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Recently a differential discontinuous formulation for conservation laws named the 

Correction Procedure via Reconstruction (CPR) was developed. CPR is inspired by several 

other discontinuous methods such as the discontinuous Galerkin, spectral volume and 

spectral difference methods. In fact, all of them can be unified under the CPR framework, 

which is relatively simple to implement. The aim of the present work is to investigate and 

develop an efficient solution algorithm for high speed viscous flows using the high-order 

CPR discretization. A p-multigrid solver and an implicit line solver are developed and tested 

on several test cases to show the performance.  

I. Introduction 

Advantages of high-order methods are well recognized in the computational fluid dynamics (CFD) community 

especially for aeroacoustic noise predictions, vortex dominated flows, large eddy simulation and direct numerical 

simulation (DNS) of turbulent flows. Since the truncation error of a high-order method decreases more rapidly than 

that of a lower order method if the flow field is sufficiently smooth, the more stringent the accuracy requirement is, 

the more efficient a high-order method becomes in computational cost. For the practical use in industries, lower 

order (1st or 2nd) unstructured grid methods are usually employed for the reason of superior geometrical flexibility 

and robustness. However, these methods are likely too dissipative to capture small vortex structures in turbulent 

flows and are often not capable of obtaining grid converged solutions. 

In the past decades, there has been significant progress in developing high-order methods capable of solving the 

Navier-Stokes (NS) equations on unstructured grids. For compressible flow computations in aerospace applications, 

the discontinuous Galerkin (DG) method [20, 5, 1] has attracted intensive interest. One particular feature of the DG 

method is the discontinuous solution space of high-order approximations for each element, which allows the scheme 

to be very flexible in dealing with complex configuration and in accommodating solution based adaptations. Other 

methods assuming element-wise discontinuous solution are staggered-grid (SG) multi-domain spectral method [14], 

spectral volume (SV) [31, 27] and spectral difference (SD) [16] methods. Another notable feature that is common 

among these methods is the use of one of the Riemann solvers to compute unique fluxes at element interfaces to 

incorporate “upwinding” characteristics of wave propagation, similar to the Godunov type finite volume method. 

The main difference among these methods lies in how the degrees-of-freedom (DOFs) are chosen and how the 

governing equations are discretized. Comprehensive reviews of these methods can be found in [29].  

Recently, a novel formulation named CPR (correction procedure via reconstruction) was developed by Huynh 

[11, 12] for 1D conservation laws, and extended to simplex and hybrid meshes by Wang and Gao [30]. The CPR 

method is based on a nodal differential form, with an element-wise discontinuous polynomial solution space. The 

solution polynomial is interpolated from the solutions at a set of solution points. This formulation has some 

remarkable properties. The framework is easy to understand, efficient to implement and recovers several known 

methods such as the DG, SG or the SV/SD methods. Furthermore, by choosing the solution points to coincide with 

the flux points, the reconstruction of solution polynomials to calculate the residual can be completely avoided. The 

DG scheme derived through the CPR framework is probably the simplest and most efficient amongst all DG 

formulations since explicit integrations are avoided. In the recent study [7, 8], the CPR method has been extended to 

the Navier-Stokes equations on 2D and 3D mixed meshes.  

One of the critical issues of those high-order methods is the large computational cost. The total cost is sharply 

increased as the number of DOFs within elements is increased. There have been many research efforts to develop 

                                                             
1
 Post-doc Research Associate, Department of Aerospace Engineering, 2271 Howe Hall, AIAA Member. 

2
 Graduate Research Assistant, Department of Aerospace Engineering, 2271 Howe Hall, AIAA Member. 

3
 Professor of Aerospace Engineering, 2271 Howe Hall, Associate Fellow of AIAA. 

49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
4 - 7 January 2011, Orlando, Florida

AIAA 2011-45

Copyright © 2011 by Z.J. Wang and Takanori Haga.  Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 

American Institute of Aeronautics and Astronautics 
 

 

2

efficient solution methods [2, 6, 19]. However, solution techniques are still not matured enough to realize the wide 

use of these high-order methods especially for high Reynolds number flows in 3D aerodynamic applications. It is 

known that the convergence performance of a common implicit solver e.g. a point Jacobi or a Gauss-Seidel, 

degrades dramatically for highly anisotropic meshes used to efficiently resolve thin boundary layers at high-

Reynolds number flows. In our previous study [9], an implicit SV method was developed using the nonlinear LU-

SGS scheme. Although the developed method demonstrated an order of magnitude increase in the convergence rate 

compared with an explicit Runge-Kutta method, apparent slow down of the convergence was observed for a 

Reynolds Averaged Navier-Stokes (RANS) computation with highly stretched anisotropic mesh. To alleviate the 

stiffness associated with stretched grids, a line implicit solver which treats clusters of elements implicitly with 

strongest coupling will be employed. Variants of line implicit relaxation methods have been successfully used in 

finite volume solvers [18] as well as in the DG methods [6, 24, 4]. 

The present work focuses on the solution methods for the 3D CPR discretiztions. In this study, the line implicit 

solver is developed for the CPR method on 3D hybrid grids together with a p-multigrid algorithm to speed up 

convergence and the performance is demonstrated for several benchmark flow problems. 

 

II. Discretization of the Correction Procedure via Reconstruction (CPR) 

A. Governing equations 

The 3D compressible Navier-Stokes equations can be written as a system of partial differential equations in 

conservation form: 

 
Q

t
+ F c Q( ) F v Q, Q( )( ) = 0, (2.1) 

where Q = ( , u, v, w,e)  is the conservative state vector, F c (Q)  is the convective flux, F v (Q)  is the viscous 

flux. For a perfect gas, the pressure is related to the total energy e by 

 e =
p

1
+
1

2
u2 + v 2 + w2( ). (2.2) 

The specific heat ratio is set to 1.4 for air and the Prandtl number in the viscous flux is assumed to be a constant of 

0.72 for laminar flows. The computations for solving the Euler equations are performed by omitting the viscous 

flux. 

 

B. Framework of the CPR Formulation 

The CPR formulation can be derived from a weighted residual method by transforming the integral formulation 

into a differential one. A hyperbolic conservation law, which can be written as 

 
  

Q

t
+

 

 •
 

F (Q) = 0 ,                    (2.3) 

with suitable initial and boundary conditions. Q is the vector of conserved variables, and   
 

F  is the flux vector. 

Assume that the computational domain  is discretized into N non-overlapping triangular (in 2D) or tetrahedral (in 

3D) elements {Vi}i=1
N . The weighted residual form of Eq. (2.3) on element Vi  can be derived by multiplying Eq. (2.3) 

by an arbitrary weighting or test function W and integrating over Vi, 

 

  

Q

t
+

 

 •
 

F (Q)
 

 
 

 

 
 WdV

Vi

=
Q

t
WdV

Vi

+ W
 

F (Q)•
 

n dS
Vi

 

 W •
 

F (Q)dW
Vi

= 0.

      (2.4) 
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Let Qi  be an approximate solution to Q on Vi . On each element, the solution belongs to the space of polynomials 

of degree p or less, i.e., Qi P p (Vi)  with no continuity requirement across element interfaces. Let the dimension 

of P p
 be K: K=(p+1)(p+2)/2 for a triangle or K=p(p+1)(p+2)/3! for a tetrahedron). Then, we equire that the 

numerical solution Qi  must satisfy Eq. (2.4), i.e., 

 

  

Qi

t
WdV

Vi

+ W
 

F (Qi )•
 

n dS
Vi

 

 W •
 

F (Qi )dV
Vi

= 0.          (2.5) 

Because the approximated solution is generally discontinuous across element interfaces, the fluxes at the interfaces 

are not well defined. Following the idea used in the Godunov method, the normal flux term in Eq. (2.5) is replaced 

with a common Riemann flux [13, 15, 21, 23], i.e., 

 
  
F n (Qi )

 

F (Qi )•
 

n Fcom
n (Qi ,Qi+,

 
n ) ,  (2.6) 

where Qi+  denotes the solution outside the current element  Vi . Thus, Eq. (2.5) becomes 

 

  

Qi

t
WdV

Vi

+ WFcom
n dS

Vi

 

 W •
 

F (Qi )dV
Vi

= 0.                   (2.7) 

Applying integration by parts to the last term of (2.7), we obtain 

 

  

Qi

t
WdV

Vi

+ W
 

 •
 

F (Qi )dV
Vi

+ W Fcom
n F n (Qi )[ ]dS

Vi

= 0.     (2.8) 

Note that the quantity 
  

 

 •
 

F (Qi)involves no influence from the data in the neighboring cells. The influence of 

these data is represented by the above boundary integral, which is also called a “penalty term”, penalizing the 

normal flux differences.  

The next step is critical in the elimination of the test function. The boundary integral above is cast as a volume 

integral via the introduction of a “correction field” on Vi, i P p (Vi) , 

 W idV
Vi

= W [F n ]dS
Vi

.                                                     (2.9) 

where [F n ] Fcom
n F n (Qi)  is the normal flux difference. The above equation is sometimes referred to as the 

“lifting operator”, which has the normal flux differences on the boundary as input and a member of P p (Vi)  as 

output. Substituting Eq. (2.9) into Eq. (2.8), we obtain 

 

  

Qi

t
+

 

 •
 

F (Qi ) + i

 

 
 

 

 
 WdV

Vi

= 0.                          (2.10) 

If the flux vector is a linear function of the state variable, obviously 
  

 

 •
 

F (Qi) P p . Therefore the terms inside 

the square bracket are all elements of P p
. Because the test space is selected to ensure a unique solution, Eq. (2.10) 

is equivalent to 

 
  

Qi

t
+

 

 •
 

F (Qi ) + i = 0 .                                            (2.11) 
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For nonlinear conservation laws, 
  

 

 •
 

F (Qi)  
is usually not an element of P p

. As a result, (2.10) cannot be reduced to 

Eq. (2.11) generally. In this case, the most obviously choice is to project 
  

 

 •
 

F (Qi)  into P p
. Denote 

  

 

 •
 

F (Qi)( ) 

a projection of 
  

 

 •
 

F (Qi)  
to P p

. Then Eq. (2.10) reduces to 

   

Qi

t
+

 

 •
 

F (Qi )( ) + i = 0.                                            (2.12) 

 
 

With the introduction of the correction field i , and a projection of 
  

 

 •
 

F (Qi)  
for nonlinear conservation laws, 

we have reduced the weighted residual formulation to a differential formulation, which involves no integrals. 

Next, let the DOFs be the solutions at a set of solution points (SPs) 
  
{

 
r i, j} (j varies from 1 to K), as shown in 

Figure 1.1. Then Eq. (2.12) holds true at the SPs, i.e., 

 
  

Qi, j

t
+ j

 

 •
 

F (Qi )( ) + i, j = 0 ,                                           (2.13) 

where 
  

j

 

 •
 

F (Qi)( )
 
denotes the values of 

  

 

 •
 

F (Qi)( ) at SP j. The efficiency of the CPR approach hinges on 

how the correction field i  and the projection 
  

 

 •
 

F (Qi)( )  are computed. 

To compute i , we define p+1 points named flux points (FPs) along each interface, where the normal flux 

differences are computed, as shown in Figure 1.1. We approximate (for nonlinear conservation laws) the normal flux 

difference [F n ]
 
with a degree p interpolation polynomial along each interface. For linear triangles with straight 

edges, once the solution points and flux points are chosen, the correction at the SPs can be written as 

 
i, j =

1

Vi
j , f ,l[F

n ] f ,l S f

lf Vi

,                                      (2.14) 

where f is an face index, l is the FP index, 
j, f ,l  are lifting constants independent of the solution, S f

 
is the face area, 

Vi

 

is the volume of Vi . Note that the correction for each solution point, namely i, j , is a linear combination of all 

the normal flux differences on all the faces of the cell.  

To compute 
  

j

 

 •
 

F (Qi)( ) , two possible approaches were considered in the previous work [30]. One is the 

Lagrange polynomial (LP) approach and the other is the chain rule (CR) approach. Numerical experiments indicate 

that there is a slight loss of accuracy with the LP approach, but it is fully conservative. On the other hand, the CR 

approach is much more accurate than the LP approach, at the expense of full conservation. In this work, the CR 

approach is used.  

It can be easily shown that the location of SPs does not affect the numerical scheme for linear conservation laws 

[28]. For efficiency, therefore, the solution points and flux points are always chosen to include corners of the cell. In 

addition, the solution points are chosen to coincide with the flux points along cell faces to avoid any solution 

reconstruction. Furthermore, in computations with hybrid meshes, the flux points are always of the same distribution 

for different cell types for ease of interface treatment. Due to the special choice of DOFs, the reconstruction cost in 

CPR is completely avoided, and the mass matrix is always the identity matrix. 

The above formulation is the basis of the discretization on triangles in 2D and tetrahedrons in 3D. For 

quadrilaterals in 2D and hexahedrons in 3D, one dimensional CPR formulation (FR formulation [11]) is directly 

used based on a tensor-product bases approximation. For triangular prisms, 1D formulation and 2D formulation on 

triangles are combined using a tensor-product approach, which is shown later. 

The CPR formulation has been extended to the Navier-Stokes equations on 2D mixed meshes [7] and also on 3D 

mixed meshes [8]. The details of the discretization can be found in the references. In this work, the Roe flux [21] is 

used to evaluate the common inviscid flux at the interfaces. And the BR2 scheme is used to compute the common 

viscous flux. 
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III. Discretization on Mixed Grids with Curved Boundary 

The current development for 3D hybrid meshes accommodates two kinds of element shapes, i.e., tetrahedron and 

triangular prism. The use of prismatic cells in addition to tetrahedral cells has the advantage in both accuracy and 

computational costs to resolve boundary layers near solid walls. All elements are transformed from the physical 

domain (x, y, z) into a corresponding standard element in the computational domain ( , , ) as shown in Fig. 1. 

Here we consider the transformations for the elements with curved sides (faces and edges). The discretization for the 

curved elements is conducted in the same way as the straight sided elements by applying the CPR formulation in the 

standard elements.  

Based on a set of nodes defining the shape of an element, a set of shape functions can be obtained [33]. Once the 

shape functions Mi( , , )  are given, the transformation can be written as 

 

  

 
r ( ) = M j (

 

 )
j

 
r j( ) ,                                                              (3.1) 

where 
 

 
r i  are the physical coordinates used to define an element, and 

  
M j (

 

 )  is the shape function. Denote J  the 

Jacobian matrix of the transformation, and . 

Let the flux vector in the physical domain be . The transformed equations take the following form 

 .                                               (3.2) 

where , . 

A. Discretization on the standard tetrahedron 

On a standard tetrahedron, the CPR formulation can be expressed as 

           (3.3) 

For the standard tetrahedron, , the areas for the four faces are 1/2, 1/2, 1/2 and  respectively. For the 

face on the plane  (denoted as face 1), the outgoing unit normal in the computational domain is 

 

  (3.4) 

 

A similar expression can be obtained for the other faces, with a properly defined . For the diagonal face,  

  (3.5) 

The final formulation can be written as 

  (3.6) 
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In 3D, to construct a complete polynomial of degree p, at least p(p+1)(p+2)/3! SPs need to be chosen. In order to 

achieve the most efficient implementation, SPs on edges are chosen to be the Legendre-Gauss Lobatto (LGL) points. 

For 4th- (p3) or higher order schemes, nodes inside the boundary triangle are chosen from [10]. For 5th- (p4) or 

higher order schemes, nodes inside the tetrahedron are chosen from [32]. The nodal set of the 4th-order (p3) CPR 

scheme is shown in Fig. 2a. Note that the flux difference at a flux point corrects all solution points as shown in (3.6). 

B. Discretization on the standard prism 

For a standard triangular prism, the solution polynomial can be expressed as a tensor product of 1D and 2D 

Lagrange polynomials, i.e.,  

  (3.7) 

where  are the state variables at the solution point (j,m), with j the index in the -  plane and m the index in 

 direction, 
 
is a 2D Lagrange polynomial based on the solution point in the base triangle and  is a 

1D Lagrange polynomial based on the solution points in the prism height direction. Figure 2b shows the locations of 

the solution points for p=3. The nodal sets on the edge and the triangle are chosen in the same manner as the 

tetrahedral element.  

The CPR formulation for a standard prism takes advantage of this tensor product basis, and is two dimensional in 

the -  plane and one dimensional in  direction 

  (3.8) 

The correction process is done in a decoupled manner.  The third term is the correction of the flux components in 

 and  direction, which is computed on a plane with fixed  = m. This is nothing but the correction used in the 2D 

CPR method for a triangular element. In Eq. (3.8), 

 

is the area of the base triangle, which is 1/2, Sf the length of 

the edge f of the base triangle, and l the index for flux points on f. Note that,  corrects only the 

solution points on the triangle with fixed m instead of all solution points in the element as shown in Figure 2b. The 

      
 

Figure 1. Transformations of a curve boundary tetrahedral and prismatic cell to the standard elements. 
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last two terms denote the correction in the  direction, which is evaluated by the 1D CPR method [11]. The flux 

difference at an end point corrects only the solution points on the segment with fixed j as shown in Figure 2c. For 

prism cells, the number of solution points corrected by a flux point is smaller than the one for tetrahedral cells due to 

the decoupled correction procedure. Hence, the method for prisms is more efficient per DOF than for tetrahedrons. 

This decoupled procedure also facilitates the implementation employing different degrees of polynomials in -  and 

 directions to adapt to flow features. An attempt employing higher order polynomials in the wall normal direction 

to resolve the boundary layer with coarser prism cells is presented in [8]. 

 

IV. Implicit Relaxation Solver 

A. Block nonlinear LU-SGS solver 

For the time integration, multi-stage Runge-Kutta schemes usually suffer from slow convergence to the steady 

state, especially for viscous problems in which grid points are clustered in the boundary layer. In order to 

circumvent the small time step restriction, we consider implicit solution methods. Applying the backward Euler 

differencing for the combined semi-discrete form of the governing equations gives 

 
  

Qi
n+1 Qi

n

t
= Ri(Q

n+1),    (i =1,…N) (4.1) 

where Ri is the residual vector for all unknowns in the i-th element arising from the spatial discretization. To solve 

the nonlinear system for the n-th time step, usually the residual is linearized and an iterative linear solver such as an 

element Jacobi, a Gauss-Seidel or a Krylov subspace method (GMRES) is applied to the resulting sparse system. In 

this study, we employ a nonlinear LU-SGS method [25]. The final form of the method is written as follows for the i-

th element,  

 I

t

Ri

Qi

 

 
 

 

 
 Qi

k+1 Qi
*( ) = Ri(Qi

*,Qnb
* )

Qi
* Qi

n

t
,    (k =1,...,kmax)  (4.2) 

where k denotes the index of the inner iterations between n-th and n+1-th time steps and * denotes the most recent 

update during the symmetric forward and backward sweeps over the global domain. In this study, Jacobian matrices 

are calculated using a numerical differencing and those are frozen to the value at the n-th time step. For each 

element, Eq. (4.2) is easily solved by the direct LU decomposition. If Eq. (4.2) is solved for the RHS to become zero 

for all elements, this is equivalent to solve the nonlinear system of Eq. (4.1) at the n-th step.    

 The size of the Jacobian matrix in the 3D Navier-Stokes equations is (5  NDOFs in an element)
2
. The memory 

requirement for the Jacobian matrices is not small, and it will not be affordable for k>3 polynomial approximations. 

In order to improve the computational efficiency, we freeze the Jacobian matrices for intervals of time steps 10-50. 

     
 

                       (a)       (b)              (c) 

Figure 2. Solution points in the standard tetrahedral and prism elements for p = 3 polynomial (only points on the 

visible faces are shown). 
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The maximum number of the inner sweeps (kmax) is set to 3 in this study. To enable a computation with the 

impulsive start condition of freestream values, we use a ramping equation to gradually increase the CFL number. 

 CFLn+1 =min CFL0 an,CFLmax( )  (4.3) 

where  is a constant, which we set to 1.05 for usual cases. In practice, we typically use a value for CFL0 of 1 and a 

value for CFLmax  of about 100 to 10,000. 

B. Line implicit solver 

The nonlinear LU-SGS solver in the previous subsection is an elemental iterative method and is effective for 

isotropic meshes. However, it is known that its convergence performance degrades dramatically for highly 

anisotropic meshes commonly used in resolving thin boundary layers at high-Reynolds number flows. To alleviate 

the stiffness associated with stretched grids, we employ a line implicit solver which treat clusters of elements with 

strongest coupling implicitly.  

We follow the algorithm described in [4] to construct lines of elements in a hybrid mesh. Since the anisotropic 

cells are used to resolve boundary layers, anisotropic regions will be found attached to the boundary faces on the 

solid surface. Lines connecting anisotropic cells are formed to originate from those boundary faces. Starting from 

one of those boundary faces, the face’s normal vector that is orienting inside of the mesh is calculated and the cell 

attached to the boundary face is added to the line. To make a line solver effective, a line must propagate along the 

direction of strong coupling, which is assumed to be the wall normal direction in the boundary layer. By considering 

this, the next element to be added in the line is searched from the face sharing neighbors of the current (most 

recently added) cell. For the current cell, all the outgoing normal vectors of its faces are computed and the angles 

between the boundary face’s normal vector and these faces’ normal vectors on the cell are computed. If the 

minimum angle among those is less than a prescribed value , the neighboring cell across the corresponding face is 

added to the line and searched for the next cell. The above searching process is repeated until the computed 

minimum angle for the current cell is greater than  degrees or the cell aspect ratio is less than 3. In this work,  is 

chosen to be 30. This line creation is done for each boundary face on the solid surface.  

After creating lines from the boundary faces, there can still be anisotropic regions in the mesh due to the physical 

phenomena such as wake regions or due to a meshing process employing the structured grid like topology. Although 

lines in such regions can be generated by using a more general approach [18], we don’t employ the technique in this 

study. 

Once the lines have been created the line-implicit solver is straight-forward to implement. Using the backward 

Euler time integration, the linearized equations for a line can be written as 

 

  

I

t

Ri

Qi

 

 
 

 

 
 Qi

Ri

Qn

Qn

Ri

Qn+

Qn+ = Ri(Q
n ),    (i =1,…Nline )  (4.4) 

where the subscript i denotes the local cell index in the line, n- and n+ denote the two neighbor cells and Nline is the 

total number of cells in the line. Thus, implicit lines form a block tri-diagonal matrix for each line. Each row of this 

block tri-diagonal matrix contains the block diagonal matrix of an element and one or two block off-diagonal 

matrices of neighboring elements in the line. The localized linear system for each line is solved directly using a 

block variant of the Thomas algorithm. This line implicit solver is used by coupled with the nonlinear LU-SGS 

solver in the previous section. That is, solution variables are updated for one cell or one line after another during the 

forward and backward sweeps over the cells and lines in the global mesh. In this approach, one or two more off-

diagonal block Jacobian matrices need to be computed for each cell in the implicit lines. To save the computation 

time we store the Jacobian matrices and also freeze them for the intervals as with the LU-SGS scheme. Since this 

extra storage is required for only the region where lines are created, the cost will not be prohibitively expensive. 

 

V. p-Multigrid Solver 

While the standard iterative solvers such as the variants of element-Jacobi scheme or Gauss-Seidel scheme are 

quite effective in damping the non-smooth (high frequency) part of the error represented in a given mesh, they are 

not efficient in reducing the smooth (low frequency) part of the error. For this reason, the high frequencies of the 

error are smoothed out after a small number of iterations and the convergence rate deteriorates due to the persistent 
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low frequency error. This undesirable tendency becomes more prominent for fine meshes. Multigrid methods are 

well known as the effective remedy for this problem. In h-multigrid methods, a better convergence rate is obtained 

by adopting a sequence of progressively coarser grids, which facilitate an effective reduction of the solution error 

over the entire frequency field. The p-multigrid approach [22] is based on the same concept as the common h-

multigrid but it makes use of “coarser” levels which are constructed by reducing the order of accuracy of the 

discretization rather than using physically coarser grids. Thus, all grid levels contain the same number of elements, 

which alleviates the need to perform complex interpolation between the multigrid levels and to implement 

agglomeration procedures.  

 

1. Nonlinear formulation 

Multigrid methods have been proven to be effective for accelerating convergence to steady state for both linear 

and nonlinear problems [26] and can be applied with many existing relaxation techniques (smoother). There are two 

ways of applying a multigrid method to the nonlinear set of equations. One is so called the Newton-multigrid, which 

uses the coarse grid correction (CGC) multigrid on the linearized problem obtained at each Newton iteration. 

Another is the full approximation storage (FAS) scheme, which applies multigrid directly to the nonlinear problem. 

In this study, we employ the FAS scheme [3] to solve the nonlinear governing equations.  

In order to illustrate the two-level algorithm, let us consider a generic nonlinear problem A p (up ) = f p , where up  

is the discrete exact solution vector, A p (up )  is the associated nonlinear algebraic operator and the superscript p 

indicates the level. Note the source term f p  at the fine level is 0 in the governing equations considered here. Let vp  

be an approximation to the solution vector and define the discrete residual as r p f p A p (vp ). Starting from the 

initial guess v0
p  on the fine level, the correction is performed according to the following steps: 

• Iterate the fine level problem (update the approximate solution from v0
p  to vp ) using any of the relaxation 

scheme and compute the residual: 

 A p (vp ) = f p , r p = f p A p (vp ).  (5.1) 

• Restrict the solution and the residual to the coarse level: 

 v0
p 1

= Ip
p 1vp , r p 1

= ˜ I p
p 1r p , (5.2) 

where Ip
p 1 and ˜ I p

p 1 are the solution and the residual restriction operators from level p to level p-1, respectively. 

• Compute the forcing term for the coarse level: 

 f p 1
=A p 1(v0

p 1) + r p 1 . (5.3) 

• Solve the coarse level problem (update the approximate solution from v0
p 1 to vp 1): 

 A p 1(vp 1) = f p 1. (5.4) 

• Calculate the coarse grid error: 

 e p 1
= vp 1 v0

p 1. (5.5) 

• Prolongate the coarse grid error and correct the fine level approximation: 

 vp = vp + Ip 1
p e p 1. (5.6) 

 where Ip 1
p  is the error prolongation operator. 

Note that the above multigrid formulation is applied to the steady Euler or Navier-Stokes equations in the form 

of R(Q) = 0, and hence there is no time derivative term. However, we still include the time step term in the LU-SGS 
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and the line implicit smoother to enhance the stability of the computation, though there is no physical meaning to 

keep the term during the iteration.  

 

2. Transfer operators 

Defining a prolongation operator is natural in the CPR method as in the case of spectral element methods. Let Li
p  

denote the i-th Lagrange polynomial of order p in the discretization. Since the numerical approximation space are 

nested Li
p 1 can be expressed in terms of Li

p  

 Li
p 1

= ij
p 1L j

p

j

. (5.7) 

Thus, the prolongation operator can be defined as  

 Ip 1
p

= ( p 1)T . (5.8) 

 Defining a restriction operator is less straightforward. In this study, an L2 projection was chosen for both the 

state and residual restriction operators, giving the following definition: 

 Ip
p 1

= (M p 1) 1Np 1 , where Mk,i
p 1

= Lk
p 1Li

p 1d , Nk, j
p 1

= Lk
p 1L j

pd . (5.9) 

3. Cycling strategy 

In the two-level correction scheme, the coarse level problem is not much different from the original problem. To 

solve the coarse level problem efficiently, the two-level correction scheme can be applied recursively by moving to 

successively coarser levels. For p-multigrid methods, the recursive application of lower order discretization ends 

with the p=0 on the same grid as the fine level. A simple strategy is to use a saw-tooth V-cycle over all p levels. In 

this cycle, a fixed (small) number of smoothing iterations is performed on each approximation level before the 

restriction on the next coarse level (pre-smoothing) and the smoothing after fine level prolongations (post-

smoothing) are deleted. A further increase in efficiency and robustness can be achieved by augment the solution 

process with a full multigrid (FMG) technique [3]. In FMG, a better initial solution is provided for the fine level by 

solving (usually approximately) the coarse level problem in advance. We chose the p=0 approximation as the 

coarsest level of FMG and use 2 V-cycles per level. 

 

4. Hybrid smoothing strategy 

Usually the same smoother is used for the all p-levels, though different smoothers can be used at different levels. 

It is known that using an explicit Runge-Kutta smoother for all p-level is not effective for the high-order DG 

discretization [17]. Using an implicit relaxation scheme at all levels will provide fast convergence rate, but the 

memory requirement for the implicit Jacobian matrices becomes rapidly huge as increasing the p approximation, 

especially for 3D problems. One approach considered in the literature is to use an implicit relaxation scheme at 

lower levels and use an explicit scheme at higher levels. Since the memory storage for the lower p approximations 

(p0 to p1) is small, substantial reduction of memory is expected.  In this work, a hybrid smoothing strategy 

‘pMG(ERK-LUSGS)’ using the three-stage explicit Runge-Kutta (ERK) scheme at the highest level and the implicit 

LU-SGS scheme in the section V is employed besides the ordinal approach ‘pMG(LUSGS)’ using the implicit LU-

SGS smoother at all levels. In both strategies, 10 LU-SGS smoothing iterations are performed at the lowest p=0 

level and 5 LU-SGS iterations are performed at the higher levels for one cycle. In the ‘pMG(ERK-LUSGS)’ strategy, 

10 ERK iterations are performed at the highest level. These numbers of smoothing iteration were found empirically 

to minimize the overall computational time in the results section. 

 

VI. Numerical Results 

A. Inviscid flow over a sphere 

A steady subsonic flow around a sphere is computed by solving the compressible Euler equations. The 

freestream Mach number is M=0.3.  A computational mixed grid is generated around a quarter sphere considering 
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the two symmetric planes in the flowfield. The mixed grid is composed of five layers of prismatic cells around the 

quarter sphere and isotropic tetrahedral cells for the remaining region. To preserve the geometry of the sphere well, 

the curved wall boundaries are represented by quadratic polynomials. The computational grid and the computed 

density contours using the p=3 approximation are shown in Fig. 3. The computed flowfield is perfectly symmetric 

without visible numerical dissipation even on the relatively coarse grid. 

The performance of the developed p-multigrid solver is presented in the following. Figure 4 shows the 

convergence history of the residual plotted versus CPU time for the p1 to p3 approximations. As a base line case, the 

nonlinear LU-SGS scheme is used as a single grid solver. Two different smoothing strategies introduced in the 

previous section are compared; ‘pMG(LUSGS)’ and ‘pMG(ERK+LUSGS)’. It is shown that ‘pMG(LUSGS)’ 

strategy is the fastest and achieves a computational time reduction of about 40-60% with respect to the single grid 

case. As the approximation level p is increased, the performance of the ‘pMG(LU-SGS)’ strategy is improved. This 

will be due to the benefit of the increased total number of levels, even though the cost passing through one multigrid 

cycle increases too. As for ‘pMG(ERK+LUSGS)’ strategy, the speed-up against for the single grid solver is small in 

the p2 and p3 approximations and there is no improvement in the p1 case. However, in this approach the large 

memory storage for the highest level’s implicit matrices can be saved. 

The p-multigrid can also performed by skipping levels. Figure 5(a) shows the residual versus the number of 

multigrid cycles using all p-levels (p2-p1-p0) with ‘pMG(LUSGS)’, skipping p1 (using two levels of p2-p0) with 

‘pMG(LUSGS)’ and skipping p1 with ‘pMG(ERK+LUSGS)’. While the total number of cycles needed to converge 

to the machine zero increases by skipping the level, there is a benefit to reduce the computational time for the level. 

However, Fig. 5(b) shows there is no improvement and even worse results in terms of CPU time. Even though there 

is a loss of the efficiency, skipping levels may be worth to be considered for memory constraint applications.    

B. Viscous flow over NACA 0012 airfoil 

We examine the performance of the developed line solver in simulating a laminar flow around the NACA0012 

airfoil. We assume the freestream Mach number of M=0.5, the Reynolds number of Re=5000 (based on the free 

stream velocity and the airfoil chord length) and zero angle of attack.  

3D prism meshes are generated to compute the two dimensional flowfield. First a 2D O-type structure grid is 

generated around the airfoil and it is extruded in the span-wise direction by the length of 10% of the chord. Finally, 

the hexahedral cells are divided into prisms. The base grid has 72x24x2 cells with the maximum aspect ratio of ~10. 

In addition, two grids with higher aspect ratio cells are generated by changing the initial wall spacing and the 

number of cells along grid lines normal to the wall. These grids with the created lines are shown in Fig. 6. The 

maximum aspect ratio for the medium and the fine grid are ~50 and ~500, respectively. In the fine grid with large 

aspect ratio cells, we observed that high-order boundary treatment only on the faces attached to the curved solid 

surface near the leading edge caused bad shaped cells and instability in the computation. To remedy this problem, a 

high-order meshing of the prism layers is devised and implemented. The close looks of the resulting meshes are 

shown in Fig. 7. 

The efficiency of the line implicit solver is confirmed compared with the point (elemental) nonlinear LU-SGS solver 

on the coarse mesh (Fig. 8 (a)-(d)). It is shown that the line implicit solver yields better convergence in both the 

 

 
Figure 3. Computed density contours for the inviscid subsonic flow over a sphere using the p=3 approximation 

on the mixed mesh. 
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number of iterations and the total CPU time compared to the point implicit solver on this relatively small aspect ratio 

mesh. 

 

(a) (b)  

 

(c)  

Figure 4. Efficiency comparison of the LUSGS single grid solver, p-multigrid solver with (LUSGS) smoother 

and p-multigrid solver with (ERK+LUSGS) smoother. The residual vs. the CPU time in solving the sphere 

problem for p=1-3 in (a)-(c).  

 

 

(a)      (b)  

Figure 5. Comparison of the convergence of p-multigrid by skipping p1 level with (LUSGS) smoother and with 

(ERK+LUSGS) smoother. The residual vs. the multigrid cycles (a) and the CPU time (b) in solving the sphere 

case.  
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 Now we examine the aspect ratio dependence of the line implicit solver using the three different meshes. In all 

the cases, the time step size was increased from the initial small value (1e-5 to 1e-3) to the prescribed maximum 

value of 0.5. Figure 9 (a)-(c) demonstrate the convergence history as a function of the number of time steps for p=1, 

2, 3. For the highest aspect ratio case, the line implicit solver shows significant improvement compared with the 

elemental implicit solver. And nearly aspect ratio independent convergence is obtained for every p approximations. 

 A main drawback of the line implicit solver is the large memory requirement to store the Jacobian matrices not 

only for the block diagonal matrix of each element but also off diagonal matrices of neighbor elements in the line. 

To save the cost, a possible way is to use the line implicit solver as a smoother at coarser levels of the p-multigrid 

method. 

 

 

(a)  (b)  

 

(c)  (d)  

Figure 6. Computational grids with created lines for the NACA 0012 problem; (a) coarse grid (72x24x2 cells), 

(b) a perspective view of the coarse grid, (c) medium grid (72x34x2 cells), (d) fine grid (72x44x2 cells). 
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(a)  (b)  

 
Figure 7. High-order boundary elements generated near the leading edge of the NACA 0012 airfoil; (a) only the 

boundary faces are modified to fit the curved solid surface. (b) Some of the prism cells are modified to maintain 

better shape near the curved surface. 

 

(a)  (b)  
 

(c)  (d)  

Figure 8. Efficiency comparison of the line implicit solver and the point (elemental) nonlinear LU-SGS solver for 

the NACA 0012 problem on the coarse mesh. The residual vs. the time step and the CPU time for the p=2 

approximation  (a, b) and the p=3 approximation (c, d). 
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C. Flow over a streamlined 3D body 

 The last test case is the computation of subsonic flow around a streamlined 3D body considered in the European 

ADIGMA project where it is called “BTC0” test case. The geometry is based on a 10% thick airfoil with boundaries 

constructed by a surface of revolution. The airfoil is defined analytically by an elliptical leading edge and straight 

lines. The computational grid generated using anisotropic prisms and isotropic tetrehedrons is shown in Fig. 10. The 

surface of the body is approximately treated by piecewise quadratic surface elements. The curved surfaces are 

reconstructed based on the ordinal grid with straight edges. The total number of the cells is 160,544 (149,152 

tetrahedrons and 11,392 prisms). In this work, the mesh is decomposed into 4 sub-domains using a graph 

partitioning algorithm and parallel computations based on the MPI library are carried out on a Dell’s PC cluster.  

 Preliminary computation of the inviscid flow of the freestream Mach number M=0.5 and zero angle of attack is 

performed here. The computed Mach contours plot using the p1 approximation is shown in Fig. 11. The 

convergence histories using the single grid elemental LU-SGS solver, the single grid line implicit solver and the p-

multigrid with line implicit LU-SGS smoother are compared in Fig. 12. All the cases start from the initial CFL 

number of 1. In the elemental LU-SGS case, the CFL number cannot be increased to more than 10, while the other 

two cases using implicit lines are able to use much larger CFL number up to 10,000. In the p-multigrid case, the 

machine zero convergence was obtained in about 60 multigrid cycles. 

 

(a)  (b)  
 

(c)   

Figure 9. Aspect ratio dependence of the line implicit solver for the NACA 0012 problem. The residual vs. the 

time step for the approximation orders p=1, 2, and 3 in (a), (b), and (c), respectively. 
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VII. Conclusion 

Efficient solution strategies for steady-state inviscid and viscous flows using high-order CPR discretizations 

have been developed. A line implicit solver have been devised and implemented to enable efficient solution 

techniques on anisotropic meshes. The numerical test using different aspect ratio meshes shows the line solver can 

provide significantly better performance for the high aspect ratio mesh and also its convergence rate has less 

dependence on the mesh aspect ratio.  The p-multigrid solver with different smoothing strategies also has been 

developed. The performance test shows the p-multigrid with an implicit LU-SGS smoother achieves about twofold 

speed-up compared to the LU-SGS single grid solver. Hybrid smoothing strategy employing an explicit Runge-

Kutta smooter at the highest level show the similar or slightly better performance compared to the single grid solver 

with reduction of the memory storage for the implicit matrices. Future work will concentrate on the development of 

low-storage solution algorithms, hp-multigrid algorithms and hp-adaptation techniques. 
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(a)  (b)  
 

Figure 10. The computational grid for a streamlined 3D body. (a): a perspective view and (b): a close-up view 

near the leading edge. The surface geometry is approximated by quadratic boundary faces.  

 

 

Figure 11. Computed Mach number contours around the streamlined body using the p1 approximation.  
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