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The high-order spectral difference (SD) method is used for the numerical simulation of 
several benchmark problems in computational aeroacoustics (CAA) to assess its 
effectiveness. A Perfectly Matched Layer (PML) absorbing boundary condition is 
implemented in the SD solver to minimize artificial wave reflections at computational 
boundaries. The performance of PML is tested and compared with the characteristic 
boundary condition. The numerical solution of Problem 1 “single airfoil response of 
impinging gust” in Category 3 and Problem 2 “trailing edge noise problem” in Category 4 of 
the Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems1 are 
presented here.  

I. Introduction 
omputational Aeroacoustics (CAA) studies the aerodynamic acoustic wave generation and propagation using 
computational simulations. In the past two decades, considerable progresses in CAA have been made. As 

numerical methods and boundary condition techniques for CAA mature, the interest in investigating “real-world” 
problems grows. Several such problems have been set and worked on in the Fourth Computational Aeroacoustics 
(CAA) Workshop on Benchmark Problems1. 
   The acoustic disturbance amplitudes are usually several orders of magnitude smaller than the mean flow 
disturbance. In order to capture the small magnitude acoustic disturbance and minimize numerical dispersion, an 
important requirement of CAA is high-order method. In the past years, high-order finite difference methods and 
overset grid methods which can handle complex geometries have been developed and used as the main simulation 
methods in CAA. In the last two decades, there have been intensive research efforts on high-order methods for 
unstructured grids2-13. High-order methods on unstructured grid are known for their advantages of robustness and 
reliability in numerical simulation of multiple-scale flow with complex geometries. A high-order SD method for the 
three dimensional Navier-Stokes equations on unstructured hexahedral grids developed by Sun et al.13 is used for the 
numerical simulation of aeroacoustic problems in this paper.  
   Boundary condition is another critical component in the development of CAA algorithms. For aeroacoustic 
problems, the proper artificial computational boundaries are needed to avoid the reflection of the out-going waves 
which contaminants the physical flow field. Various numerical non-reflecting boundary conditions14-17 based on the 
characteristics of the Euler equations have been developed to minimize the reflection of out-going waves. In recent 
years, several kinds of the disturbance-absorbing and buffer/sponge zone technique18-23 have been developed. In the  
disturbance-absorbing and buffer/sponge zone type of methods, additional zones surrounding the physical domain 
are introduced so that in the added zones either the outgoing disturbances are attenuated and thus the reflections are 
minimized21-23, or the mean flow is altered gradually to be supersonic18-20. Recently, Hu et al.21 introduced a 
Perfectly Matched Layer technique for absorbing out-going disturbances in a finite difference method of solving 
Euler equations and Navier-Stokes equations. The equations for PML are designed such that the out-going waves are 
absorbed by the layer with no reflection (theoretically) and the flow field recovers to a proposed mean flow at the 
end of the PML region. In this paper, the PML technique is implemented in the SD method with unstructured grids 
and used as the absorbing boundary condition in the numerical simulation of the aeroacoustic problems. 
   In the numerical experiments, the case of the propagation of an isentropic vortex is presented to verify the 
effectiveness and performance of the PML approach for the SD method solving the nonlinear Euler equations. In 
Benchmark Problem 1, the unsteady aerodynamic and acoustic responses of symmetric and Joukowski airfoils to an 
impinging 2D vertical gust are predicted with the nonlinear Euler equations. The prediction and reduction of 
unsteady airfoil noise is one of the main issues for reducing overall acoustic emission for subsonic vehicles. In 
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Benchmark Problem 2, the trailing edge noise problem solving Navier-Stokes equations is employed. For subsonic 
flow, one of the primary sources of trailing edge noise corresponds to the receptivity, excitation of the shear layer. 
The various mechanisms contributing to this problem include the interaction between acoustic waves, shear layer, 
and unsteady disturbances, which is a challenge to the numerical method and boundary conditions. All the results of 
these numerical experiments show that the high-order SD method with PML is capable of capturing the aeroacoustic 
disturbances. 
   The paper is organized as follows. In the next section, the formulation of the 3D SD method for a hexahedral 
element is reviewed. In Section 3, the formulation and implementation of the PML technique in the SD method is 
described. In Section 4, the numerical simulation results of the aeroacoustic problems are presented and discussed. 
Conclusions are summarized in Section 5. 
 

II. Review of Multidomain Spectral Difference Method 
We consider the unsteady three-dimensional compressible nonlinear Navier-Stokes equations written in the 
conservative form as 
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on domain Ω ൈ ሾ0, ܶሿ and Ω ؿ ܴଷ with the initial condition 
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and appropriate boundary conditions on ߲Ω. In (1), x, y, and z are the Cartesian coordinates and ሺݔ, ,ݕ ሻݖ א Ω, 
ݐ א ሾ0, ܶሿ denotes time, ܳ is the vector of conserved variables, and ܩ ,ܨ and ܪ are the fluxes in the ݕ ,ݔ and 
 .directions, respectively ݖ
   In SD method, it is assumed that the computational domain is divided into non-overlapping unstructured 
hexahedral cells or elements. In order to handle curved boundaries, both linear and quadratic isoparametric elements 
are employed, with linear elements used in the interior domain and quadratic elements used near high-order curved 
boundaries. In order to achieve an efficient implementation, all physical elements ሺݔ, ,ݕ  ሻ are transformed intoݖ
standard cubic element ሺߦ, ,ߟ ߫ሻ א ሾ0,1ሿ ൈ ሾ0,1ሿ ൈ ሾ0,1ሿ as shown in Figure 1.  

 
Figure 1: Transformation from a physical element to a standard element 

   In the standard element, two sets of points are defined, namely the solution points and the flux points. The 
solution unknowns or degrees-of-freedom (DOFs) are the conserved variables at the solution points, while fluxes are 
computed at the flux points in order to update the solution unknowns. At the interfaces between each two elements, 
a Riemann solver (Roe flux24) is used to compute the common inviscid flux, and the viscous flux at the interface is 
computed following the algorithm given in25. A detailed description of the space discretization and the algorithm in 
SD method to compute the inviscid flux and viscous flux derivatives can be found in 13. 
 

III. Formulation of Perfectly Matched Layer 
The Perfectly Matched Layer (PML) technique21 is an absorbing boundary condition to truncate the physical domain, 
and is implemented in this paper for the high-order SD solver. The equations in the PML zone are formulated so that 
the amplitude of the out-going waves ܳᇱ ൌ ܳ െ തܳ entering the PML zone can be exponentially reduced while 
causing as little numerical reflection as possible. So a mean state of flow തܳ satisfies (3) is needed for the unsteady 
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flow variables ܳ to reduce to. The governing Equation (4) is obtained by subtracting the mean state Equations (3) 
from the original Navier-Stokes Equations (1).  
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A three-step transformation process to formulate the PML equations based on (4) is described in 21: 
1. A proper space-time transformation 
2. A PML change of variables in the frequency domain 
3. A transformation from the frequency domain equation to the time domain equation 
   The PML equations (5) - (14) are obtained by following the above steps. More detailed description of deriving 
PML equations can be found in 21. 
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where ܷ ൌ ሺݓ  ݒ  ݑ  ܶሻ் are the variables whose spatial derivative is present in the viscous flux vectors. 
   The PML Equations (5)-(14) are valid only in the PML region as shown in Figure 2. In 21, the PML absorption 
coefficient in ݔ direction is taken to be  
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where ߪ௠௔௫ and ߙ are parameters that will be defined later, ݔ଴ is the location of interface between the PML and 
physical domains and ܦ௫ is the width of the PML domain as shown in Figure 2. The absorption coefficients in the 
other two directions are defined in a similar way. And we use a simple empirical formula for ߚ given in 22,  
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The computational domain for ݕ direction is ሾܽ, ܾሿ and ݑതሺݕሻ is the mean velocity problem in ݔ direction.  
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   Figure 3 shows the v-velocity contours at time ݐ ൌ 0.5, 1.5, 2.0 and 3.0 respectively, at levels from േ2.0 to 
േ4.0. The absorption of the vortex in the PML domain is clearly demonstrated. In figure 4, the v-velocity profile 
along ݕ ൌ 0 at time ݐ ൌ 0.5, 1.5, 2.0 and 3.0 respectively is compared with the exact solution. It is shown that in 
the physical domain, the numerical solution matches the exact solution very well, while in the PML domain the 
solution decays exponentially and reduces to the mean state of flow near the end of PML domain.  
   Figure 5 shows the error of v-velocity with PML technique at time ݐ ൌ 2.0, and also the error of the same case 
with the characteristic boundary condition17. It is shown that the error of the numerical results with PML is indeed 
quite small and much smaller than that of the results with characteristic boundary condition. It is also noted that the 
error can be further decreased by increasing the width of the PML domain. 
 
Benchmark CAA Problem 1 
The numerical solution of the gust response problem for a symmetric Joukowski airfoil in a two-dimensional gust of 
Problem 1 in Category 3 of Fourth Computational Aeroacoustics Workshop on Benchmark Problems1 is presented 
here. According to the formulation of the benchmark problem, the vertical gust harmonic is initially imposed on the 
mean flow with the following distribution:  
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where ߝ is the gust intensity relative to the mean flow, ݇ଵ and ݇ଶ are the gust wave numbers in the ݔ and ݕ 
directions, and ߱ is the imposed gust frequency. The mean flow തܳ is defined far upstream from the airfoil as: 
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where ܷ is the upstream mean flow Mach number, and  ߛ ൌ 1.4. In all computations, the Mach number is fixed at 
ܽܯ ൌ 0.5, the gust intensity is ߝ ൌ 0.02. Here we take ݇ଵ ൌ ݇ଶ ൌ ݇ and gust frequency is ߱ ൌ ܷ݇. The detailed 
problem description can be found in 1. 
   The 3rd-order SD method is used for space discretization and an explicit 3rd-order Runge-Kutta method is used 
for time integration. Figure 6 shows the computational mesh with the number of cells to be 39,550 which results in 
355,950 degrees-of-freedom for the 3rd-order SD method. A PML zone with width ܦ ൌ 10 is added to the upper 
and outer boundary of the physical domain, and the interfaces between the PML zone and physical domain are 
shown by the dash line in Figure 6. The parameters of absorption coefficient in (15) are set to be ߪ௠௔௫ ൌ 20 and 
ߙ ൌ 4 in this case. 
   The calculated mean pressure on the surface of the symmetric airfoil is shown in Figure 7, in comparison with 
the result in 1. Figure 8 shows the calculated root mean square (RMS) of the pressure on the upper and lower 
surfaces of the airfoil respectively for wave number ݇ ൌ 1.0 and ݇ ൌ 2.0. Both the mean pressure and RMS 
pressure on the airfoil surface agree well with the results in 1. Figure 9 shows the instantaneous velocity 
݇ contour field for wave number (component-ݕ) ൌ 1.0 and ݇ ൌ 2.0. Figure 10 shows the instantaneous velocity 
ݔ profile along (component-ݕ) ൌ 1. Both Figure 9 and Figure 10 illustrate that the PML performs well in absorbing 
the out-going wave entering the PML zone and the flow variables ܳ reduce to the proposed mean flow തܳ at the 
end of the PML zone. The present results illustrate that the present numerical method and absorbing boundary 
condition are capable for numerical simulation of the gust-airfoil interaction problem using the non-linear Euler 
equations. 
 
Benchmark CAA Problem 2 
The numerical solution of the trailing edge noise problem of Problem 2 in Category 4 of Fourth Computational 
Aeroacoustics Workshop on Benchmark Problems1 is presented here. Consider a two-dimensional, compressible 
mixing layer flow formed by a splitter plate with a blunt trailing edge, Figure 11. The splitter plate has a shape 
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consisting of a flat plate section capped by a super-ellipse at the trailing edge, and the definition of the splitter plate 
surface is:  
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   Figure 11 shows the computational grid with 8,000 element cells. The physical domain is െ30.0 ൑ ݔ ൑ 100.0, 
െ80.0 ൑ ݕ ൑ 80.0, and the PML domain is added around the physical domain with the width ܦ௫ି௨௣௦௧௥௘௔௠ ൌ 20, 
௫ିௗ௢௪௡௦௧௥௘௔௠ܦ ൌ 50 and ܦ௬ ൌ 20 (Figure 11). And the parameters of absorption coefficient in (15) are set to be 
௠௔௫ߪ ൌ 40 and ߙ ൌ 3 in this case. Both the 3rd-order and 4th-order SD methods are used for space discretization; 
thus resulting in 72,000 and 128,000 degrees-of-freedom, respectively.  
   The upper and lower stream has free stream Mach number ܽܯଵ ൌ 0.1 and ܽܯଶ ൌ 0.6 respectively with the 
same boundary layer momentum thickness ߠ ൌ 1.0 at ݔ ൌ െ50. The flow state at the inflow boundary at 
ݔ ൌ െ50 is approximated above and below the plate by solutions to the compressible boundary layer equations 
with zero pressure gradients. Free stream conditions above the plate are ଵܶ ൌ ଶܶ and ߩଵ ൌ  ଶ. The Reynoldsߩ
number based on the lower free stream properties and boundary layer momentum thickness is ܴ݁ ൌ 250. Boundary 
conditions on the plate surface are the non-slip condition ݑ ൌ ݒ ൌ 0 and the isothermal condition ௪ܶ௔௟௟ ൌ ଵܶ. 
More details of the description of this problem can be found in the Fourth Computational Aeroacoustics (CAA) 
Workshop on Benchmark Problems1. 
 
Steady State Solution 
The mixing layer in the present case is strongly unstable and supports exponentially growing small disturbances. 
Using the traditional characteristic outlet boundary condition, the steady state is never achieved with a high-order 
method. The feedback from the outlet boundary reflection error must be less than the gain of the unstable shear 
layer, such that the flow could ultimately relax to a steady solution. In this paper, a steady solution was achieved 
with a relatively small PML sponge zone. 
   The mean flow തܳ for PML in Equation (3) is provided by the 1st-order steady solution with the characteristic 
outlet boundary condition. But the 1st-order mean flow തܳ does not exactly satisfy Equation (3) with higher order 
methods, so the mean flow തܳ is updated with an improved mean flow as the computation proceeds. With the PML 
and an improving mean flow, the computation converged and the L2 norm of the residues eventually becomes less 
than 10ି଼, which is at least six orders of magnitude from its initial value. 
   Figure 12 shows the streamwise velocity profiles at ݔ ൌ 75 for the steady state solution. Results for the 
3rd-order method and 4th-order method are indistinguishable from each other. Figure 13 shows the steady state 
streamwise velocity profile at ݔ ൌ ݔ ,5 ൌ 40 and ݔ ൌ 75 and compares with the results of Barone et al.1 at 
ݔ ൌ 5. Good agreement is found. The present results and comparison suggest that spatial convergence of the mean 
velocity profiles was obtained. 
 
Evolution of a Pressure Pulse 
This problem is to solve the scattering of an acoustic pulse which originates near the trailing edge. It involves a 
complicated physical process including the pressure pulse expanding and interacting with the trailing edge, and then 
the exciting and thereafter exponential growth of the Kelvin-Helmholtz instability wave packet within the shear 
layer. To capture the reflected component, the transmitted component, and the diffracted component of the 
scattering pressure pulse, the 4th-order SD method and an explicit 3rd-order Runge-Kutta method are used for the 
spatial discretization and time integration respectively. The initial condition of this initial value problem of a 
pressure pulse superimposed on the steady flow is 
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   Figure 14 shows the computed pressure disturbance distribution of the 4th-order solution within the shear layer at 
y ൌ െ3 for t ൌ 200. The dash lines represent interfaces between the physical domain and PML zones, and the 
absorbing processes are clearly shown in both upstream PML zone െ50 ൑ x ൑ െ30 and downstream PML zone 
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100 ൑ x ൑ 150. Figure 15 gives the acoustic signal recorded at ሺx, yሻ ൌ ሺെ30,1ሻ for the time duration 40 ൑ t ൑
80. Both results of the pressure disturbance distribution (Figure 14) and the acoustic signal serial (Figure 15) are 
compared with the results of Barone et al.1. Good agreements are found and the physics are seen to be well captured 
by the 4th-order SD method and the 3rd-order Runge-Kutta method. 
 

V. Conclusions 
   In this paper, a time-domain absorbing boundary condition PML for nonlinear Euler and Navier-Stokes 
equations has been implemented for the high-order SD method with unstructured grids. In the numerical verification 
case of the isentropic vortex propagation, it is shown that the error of the numerical results with PML is about two 
orders lower than that of the results with characteristic boundary condition. Two benchmark problems in the Fourth 
Computational Aeroacoustics (CAA) Workshop on Benchmark Problems have been tested. The results show that the 
high-order SD method with unstructured grid is capable for the numerical simulation of aeroacoustic problems and 
the performance and efficiency of the PML are good in these cases. 
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Figure 3: v-velocity contour levels at time (a) t=0.5, (b) t=1.5, (c) t=2.0 and (d) t=3.0 (from left to right).  

The solid square indicates the physical/PML interface 
 

 
Figure 4: v-velocity profile along y=0 at time (a) t=0.5, (b) t=1.5, (c) t=2.0 and (d) t=3.0 (from left to right). 

Solid line: numerical solution; dashed line: exact solution 

 
Figure 5: The error of v-velocity at time t = 2.0 
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Figure 6 Computational mesh of Benchmark Problem 1 

 
Figure 7: Mean airfoil surface pressure for the symmetric airfoil 

  
Figure 8: RMS pressure on the airfoil surface at wave number ܓ ൌ ૚. ૙ (left) and ܓ ൌ ૛. ૙ (right) 
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Figure 9: Instantaneous velocity contour, Y-component at wave number ࢑ ൌ ૚. ૙(upper) and ࢑ ൌ ૛. ૙(below) 

 
Figure 10: Instantaneous velocity profile along y = 1 at wave number ࢑ ൌ ૚. ૙ 
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Figure 11 Computational mesh of Benchmark Problem 2 

 
Figure 12 Steady state streamwise velocity profiles at ࢞ ൌ ૠ૞ 

 
Figure 13 Steady state streamwise velocity profiles at ࢞ ൌ ૞, ࢞ ൌ ૝૙ and ࢞ ൌ ૠ૞ 
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Figure 14 Pressure disturbances along the along ࢟ ൌ െ૜ at ࢚ ൌ ૛૙૙ 

 
Figure 15 Acoustic pulse signals at ሺ࢞, ሻ࢟ ൌ ሺെ૜૙, ૚ሻ 


