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Laminar separation bubbles (LSBs) are often found over the wing of micro air vehicles 
(MAV) at low Reynolds numbers, and strongly influence the lift, drag and other 
aerodynamic performance parameters. A numerical investigation of a passive LSB control 
techniques by using roughness bumps on a low-Reynolds number wing is conducted in this 
paper. A high-order spectral difference unstructured grid Navier-Stokes solver is employed 
in the simulations. The study of surface roughness on laminar separation and turbulent 
transition can provide insights into the design of future passive control devices on wings. The 
transitional flow with LSB past a SD7003 rectangular wing with Reynolds number of 60,000 
is used as the basic (uncontrolled) case. In the controlled cases, roughness bumps are 
strategically located near the leading edge of the wing for the purpose of improving 
aerodynamic performance. The location, bump size, the number of bumps and the angle-of-
attacke (AoA) are varied to study the effects. The pressure drag forces in the controlled 
cases are found to be reduced when the LSB are diminished or avoided, resulting in much 
improved lift over drag ratio  

I. Introduction 

Flow control, the technique to manipulate a flow field to achieve a desired change, is of immense technological 
importance, and thus is pursued by scientists and engineers in various areas of fluid mechanics field for many years. 
Low-Reynolds number ( ) flow has been of interest for decades with the development of Micro Air 
Vehicles (MAV). In the low-Reynolds number flow over airfoils, the formation of a LSB may have a dominant effect 
on the flow field. In this paper, a passive flow control technique using surface roughness (bumps) near the leading-
edge of the wing is numerically studied. The roughness bumps can affect the formation of the LSBs and for the 
purpose of aerodynamic performance improvement. The flow over the SD7003 wing at a AoA of , Reynolds 
number  and Mach number  is used as the basic model and a starting point for the controlled 
models.  

In the basic model, the laminar flow detaches from the suction wing surface near the leading edge and a ‘long’ 
type separation bubble is formed. Thereafter, the separated laminar boundary layer rapidly transitions to turbulence 
and the turbulent boundary layer reattaches after the vortex breakdown. Since laminar boundary layers are less 
resistible to the significant adverse pressure gradient, LSBs are widely found over the suction side of low-Reynolds-
number airfoils at moderate incidences. The LSBs are usually regarded to cause the dramatic increase of drag force 
and the deterioration of the lifting surface performance. Flow control is aimed at improving the performance. By 
introducing the surface roughness (bumps) in this paper, the laminar boundary layers are severely perturbed or 
become turbulent, and thus are more resistible to the adverse pressure gradient. In such a way, the LSBs can be 
diminished and thus the wing regains the aerodynamic performance. 

High-order methods on unstructured grids are known for their advantages of accuracy and flexibility in the 
numerical simulation of multi-scale flow with complex geometries. In the last two decades, there have been 
intensive research efforts on high-order methods for unstructured grids1-13. In this paper, a high-order SD method for 
the three dimensional Navier-Stokes equations on unstructured hexahedral grids developed by Sun et al.13 is used. 
This approach is capable of capturing the laminar separation and the vortex breakdown, and has been previously 
shown in the numerical simulation of the attached/detached laminar flow and the reattached turbulent flow in the 
case of the basic model14. With the flexibility of unstructured grid to complex geometry in this method, the shape of 
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    The flux points in 1D are chosen to be the  Gauss quadrature points plus the two ending points. With 
fluxes at  points, a degree  polynomial can be constructed in each coordinate direction using the following 
Lagrange bases defined as 

 

    Similarly, the reconstructed flux polynomials take the following form: 

 

 

 

    Because the SD method is based on the differential form of the governing equations, the implementation is 
straightforward even for high-order curved boundaries. All the operations are basically one-dimensional in each 
coordinate direction and each coordinate direction shares the collocated solution points with others, resulting in 
improved efficiency. In summary, the algorithm to compute the inviscid flux and viscous flux and update the 
unknowns (DOFs) consists the following steps: 

1. Given the conserved variables  at the solution points, compute the conserved variables  at the 
flux points using polynomial (2.6). 

2. Note that inviscid flux is a function of the conserved solution and the viscous flux is a function of both the 
conserved solution and its gradient, taking flux  for example: 

 

Compute the inviscid fluxes  at the interior flux points using the solution  computed at 
Step 1. Compute the viscous fluxes  using the solution  computed at Step 1 and the 
gradient of the solutions   computed based on . 

3. Compute the common inviscid flux at element interfaces using a Riemann solver (2.11), such as the Roe solver 
15 and Russanov solver 13. 

 
where  and  represent the solutions from the two elements beside the interface. 
Compute the common viscous flux at element interfaces using a viscous approach (2.12), such as the averaged 
approach and DG-like approach 13. 

 
Then compute the derivatives of the fluxes at all the solution points by using (2.13). 

 

 

 

 
4. Update the DOFs using a multistage TVD scheme for time integration of (2.14). 
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instability takes the dominant role of disturbance growth and the most unstable mode of K-H instability is two 
dimensional. The three dimensional instability of K-H instability and the elliptical instability of the shedding 
vortices are still not clear to the authors, and require further investigation in the future. 

 

Effects of the Angle of Attack (AoA) 

By adjusting the incidence of the flow and using the same bump configuration in case AoA_4c, the effects of AoA 
are tested and investigated here. Two more AoAs,  and , are considered. At different AoA, the boundary 
thickness  is different, and the effects of the bumps will be different. The thickness  of the boundary layer and 
the ratio of the bump height  to , with the basic model at different AoAs, are listed in Table 6. Figure 16 shows 
the instantaneous iso-surfaces and side-views of -invariant of cases AoA_2 and AoA_2c, and Figure 17 shows 
those of cases AoA_6 and AoA_6c. The mean pressure coefficient and friction coefficient distributions on the 
suction surface are shown in Figure 18 for both AoAs. The same results of cases AoA_4 and AoA_4c can be found 
Figure 10 and Figure 11. The LSBs are diminished in cases AoA_2c and avoided in case AoA_6c as shown by the 
friction coefficient plots in Figure 18. With the roughness bumps, the recovery of the pressure on the wall for all the 
controlled cases is much smoother than in the basic models.  

Table 6. Parameters of the roughness bumps 

Case       

AoA_2c 0.05 0.045 0.045 0.0035 2 0.0046 

AoA_4c 0.05 0.045 0.045 0.0035 2 0.0049 

AoA_6c 0.05 0.045 0.045 0.0035 2 0.0056 

In case AoA_2c, the shedding vortices are found to be disturbed in a similar pattern as in case AoA_4c. In case 
AoA_6c, the periodic vortical packets are generated behind the bumps in same pattern as in cases AoA_4c.h and 
AoA_4c.w. With the increase of AoA, the boundary layer thickness  at the bump location  increases 
(Table 6), thus the ratio  decreases. It has been shown previously that at AoA  and the same location, 
taller bumps with higher  ratio in case AoA_4c.h may generate larger disturbances and the vortical packets. 
However, here the situation is opposite and the vortical packets are generated behind the bumps in case AoA_6c 
with lower  ratio. This shows that the effects of the roughness bumps on the flow field are not uniquely 
determined by the  ratio, but also by the instability features of the flow field near the location of bumps. 
Figure 19 shows the mean tangential velocity profiles for the three AoAs at location . In case AoA_6 the 
location  is close to the mean separation point  (Figure 18) and the mean tangential velocity 
profile (Figure 19) is tend to generate the inflection point and separation. In cases AoA_2 and AoA_4, the bumps 
locate further upstream from the mean separation points. The K-H (inviscid) instability is usually more unstable/has 
a higher growth rate than the instability in attached boundary layer (Tollmien-Schlitchting instability), thus the 
profile in case AoA_6 is easier to be perturbed by the bump and causes the generation of the vortical packets. 

In current cases, the roughness bumps are more effective on performance improvement at higher AoAs. Table 7 
lists the mean lift coefficient, drag coefficient and lift-to-drag ratio for both basic and controlled cases at different 
AoAs. Figure 20 plots the pressure drag coefficient distributions and the lift-to-drag ratio for all the basic and 
controlled cases at three AoAs. In the basic cases, the lift and drag are both increasing with the increase of the AoA 
(Table 7). However, the pressure drag force increases dramatically by more than 50% as the LSB moves upstream 
with the increase of AoA (Table 7 and Figure 20.b), which causes the deficit of the lift-to-drag ratio at AoA=  
(Table 7 and Figure 20.a). In the controlled cases, the lift, the drag and the pressure drag decreases at all the AoAs, 
though the friction drag slightly increases as with larger turbulent boundary layer flow. The aerodynamic 
performances are improved in the controlled cases and the benefits of the lift-to-drag ratio gained at each of the 
AoAs are listed in Table 7 and shown in Figure 20. Especially for case AoA_6c, the lift-to-drag ratio performance 
has been largely improved comparing with case AoA_6 (Figure 20.a).  



Figure

Figure 

Figure 

e 16. Iso-surfa

17. Iso-surfac

18. Mean pre
(solid line, -

Ameri

ce of  co

ce of  co

ssure coefficie
---) and contr

can Institute of

olored by strea

olored by strea

ent and mean 
olled case (da

15 
f Aeronautics a

 

amwise veloci

amwise velocit

skin friction c
sh line, - - -); (

and Astronauti

ity at 

ty at 

coefficient on 
(a) 

ics 

; (a) AoA

; (a) AoA

the wing surf
, (b) 

A-2; (b) AoA-2

A_6; (b) AoA_

face; basic mo
 

 
2c. 

 
_6c. 

 
del 



Fig

Table 7. M

gure 20. (a) Li

Ameri

Mean lift coeff

Case 

AoA-2 0.4

AoA-4 0.6

AoA-6 0.7

AoA-2c 0.4

AoA-4c 0.5

AoA-6c 0.7

Figure 1

ft-to-drag rati

can Institute of

ficient, drag co

  

401 1.68e-2

600 2.34e-2

786 3.14e-2

400 1.63e-2

593 2.05e-2

766 2.56e-2

19. Tangential

io and (b) pre

16 
f Aeronautics a

 

 

oefficient (per

 

0.78-2 0.9

1.38e-2 0.9

2.15e-2 0.9

0.68e-2 0.9

1.00e-2 1.0

1.37e-2 1.

l velocity profi

 

ssure drag coe

 

and Astronauti

r unit span) an

  

90e-2 23.8 

97e-2 25.6 

99e-2 25.1 

95e-2 24.5 

05e-2 28.9 

19e-2 29.9 

files at 

efficient distri

ics 

nd lift-to-drag

Benefit 

N/A 

N/A 

N/A 

3% 

13% 

19% 

 
 

ibutions at dif

g ratio 

fferent AoAs
 



17 
American Institute of Aeronautics and Astronautics 

 

V. Conclusion 

The numerical simulations of a passive flow control technique using roughness bumps on a low-Reynolds number 
wing are presented in this paper. A high-order spectral difference Navier-Stokes solver is used in the simulations. 
The numerical results of the basic cases and controlled cases are extensively investigated and discussed. 

By introducing the roughness bumps near the leading edge, the LSBs are diminished or avoided depending on 
the bump geometric parameters. It is found that larger and taller bumps generate larger disturbances, which trigger 
the vortex breakdown, and delay or avoid flow separation. In addition, the flow also transitions into turbulent flow 
sooner. Although the friction drag increases slightly, the pressure drag is significantly reduced resulting in an overall 
drag reduction. The diminishing of LSBs by roughness bumps also slightly reduces the lift. However, the lift-to-drag 
ratio is significantly increased in the controlled cases. It is also found that no significant change was observed by 
doubling the number of bumps, but the detailed mechanism requires further study. With a fixed configuration of 
bumps, the effects of bumps are tested over three AoAs. In the basic cases, the LSB causes a dramatic increase of the 
pressure drag which may decrease the lift-to-drag ratio with the increase of AoA. In the controlled cases, the 
aerodynamic performance has been largely improved with the diminishing of the LSB especially at higher AoAs. 
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