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Effects of Surface Roughness on Laminar Separation Bubble over a
Wing at a Low-Reynolds Number
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Laminar separation bubbles (LSBs) are often found over the wing of micro air vehicles
(MAV) at low Reynolds numbers, and strongly influence the lift, drag and other
aerodynamic performance parameters. A numerical investigation of a passive LSB control
techniques by using roughness bumps on a low-Reynolds number wing is conducted in this
paper. A high-order spectral difference unstructured grid Navier-Stokes solver is employed
in the simulations. The study of surface roughness on laminar separation and turbulent
transition can provide insights into the design of future passive control devices on wings. The
transitional flow with LSB past a SD7003 rectangular wing with Reynolds number of 60,000
is used as the basic (uncontrolled) case. In the controlled cases, roughness bumps are
strategically located near the leading edge of the wing for the purpose of improving
aerodynamic performance. The location, bump size, the number of bumps and the angle-of-
attacke (AoA) are varied to study the effects. The pressure drag forces in the controlled
cases are found to be reduced when the LSB are diminished or avoided, resulting in much
improved lift over drag ratio

l. Introduction

Flow control, the technique to manipulate a flow field to achieve a desired change, is of immense technological
importance, and thus is pursued by scientists and engineers in various areas of fluid mechanics field for many years.
Low-Reynolds number (Re, = 10*~10%) flow has been of interest for decades with the development of Micro Air
\ehicles (MAV). In the low-Reynolds number flow over airfoils, the formation of a LSB may have a dominant effect
on the flow field. In this paper, a passive flow control technique using surface roughness (bumps) near the leading-
edge of the wing is numerically studied. The roughness bumps can affect the formation of the LSBs and for the
purpose of aerodynamic performance improvement. The flow over the SD7003 wing at a AoA of 4 deg, Reynolds
number Re = 6 x 10* and Mach number M = 0.2 is used as the basic model and a starting point for the controlled
models.

In the basic model, the laminar flow detaches from the suction wing surface near the leading edge and a ‘long’
type separation bubble is formed. Thereafter, the separated laminar boundary layer rapidly transitions to turbulence
and the turbulent boundary layer reattaches after the vortex breakdown. Since laminar boundary layers are less
resistible to the significant adverse pressure gradient, LSBs are widely found over the suction side of low-Reynolds-
number airfoils at moderate incidences. The LSBs are usually regarded to cause the dramatic increase of drag force
and the deterioration of the lifting surface performance. Flow control is aimed at improving the performance. By
introducing the surface roughness (bumps) in this paper, the laminar boundary layers are severely perturbed or
become turbulent, and thus are more resistible to the adverse pressure gradient. In such a way, the LSBs can be
diminished and thus the wing regains the aerodynamic performance.

High-order methods on unstructured grids are known for their advantages of accuracy and flexibility in the
numerical simulation of multi-scale flow with complex geometries. In the last two decades, there have been
intensive research efforts on high-order methods for unstructured grids™**. In this paper, a high-order SD method for
the three dimensional Navier-Stokes equations on unstructured hexahedral grids developed by Sun et al.*® is used.
This approach is capable of capturing the laminar separation and the vortex breakdown, and has been previously
shown in the numerical simulation of the attached/detached laminar flow and the reattached turbulent flow in the
case of the basic model™. With the flexibility of unstructured grid to complex geometry in this method, the shape of
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the leading-edge bump can be modeled in the computational mesh without any assumption or additional equations.

The rest of the paper is organized as follows. In the next section, the numerical method is briefly reviewed. In
section 111, numerical results of the basic model are presented and the flow features associated with LSB are
discussed. In section 1V, a series of cases with different bump size, bump number and AoA are numerical simulated.
The numerical results of the controlled cases are compared with those of the basic model and the detail effects of the
surface roughness are investigated. Concluding remarks are given in section V.

1. Review of Multidomain Spectral Difference (SD) Method
Governing equations
Consider the three-dimensional compressible non-linear Navier-Stokes equations written in the conservation form as
00 OF 0G  0H _
Jdt o0x 0dy 0z
on domain 2 x [0,T] and 2 c R3 with the initial condition
Q(x,y,2,0) = Qo(x,y,2) (2.1b)

and appropriate boundary conditions on d2. In (2.1), x, y, and z are the Cartesian coordinates and (x,y,z) € Q,
t € [0, T] denotes time. Q is the vector of conserved variables, and F, G and H are the fluxes in the x, y and z
directions, respectively.

0 (2.1a)

Coordinate transformation

Physical element Standard cubic element
Figure 1. Transformation from a physical element to a standard element

In the SD method, it is assumed that the computational domain is divided into non-overlapping unstructured
hexahedral cells or elements. In order to handle curved boundaries, both linear and quadratic isoparametric elements
are employed, with linear elements used in the interior domain and quadratic elements used near high-order curved
boundaries. In order to achieve an efficient implementation, all physical elements (x,y, z) are transformed into
standard cubic element (¢,1,¢) € [—1,1] x [—1,1] x [—1,1] as shown in Figure 1.

The transformation can be written as

X K X;
yl=) Mi&nc) [yl'l (2.2)
[Z] ; Zj

where K is the number of points used to define the physical element, (x;,y;, z;) are the Cartesian coordinates of
these points, and M;(¢,n,¢) are the shape functions. For the transformation given in (2.2), the Jacobian matrix J
takes the following form
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The governing equations in the physical domain are then transformed into the standard element, and the
transformed equations take the following form

00 oF 090G oH _

E+¥+%+a—c—0 (2.3)
where
Q=1l-Q
F $x &y &1 [F
G :Ul Ne My MNz|- |G
H Sx Sy Gzl LH

Spatial Discretization

In the standard element, two sets of points are defined, namely the solution points and the flux points, illustrated in
Figure 2 for a 2D element. The solution unknowns (conserved variables Q) or degrees-of-freedoms (DOFs) are

stored at the solution points, while fluxes are computed at the flux points. The solution points in 1D are chosen to be
the Gauss points defined by

2s—1
X5=cos( -n),s= 1,2,--+,N. (2.4)

e nei
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L

Figure 2. Distribution of solution points (circles) and flux points (squares) in a standard element for a 3"-
order SD scheme.

With solutions at N points, we can construct a degree (N — 1) polynomial in each coordinate direction using the

following Lagrange basis defined as
N
X—-X
o= 11 (=5)
L S

s=1,5#1

The reconstructed solution for the conserved variables in the standard element is just the tensor products of the
three one-dimensional polynomials, i.e.,

N N N
QEm =D D, ) [ ) - uts) 26)
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The flux points in 1D are chosen to be the (N — 1) Gauss quadrature points plus the two ending points. With

fluxes at (N + 1) points, a degree N polynomial can be constructed in each coordinate direction using the following
Lagrange bases defined as

N

X - X 2
H-l/Z( ) (Xi+1/2 T As+1/2 ( )

§=0,5#1

Similarly, the reconstructed flux polynomials take the following form:

N N N
FEmD =D > > Fuajagiclivs2®) - i) - o) (2:80)
k=1 j=1i=0
GEMSD =2 D) Gijiasaic i@ uaja@) - (o) (2.8b)
k=1 j=0 i=1
N N N
AEND =D > > ojrensa b by - b os) (2:80)
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Because the SD method is based on the differential form of the governing equations, the implementation is

straightforward even for high-order curved boundaries. All the operations are basically one-dimensional in each
coordinate direction and each coordinate direction shares the collocated solution points with others, resulting in
improved efficiency. In summary, the algorithm to compute the inviscid flux and viscous flux and update the
unknowns (DOFs) consists the following steps:

1.

2.

4.

Given the conserved variables {Q; ; } at the solution points, compute the conserved variables {Q;,1 5 j } at the
flux points using polynomial (2.6).
Note that inviscid flux is a function of the conserved solution and the viscous flux is a function of both the
conserved solution and its gradient, taking flux F for example:
- F= Fi—Fv
Fil+1/2,j,k = Fi(Qi+1/2,j,k) (2.9)
FIK—l/Z} k= Fv(QHl/Z} kr VQl+1/2] k)

Compute the inviscid fluxes {F{,,, ;,} at the interior flux points using the solution {Q;. 1} computed at
Step 1. Compute the viscous fluxes {F,, , ;. } using the solution {Q;1,} computed at Step 1 and the

gradient of the solutions {V'Q,4 /2 jx} computed based on {Q;+1/2 jx}-
Compute the common inviscid flux at element interfaces using a Riemann solver (2.11), such as the Roe solver
15 and Russanov solver =3

= F'(QL, Qr) (211)
where Q, and Qj represent the solutions from the two elements beside the interface.
Compute the common viscous flux at element interfaces using a viscous approach (2.12), such as the averaged
approach and DG-like approach **.

F¥ = F*(Qy, Qr, VQ1, VQg) (2.12)
Then compute the derivatives of the fluxes at all the sqution points by using (2.13).
aF
ZFr+1/21klr+1/2(€L) (2.1301)
e o
< ) Z lr+1/2klr+1/2(77}) (2.131))
=
0H -
( ) z ijr+1/2 Ure12(Se) (2.13¢)

Update the DOFs using a multistage TVD scheme for time integration of (2.14).
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at §+%+a_c (2.14)

For more details about SD method on hexahedral mesh, the readers can refer to *°.

0Q;jk _ (aﬁ G aﬁ)
i,j,k

1. Basic Model

The basic model is numerically simulated first and then the results will be used to compare with and assess the
controlled models. The computational grid and boundary condition are introduced below, and then the numerical
results and the features associated with the LSB and turbulent transition are presented. In this paper, the cases with
different model are named according to the AoA, w/ or w/o bumps and the additional bump parameters, e.g.
‘A0A_4c’ represents the controlled case at AoA 4deg and *‘AoA_4’ refers to the current case of the basic model.

Computational grid and boundary condition

> of
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Figure 3. Computational mesh

Figure 3 shows the computational grid for the case AoA_4. Refined mesh is designed to concentrate finer elements
near the wall and around the physically important region where the separation bubble and vortex breakdown occur.
The smallest cells are located at the trailing edge corners with dimension (in wall units) Ay* = 2.5 in the direction
normal to the wall, Ax* = 25.0 along the chord and Az* = 12.0 in the spanwise direction. The total number of
elements used here is 253,600, resulting in 6,847,200 and 16,230,400 degree-of-freedom (per equation) for 3™-order
and 4"-order SD method respectively. In the SD method, each cell is further discretized by the solution/flux points,
so the resolution of the current mesh is close to what is required of a direct numerical simulation.

To model an infinite-span wing, a periodic boundary condition is used in the spanwise direction and the span width
of the wing is set to be 20% of the chord, which was shown to be wide enough in **4*%. At the far-field of the
computational domain, an absorbing sponge zone boundary condition'’ is imposed. And a non-slip, adiabatic
boundary condition is applied on the surface of the wing.

Averaged and statistical results

The numerical simulations are carried out at a Reynolds number based on the airfoil chord of Re = 6 x 10* and
Mach number M = 0.2. The AoA is 4 deg in the current case. In Figure 4, the mean pressure coefficient C,, =

P — Ps) lpoono and the mean skin friction coefficient Cr = T/lpooUozo distributions on the wing surface are
2 f 2

shown. A polynomial order (p) refinement study is carried out by increasing the order of the polynomial in each
element from 2 (resulting in 3“-order accuracy) to 3 (resulting in 4™-order accuracy). A very good agreement
between the 3"-order method and 4™-order method has been found in Figure 4 for both the mean pressure coefficient
and mean skin friction coefficient on the wing surface, thus indicating that the converged mean flow has been
achieved and the spatial resolution provided by SD method is capable to capture the main flow features at this
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Reynolds number. In the present study, the mean flow field and the statistical results are obtained by averaging the
instantaneous flow field over 8 non-dimensional time t = t*/(c/U,) units.

Table 1 compares the locations of separation, transition and reattachment between the 3™-order and the 4"-
order results. The onset location of transition is defined by a critical value of 0.001 of the normalized Reynolds
stress as used in ®2, The differences between the above measurements of the 3rd-order and the 4th-order results are
all less than 2%. The results from Galbraith et al.*® are also listed here and the agreement here is also good.

Table 1. Separation, transition and reattachment locations

Case Separation  Transition Reattachment
3rd-order 0.223 05l 0.675
4th-order 0.227 0.521 0.685
Galbraithetal. *® 023 0.55 0.65
@ 5 - {b) 902
.+ " dth-order ooisk ©dth-order
0.5 ; 001
Q of 0005 f-
o5 0 3
F -0.005 |
B e Sy PR L TR
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Figure 4. Mean pressure coefficient (left) and mean skin friction coefficient (right) on the wing surface.
Square symbols: 3rd-order result; solid line: 4th-order result.

Flow features associated with LSB and turbulent transition

Figure 5a shows the mean streamlines around the wing and the mean streamwise velocity field averaged in both
time and spanwise direction. The mean separation bubble and the reattachment of the flow are clearly shown. In
Figure 5b, the low value of the mean spanwise vorticity on the suction surface of the wing at interval x = [0.0,0.6]
represents the laminar shear layer before the flow transitions into turbulent flow. The amplitude of the disturbance
during this interval has been found to grow exponentially due to the Kelvin-Helmholtz instability after separation **
1921 The shear layer ends around x = 0.65 at the end of the LSB (Figure 5a) where the vortex breakdown occurs. A
turbulent boundary layer forms at interval x = [0.75,1.0]. Figure 5c and d show the statistical distribution of the

normalized turbulent kinetic energy (T. K.E.= %(u_’2 +v2 4 W)) and the normalized Reynolds stress (7,, =

—W/UEO), respectively. The concentration of both the normalized T. K. E. and Reynolds stress around x = 0.65 is
strongly related to the process of vortex breakdown, and is discussed later in this section.

Figure 6 shows the profiles of the mean tangential velocity at different locations and the corresponding profiles of
RMS tangential velocity disturbances at the corresponding locations of the basic model. Profiles are extruded in the
wall’s normal direction at each chord location. The development of the mean shear layer from an attached layer to a
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detached one can be clearly seen. The profiles of RMS of u; vary along with the mean shear layer. After separation,
the inflection point gradually shows in the mean velocity profiles (Figure 6.a) and the Kelvin-Helmholtz (K-H)
instability becomes dominant and accompanies with vortex shedding.
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Figure 5. Mean and statistical results of basic model: (a) mean streamlines around the wing and mean
streamwise velocity field; (b) mean spanwise vorticity field; (c) normalized turbulent kinetic energy (T.K.E.)
distribution; (d) normalized Reynolds stress (z,,) distribution.
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Figure 6 Numerical results for basic model: (a) normalized profiles of the mean tangential velocity at different
locations; (b) normalized profiles of RMS tangential velocity disturbances at different locations

Figure 7 shows the instantaneous contour lines of the Q—invariant30 for about a shedding period. Inside the
detached shear layer (Figure 5b), vortical tubes (rolls) are shed and grow convectively, as shown in Figure 7. The K-
H instability is also called inviscid instability, in which the disturbance has been found to be always more unstable in
two dimensions than in three dimensions. The shedding vortex keeps the two-dimensional feature unstill entering
the breakdown stage.

It is observed that two-dimensional vortices break down to small scale structures rapidly at interval x =
[0.6,0.7], as shown in Figure 7. And in the same region, the skin friction and the wall pressure increase suddenly
(Figure 4). Finally the flow reattaches to the wall and the LSB is closed by turbulent flow. It is observed in Figure 6
that the vortex breakdown process extends from the bottom to the top and the small scale structures close to the wall
at interval x = [0.6, 0.7] with upstream-going velocity play an important role in this process. A layer of small scale
structures stay near the wall in this region right below the shedding vortices. As the layer remains inside the
separation bubble, the small scale structures move upstream due to the reversed flow direction. When the shedding
vortices pass the region, the bottom part of the shedding vortices meets and interacts with the upstream going small
scale structures. The bottom part of the vortices breaks down to small scale structures first, then the upper part is
affected and breaks down by the swirling motion of the vortices. In this way, the vortex tube breaks down from the
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bottom to the top due to a feedback machnism**. After the breakdown of the large scale vortices into smaller scale
eddies, the flow becomes more and more turbulent and propagates downstream. Spalart et al.”* concluded this
process as a simple mechanism of ‘transition by contact’. Jones et al.? attributed a similar process to be caused by
the three dimensional absolute instability.

The contours of the mean total pressure Pryiq =%pU2 + P normalized by %meEO, the mean pressure

coefficient C,, distribution and the pressure gradient magnitude |VP| for the case AoA_4 are shown in Figure 8. Both
the total pressure and the static pressure are almost constant inside the LSB region and are lower inside the LSB than
those outside the LSB. In other words, in the average sense the LSB persists a constant low pressure inside and is
pressed by high-pressure outside. Around the location x =~ 0.65, there exists a region of high adverse-pressure-
gradient (APG) as shown in Figure 7c and a high pressure gradient terminates the LSB. This region around x = 0.65
is exactly the same region where the breakdown and reattachment are observed. In the sense of the mean flow field,
it experiences the upstream low pressure and the downstream high pressure. To balance the pressure difference, the
friction force increases over the wall as shown in Figure 4. The TKE and Reynolds stress are also found to be
concentrated in the same region as shown in Figure 5c&d. The above features illustrate that this region is physically
important to the formation of the LSB and the breakdown process thereafter, to which the attention should be paid
when investigating the effects of the surface roughness.
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Figure 8. Averaged numerical results of case AoA_4: Contours of (a) normalized total pressure Pryiqr; (B)
pressure coefficient —C,,; (c) pressure gradient magnitude |VP|.

V. Effects of Surface Roughness

In this section, the effects of the surface roughness on the separation and transition over the suction surface are
investigated and discussed. The study may help improve the design of future passive control devices on the wing
surface for separation reduction and transition control. Active flow control techniques have been widely adopted for
the separation and transition control of flow over airfoils. Periodic air suction/blowing through a slot on the airfoil
surface might be the most popular means of active control. With properly chosen frequency and magnitude of the
suction/blowing speed, the technique is often found to be effective in reducing the separation region and improving
performance. However, active control techniques such as suction/blowing usually require additional devices and is
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less applicable to the separation control over a MAV wing, which should be light. The passive means of flow control
involves ‘inert” devices including changes to the wing shape and surface finish. Saric et al. 2425 pioneered the use of
surface roughness as a means of passive flow control in their experimental studies. White and Saric?® examined
roughness effects on transition and found that three-dimensional static roughness can be an effective tool in delaying
the transition to turbulence on a swept wing. Fransson et al®® applied roughness elements on a flat plate in the
wind-tunnel and found using this passive control technique they can delay transition to turbulence. Using
numerical simulations, Honsaker and Huebsch?’ used a Prandtl transposition to model the surface roughness on
airfoils and found that the dynamic surface roughness is effective on the stall separation control.

A passive flow control technique using roughness bumps is adopted here. By using the high-order SD method
on unstructured hexahedral mesh, the shape and geometry of the roughness bump can be modeled as shown in
Figure 9. The geometry of the roughness bump can be determined using the following parameters, the width W,
the length Ly, and the height Hg of the bump. The surface edges of the bump are tangentially rejoined with the
wing surface by high-order polynomial curves and the curved surface on the top (at point F) of the bump is also
designed to be tangential to the original wing surface at point E, Figure 5. The location of the bump X and the
number of bumps Ny, are also critical to the physics of the bump-induced disturbances and therefore the
separation control effectiveness. And in all cases here, the bumps are equally spaced near the leading edge before the
flow separates. Several cases with different geometries, numbers of bumps and AoAs are considered and
numerically investigated here, and the parameters are listed in Table 2, 4 and 7. All the geometric parameters are
normalized by the chord length c.

(a) {b} //,,.'

Figure 9. (a) Roughness bump on the wing surface and (b) bump geometries

Effects of bump size

Three controlled cases are simulated in this section to test the effects of the bump size. Through trial and error, the
bump size and height were found to affect the flow more than the bump location. Here in all cases, the bumps are
placed at x = 0.05, where the boundary layer thickness for the basic model AoA 4 is §; = 0.0049. The geometric
parameters of the roughness bumps in all three cases are shown in Table 2. The location and dimension of the bumps
in AoA _4c are chosen after a few tests, in order to affect the attached boundary layer profile before separation and
also not induce too much viscous drag force. The cases AoA_4c.w and AoA_4c.h are variations of AoA_A4c.
Comparing with AoA_4c, the bumps in AoA_4c.w are wider and the bumps in AoA_4c.h are taller, with the rest of
the parameters being the same. The bumps in AoA_4c.w are twice as wide (W,) as in AoA_4c. In cases A0A 4c
and AoA_4c.w, the height of the bumps is about 70% of the boundary layer thickness &, while in case AoA_4c.h
the height is equal to 8.

The instantaneous iso-surfaces and side-views of the Q -invariant in the cases of basic model and three
controlled models are shown in Figure 10. The effectiveness of the bumps in changing the flow field of the basic
model can be clearly seen. In case AoA 4c, vortex shedding in the separation bubble region is observed as in the
basic model AoA_4. However the shedding vortices are distorted as streamwise vorticity is generated behind the
bumps. The shedding vortices are closer to the airfoil surface and the frequency of vortex shedding is higher than
that in the basic model, as shown in Figure 10b. It is found in both AoA_4c.w and AoA_4c.h that small scale vortex
packets are generated behind the bumps and the pattern is periodic (Figure 10c&d). This implies that changing the
width and height of the bumps can dramatically change the flow features, and the wider and taller bumps introduce
stronger disturbances and significantly affect the laminar boundary layer flow. The perturbed region (periodic
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vortical packets) after the bumps grows in the flow direction, takes over the laminar region. Eventually the boundary
layer becomes fully turbulent as shown in Figure 10c&d. Vortex shedding (rolls) is also found in the laminar region
of the flow, and the interaction with adjacent periodic vortical packets is observed. In these cases, the roughness
bumps act like turbulators.

Table 2. Parameters of the roughness bumps

Case Xe Wae Lgp  Hgr Npymp  Og

AocA 4 N/A NA NA NA N/A  0.0049
Ao0A_4c 0.05 0.045 0.045 0.0035 2 N/A
AOA 4cw 0.05 0.090 0.045 0.0035 2 N/A

AOA _4c.h 0.05 0.045 0.045 0.005 2 N/A
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Figure 10. Iso-surface of @ = 1 colored by streamwise velocity and side-view of @ = 1; (a) AoA 4, (b)
AO0A 4c, (c) AoA 4c.w, (d) AoA 4c.h
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The mean pressure coefficient and friction coefficient distributions on the suction surface of the controlled cases
are shown in Figure 11, and compared with the results of the basic model. As shown in the friction coefficient plots,
the separation region is smaller in case AoA_4c than in the basic model. Disturbed by the upstream bumps, flow
separation is delayed, while the breakdown and reattachment occur at an earlier location. In case AoA_4c, the
features associated with the LSB, which include a pressure plateau and steep pressure recovery at the strong
separation region, are also observed. This indicates the flow characteristics in AOA_4c are quite similar to those in
A0A 4, the basic model even though the flow field is disturbed by the streamwise vorticity generated by the bumps.
The LSBs almost disappear in cases AoA_4c.w and AoA_4c.h as shown in Figure 11 in the friction coefficient plot.
Without the separation region, the pressure recovers smoothly (Figure 11). The breakdown process is triggered by
the vertical packets generated by the bumps, as shown in Figure 10c & d. Figure 12 shows the contours of the
pressure gradient magnitude for cases A0A_4c and AoA_4c.h. Note that with a diminished LSB in case AoA_4c, the
severe APG near x = [0.5, 0.6] still shows up similar to case AoA_4. In case AoA_4c.h, however, the LSB is
avoided and the severe APG region x = [0.5, 0.6] disappears.
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Figure 11. Mean pressure coefficient and mean skin friction coefficient on the wing surface; AoA_4 (solid line,
----), AOA_4c (dash line, - - -), A0A_4c.w (dash-dot line, -.-.-) and AoA_4c.h (dot ling, ....)
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Figure 12. Contours of pressure gradient magnitude. (a) AoA_4c; (b)AoA_4c.h

Table 3 presents the mean lift and drag coefficients per unit span and the lift-to-drag ratio of all three cases. The
drag coefficients decrease for all the controlled cases, and the lift coefficients also decrease slightly with the
diminishing of the separation bubble. It can be seen by the flow field in Figure 10 and the friction coefficient in
Figure 11, introducing the bumps results in more turbulent region and thus the friction induced drag increases. The
contributions to the drag force Cp, from both pressure drag Cp,,, and friction drag Cp,f are also listed in Table 3 for all
the cases. It is shown that with the diminishing of the bubble, the pressure drag Cp,, decreases and the friction drag
Cpy increases. However, the pressure drag decreases faster than the friction drag increases, and thus gain about 10%
improvement of the lift-to-drag ratio for all the controlled cases, as shown in Table 3. Although the pressure drag
Cpp in AOA_4.w and AoA_4.h is lower than that in AoA_4, the friction drag Cy is higher in these two cases due the
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larger turbulent flow region. Thus AoA_4.c gives better lift-to-drag ratio than AoA_4.w and AcA_4.h.

Table 3. Mean lift coefficient, drag coefficient (per unit span) and lift-to-drag ratio

Case C Cp Cpp Cpy L/D

A0A_4 0.600 2.34e-2 1.38e-2 0.97e-2 25.6
A0A_4c 0.593 2.05e-2 1.00e-2 1.05e-2 28.9
AoA_4cw  0.579 2.10e-2 0.94e-2 1.16e-2 27.6

A0A_4c.h 0.579 2.07e-2 0.95e-2 1.12e-2 28.0

Effect of the number of bump

In this part, the effects of the number of the bump are tested and investigated. Starting from case AoA_4c, A0A_4c.n
keeps the other bump parameters the same, but reduces the bump width W, 50% and increases the number of
bumps from 2 to 4. The detailed parameters of the roughness bumps can be found in Table 4. Figure 13 shows the
instantaneous iso-surface and side-view of Q-invariant of case AoA_4c.n. For comparison, the same results of case
AO0A_4c are shown in Figure 10.b. Similar to case AoA_4c, the attached boundary layer and the following shedding
vortices are perturbed but still remain laminar. Figure 14 shows the instantaneous contours of u-velocity and
streamwise vorticity on the sliced plane at y = 0.065 for both cases AoA_4c and AoA_4c.n. The spanwise
influences of the bumps on the laminar flow field and the development of the streamwise vorticity in the separation
region can be clearly seen.

Table 4. Parameters of the roughness bumps

Case Xg Wyc Lgp Hgr Npump Op

AO0A 4c.n 0.10 0.0225 0.045 0.0035 4 N/A

c
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0.05
0
0.05
01

015 :'
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i F — o o o=,
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Figure 13. Iso-surface and side-view of @ = 1 colored by streamwise velocity of case AoA 4c.n
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Figure 14. The instantaneous contours of u-velocity (left) and streamwise vorticity (right) on the sliced plane
aty = 0.065; (upper) AoA_4c and (lower) AoA_4c.n
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Figure 15. Mean pressure coefficient and mean skin friction coefficient on the wing surface; AoA_4 (solid line,
----), AOA _4c (dash ling, - - -) and AoA_4c.n (dash-dot line, -.-.-)

Table 5. Mean lift coefficient, drag coefficient (per unit span) and lift-to-drag ratio

Case C, Cp Cop Cpy L/D

AoA 4  0.600 2.34e-2 1.38e-2 0.97e-2 25.6
AOA 4c 0593 2.05e-2 1.00e-2 1.05e-2 28.9

AOA 4c.n 0593 2.09e-2 1.07e-2 1.02e-2 28.4

The mean pressure coefficient and friction coefficient distributions of the cases AoA_4c and AoA_4c.n are
shown in Figure 15, in comparison with those of the basic model AoA_4. Both plots of case AoA 4c.n are found
very close to those of AoA 4c. The similar behaviors of the mean pressure and friction on the wall in both
controlled cases result in similar aerodynamic performances, as listed in Table 5. As shown in Figure 15, the flow
separates nearly at the same location in both cases, and the LSB in AoA_4c is smaller than in AoA_4c.n. The minor
differences of the plots between the current two cases are associated with the three dimensional instability in the
detached shear layer and also possibly the elliptical instability of the shedding vortices. After separation, the K-H
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instability takes the dominant role of disturbance growth and the most unstable mode of K-H instability is two
dimensional. The three dimensional instability of K-H instability and the elliptical instability of the shedding
vortices are still not clear to the authors, and require further investigation in the future.

Effects of the Angle of Attack (AoA)

By adjusting the incidence of the flow and using the same bump configuration in case AoA_4c, the effects of AcA
are tested and investigated here. Two more AoAs, 2 deg and 6 deg, are considered. At different AoA, the boundary
thickness &y is different, and the effects of the bumps will be different. The thickness &g of the boundary layer and
the ratio of the bump height Hgy to 6, with the basic model at different AoAs, are listed in Table 6. Figure 16 shows
the instantaneous iso-surfaces and side-views of Q-invariant of cases AoA_2 and AoA_2c, and Figure 17 shows
those of cases AoA_6 and AoA_6¢c. The mean pressure coefficient and friction coefficient distributions on the
suction surface are shown in Figure 18 for both AoAs. The same results of cases AoA_4 and AoA_4c can be found
Figure 10 and Figure 11. The LSBs are diminished in cases A0A_2c and avoided in case A0A_6c as shown by the
friction coefficient plots in Figure 18. With the roughness bumps, the recovery of the pressure on the wall for all the
controlled cases is much smoother than in the basic models.

Table 6. Parameters of the roughness bumps

Case Xg Wye Lpp Hgr Npump 6

AoA_2c 0.05 0.045 0.045 0.0035 2 0.0046
Ao0A_4c 0.05 0.045 0.045 0.0035 2 0.0049

AoA_6c 0.05 0.045 0.045 0.0035 2 0.0056

In case AoA_2c, the shedding vortices are found to be disturbed in a similar pattern as in case AoA_4c. In case
A0A_6c, the periodic vortical packets are generated behind the bumps in same pattern as in cases AoA_4c.h and
A0A_4c.w. With the increase of AoA, the boundary layer thickness 8 at the bump location Xz = 0.05 increases
(Table 6), thus the ratio Hgr /&g decreases. It has been shown previously that at AoA 4 deg and the same location,
taller bumps with higher Hgr /g ratio in case AoA_4c.h may generate larger disturbances and the vortical packets.
However, here the situation is opposite and the vortical packets are generated behind the bumps in case AoA 6¢
with lower Hgp /&g ratio. This shows that the effects of the roughness bumps on the flow field are not uniquely
determined by the Hgp/ 6 ratio, but also by the instability features of the flow field near the location of bumps.
Figure 19 shows the mean tangential velocity profiles for the three AoAs at location X; = 0.05. In case AoA_6 the
location X; = 0.05 is close to the mean separation point x = 0.10 (Figure 18) and the mean tangential velocity
profile (Figure 19) is tend to generate the inflection point and separation. In cases AoA 2 and AoA 4, the bumps
locate further upstream from the mean separation points. The K-H (inviscid) instability is usually more unstable/has
a higher growth rate than the instability in attached boundary layer (Tollmien-Schlitchting instability), thus the
profile in case A0A_6 is easier to be perturbed by the bump and causes the generation of the vortical packets.

In current cases, the roughness bumps are more effective on performance improvement at higher AoAs. Table 7
lists the mean lift coefficient, drag coefficient and lift-to-drag ratio for both basic and controlled cases at different
Ao0As. Figure 20 plots the pressure drag coefficient distributions and the lift-to-drag ratio for all the basic and
controlled cases at three AoAs. In the basic cases, the lift and drag are both increasing with the increase of the AcA
(Table 7). However, the pressure drag force increases dramatically by more than 50% as the LSB moves upstream
with the increase of AoA (Table 7 and Figure 20.b), which causes the deficit of the lift-to-drag ratio at AoA=6 deg
(Table 7 and Figure 20.a). In the controlled cases, the lift, the drag and the pressure drag decreases at all the AoAs,
though the friction drag slightly increases as with larger turbulent boundary layer flow. The aerodynamic
performances are improved in the controlled cases and the benefits of the lift-to-drag ratio gained at each of the
A0As are listed in Table 7 and shown in Figure 20. Especially for case AoA_6c, the lift-to-drag ratio performance
has been largely improved comparing with case AoA_6 (Figure 20.a).
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Figure 16. Iso-surface of Q = 1 colored by streamwise velocity at AoA = 2deg; (a) AoA-2; (b) AoA-2c.
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Figure 17. Iso-surface of Q

1 colored by streamwise velocity at AoA = 6deg; (a) AoA_6; (b) AoA_6c.
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Figure 18. Mean pressure coefficient and mean skin friction coefficient on the wing surface; basic model
(solid line, ----) and controlled case (dash line, - - -); (a) AoA = 2deg, (b) AoA = 6deg
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Lift-to-Drag ratio

Table 7. Mean lift coefficient, drag coefficient (per unit span) and lift-to-drag ratio

Case C, Cp Cop Cpy L/D Benefit

AoA-2 0401 1.68e-2 0.78-2 0.90e-2 238 N/A
AoA-4 0.600 2.34e-2 1.38e-2 0.97e-2 25.6 N/A
AoA-6 0.786 3.14e-2 2.15e-2 0.99e-2 25.1 N/A
AoA-2c 0.400 1.63e-2 0.68e-2 0.95e-2 24.5 3%

AoA-4c 0.593 2.05e-2 1.00e-2 1.05e-2 289 13%

AoA-6c 0.766 2.56e-2 1.37e-2 1.19-2 299 19%
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Figure 19. Tangential velocity profiles at X; = 0.05
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Figure 20. (a) Lift-to-drag ratio and (b) pressure drag coefficient distributions at different AoAs

16
American Institute of Aeronautics and Astronautics



V. Conclusion

The numerical simulations of a passive flow control technique using roughness bumps on a low-Reynolds number
wing are presented in this paper. A high-order spectral difference Navier-Stokes solver is used in the simulations.
The numerical results of the basic cases and controlled cases are extensively investigated and discussed.

By introducing the roughness bumps near the leading edge, the LSBs are diminished or avoided depending on
the bump geometric parameters. It is found that larger and taller bumps generate larger disturbances, which trigger
the vortex breakdown, and delay or avoid flow separation. In addition, the flow also transitions into turbulent flow
sooner. Although the friction drag increases slightly, the pressure drag is significantly reduced resulting in an overall
drag reduction. The diminishing of LSBs by roughness bumps also slightly reduces the lift. However, the lift-to-drag
ratio is significantly increased in the controlled cases. It is also found that no significant change was observed by
doubling the number of bumps, but the detailed mechanism requires further study. With a fixed configuration of
bumps, the effects of bumps are tested over three AoAs. In the basic cases, the LSB causes a dramatic increase of the
pressure drag which may decrease the lift-to-drag ratio with the increase of AoA. In the controlled cases, the
aerodynamic performance has been largely improved with the diminishing of the LSB especially at higher AoAs.
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