present. However, the optimization process has resulted in a dramatic weakening of the 
instability by about an order-of-magnitude for some cases. For example, the results for the H4 partition at 
zero wave angle demonstrate that the instability is not triggered until almost 300,000 iterations have been 
carried out, compared to only 30,000 iterations for the original partition before optimization. 
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Figure 10. Residual history for Gaussian pulse case using partitions shown in Figures 2a and 5:    

(top) wave angle = 0; (bottom) wave angle = π/4.  
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VI.    Conclusions 
   
 The constrained minimization approach has been applied in the design of 3D 3rd-order spectral volume 
schemes with improved stability properties. Several new partitions were presented which have a reduced 
maximum real part of the Fourier footprint by up to 20% over the original un-optimized partition. 
Numerical simulation of the convection of a Gaussian pulse was employed to numerically verify the 
analytical results, and it was shown that the strength of the instability was weakened by about an order-of-
magnitude for some cases by employing the constrained minimization approach. While the instability is 
still observed in the 3D 3rd-order scheme, it has been significantly weakened and is less of an issue now.  
Extension of the optimization procedure to include different types of objective functions and constraints, as 
well as possible use of a global optimization strategy is of future interest. 
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