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In this paper, we present an adjoint-based mesh adaptation method for the Reynolds-
averaged Navier-Stokes (RANS) Equations to minimize the output error. A dual-consistent
high-order correction procedure via reconstruction method (CPR) is utilized to discretize
the RANS equations with the modified Spalart-Allmaras (SA) model. The wall distance of
each solution point in the computing domain is computed by solving the Eikonal equation
using the CPR framework. The mesh refinements are driven by the automated output-
based adaptation. The adaptive results of the turbulence flow over a flat plate problem
and the turbulence flow over the NACA0012 airfoil problem demonstrate the ability of
the present method to efficiently reduce the functional errors in terms of the number of
degrees of freedom (DOFs).

I. Introduction

High-order methods have the potential to achieve higher accuracy at lower cost than lower order meth-
ods. This potential has been demonstrated conclusively for smooth problems in several recent International
Workshops on High-Order Methods [47]. The use of high-order methods to compute turbulent flows governed
by the Reynolds-averaged Navier-Stokes (RANS) equations is an active research topic in the computational
fluid dynamics (CFD) community. However, due to the numerical stiffness, the high-order methods for the
RANS equations are difficult to converge to the steady-state [35, 37, 38]. For those problems, solution based
hp-adaptations offer the best promise. It can ensure the reliability and increase the robustness of the high-
order methods for the RANS equations, which has received considerable attentions in the high-order CFD
community. [15, 16, 21, 43–45, 52].

In this paper, a dual-consistent high-order correction procedure via reconstruction method (CPR) is
utilized to discretize the RANS equations with the modified Spalart-Allmaras (SA) one-equation model. To
alleviate the stability issues caused by the negative turbulence working variable, several researchers have
proposed a variety of modifications for the SA turbulence model [14, 34, 36]. The modified SA turbulence
model investigated in [36] has been demonstrated to significantly improve the robustness of high-order
simulations, which is used in the present study. In this model, the r closure function depends on the distance
to the nearest wall. To compute the distance of each solution point in the domain to the nearest curved
polynomial wall boundaries, the CPR high-order discretization is extended to solve the Eikonal equation.

The effectiveness of adaptive methods highly depends on the accuracy of the error estimation. The
dual-weighted residual method proposed by Becker and Rannacher [5] relates a specific functional output
directly to the local residual by solving an additional adjoint equation. It can capture the error propagation
effects inherent in the hyperbolic equations. This kind of adjoint-based error indicator has been shown very
effective in driving a hp-adaptation procedure to obtain a very accurate prediction of the functional outputs
[6, 7, 11, 19, 20, 45, 53]. In the present method, a dual-consistent high-order CPR is utilized to compute
the discrete adjoint solution associated to the engineer interested outputs, e.g. the lift coefficient, and
derive the output-based local error indicator. The mesh refinement procedures are driven by the automated
output-based adaptation.
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The marked candidate elements for adaptation can be modified by enriching its solution order or sub-
dividing its element or resizing its grid. Thus, the ways to increase the discretization resolution can be
generally classified into 3 categories: h-refinement, r-refinement and p-refinement. For h-refinement, sub-
division is performed locally for each candidate element to increase the total DOFs. R-refinement or the
moving mesh method keeps the total number of nodes the same but moves the location of the grid locally
or globally [22]. With p-refinement, the local degree of approximation polynomial is modified. The moving
mesh method with curved elements in 3D is till an on-going research. In this work, we only subdivide
elements hierarchically for adaptations.

The rest of the paper is organized as follow: In section 2, we briefly review the governing equations and
the modified SA model. The high-order CPR formulation and the solution method are presented in Section
3. Section 4 describes the adjoint-based error estimation and the h-adaptation strategies. In Section 5,
adaptive results of the turbulence flow over a flat plate problem are presented. Finally, conclusions and some
possible future work are given in Section 6.

II. The Modified Spalart-Allmaras Turbulence Model

The compressible RANS equations with the modified one-equation SA turbulence model [14, 34, 36] can
be written in the conservative form as

∂Q(t)

∂t
+∇ · (F(Q)− Fv(Q,∇Q)) = S(Q,∇Q). (1)

Here, Q is the conservative variables , F is the inviscid flux, Fv is the viscous flux vector and S is the source
term, which are given by

Q =


ρ

ρu

ρv

E

ρν̃

 , Fx =


ρu

ρu2 + P

ρuv

u(E + P )

ρuν̃

 , Fy =


ρv

ρuv

ρv2 + P

v(E + P )

ρvν̃

 ,

Fx
v =


0

τxx

τxy

uτxx + vτxy + cp(
µ
Pr + µt

Prt
)∂T∂x

1
σ (µ+ µΨ)∂ν̃∂x

 , Fy
v =


0

τyx

τyy

uτyx + vτyy + cp(
µ
Pr + µt

Prt
)∂T∂y

1
σ (µ+ µΨ)∂ν̃∂y

 ,

S =


0

0

0

0

cb1S̃ρνΨ + 1
σ [cb2ρ∇ν̃ · ∇ν̃]− cw1ρfw(νΨ

d )2 − 1
σν(1 + Ψ)∇ρ · ∇ν̃

 ,

(2)

where the ρ, P , E are respectively the density, pressure and specific total energy per unit mass, u,v denote
the Cartesian velocity. ν denotes the kinematic viscosity and ν̃ represents the turbulence working variable
of the SA model. Then the pressure P is given by,

P = (γ − 1)
(
ρE − 1

2
ρ(u2 + v2)

)
, (3)

where γ = 1.4 is the ratio of specific heats. Define velocity vector u = (u, v), then the fluid viscous stress
tensor for Newtonian fluid τ is defined as

τij = (µ+ µt)

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (4)
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where δij is the Kronecker delta. µ refers to the fluid dynamic viscosity, and µt is the turbulence eddy
viscosity defined by the SA model reads

µt =

ρν̃fv1 if ν̃ ≥ 0

0 if ν̃ < 0

fv1 =
Ψ3

Ψ3 + C3
v1

. (5)

For the source term S of Eq. (2), the production term of the modified SA model S̃ is given as [36]

S̃ =

S + Ŝ if Ŝ ≥ −cv2S

S +
S(c2v2S+cv3Ŝ)

(cv3−2cv2)S−Ŝ if Ŝ < −cv2S

S =
√
~ω · ~ω

Ŝ =
νΨ

κ2
td

2
fv2

fv2 = 1 − Ψ

1 + Ψfv1

, (6)

where ~ω = ∇× u is the vorticity vector. The destruction term coefficients are given by

r = min

[
νΨ

S̃κ2
td

2
, 10

]
g = r + cw2(r6 − r)

fw = g

(
1 + c6w3

g6 + C6
w3

)1/6

, (7)

where d denotes the distance to the nearest wall at a specific location. The parameter Ψ is designed for high-
order discretization schemes to remove the effects of negative turbulence working variable on the robustness
of the turbulence model. This parameter is given as

Ψ =

0.05 ln(1 + e20χ) if χ ≤ 10

χ if χ > 10
.

χ =
ν̃

ν

(8)

When ν̃ goes negative, the parameter Ψ can prevent instabilities by turning off the production, destruction
and dissipation terms. Finally, the constants in the modified SA model are given as

cb1 = 0.1335, cb2 = 0.622, σ = 2/3, κt = 0.41, Pr = 0.72, Prt = 0.9,

cw1 = cb1/κ
2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9

(9)

III. The CPR Discretization

Eqn.1 is discretized using the correction procedure via reconstruction (CPR ) method [23][48]. The CPR
formulation has some remarkable properties. The framework is easy to understand, efficient to implement
and can recover several well known methods such as the discontinuous Galerkin (DG) [2, 4, 12, 13, 39, 40, 51],
the spectral volume method (SV) [32, 46, 50] and the spectral difference methods (SD)[27, 30, 31, 33, 42].
For recent development with CPR, interested readers can refer to [9, 10, 17, 18, 24–26, 49, 54].

Assume that the computational domain Ω is discretized into N non-overlapping elements {Vi}Ni=1. And
let Qi be an approximate solution to the analytical solution Q on Vi. The CPR discretization of Eq. (1) for
each solution point j of cell i can be expressed as

∂Qi,j

∂t
+
∏
j

(∇ ·F(Qi))−
∏
j

(∇ ·Fv(Qi,Ri)) +
1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l([F
n]f,l − [Fv,n]f,l)Sf = S(Qi,Ri), (10)
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Ri,j = (∇(Q)i)j +
1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l[Q
com −Qi]f,l~nfSf , (11)

where αj,f,l are the correction coefficients due to the jumps at the flux point l of face f , Sf is the face area,
|Vi| is the cell volume, [Fn] is the inviscid flux jump and [Fv,n] is the viscous flux jump. The inviscid and
viscous flux jumps defined as

[Fn] = Fncom − F(Qi) · ~n
[Fv,n] = Fv(Qcom,∇Qcom) · ~n− Fv(Qi,Ri) · ~n

. (12)

Here, Qcom and ∇Qcom are the common solution and the common gradient on each interface respective.
Fncom denotes a numerical flux on the interface. In the current study, we use the Roe Riemann flux to
compute the inviscid common flux Fncom and the Bassi and Rebay (BR2) [3] for the the common solution
Qcom and the common gradient ∇Qcom.

∏
is the projection operator for the inviscid and viscous flux

divergence terms. The Lagrange polynomial approach (LP) [48] is used.
In the SA model, the working variable ν̃ can have different order of magnitude than the other components

of the state. In order to improve the floating point precision, the dynamic scaling of ν̃ in [Ref] is used. To
compute the distance of each solution point in the domain to the nearest curved polynomial wall boundaries,
the CPR high-order discretization is extended to solve the Eikonal equation [Ref].

The first order backward Euler scheme is used for the time integration. The system of linear equations
is solved using the preconditioned GMRES (Generalized Minimal RESidual) solvers from the PETSc library
[1] . The ILU(1) preconditioner and Line-searches are used to speed up the convergence. More solution
details can be found in [8].

IV. Adjoint-based Error Estimation and H-adaptation

Adjoint-based error estimation relates a specific functional output directly to the local residuals by the
adjoint solution, which can be used to construct a very effective error indicator to drive an adaptive procedure
toward any engineering output. Let Qh denotes an approximate solution to the analytical solution Q. The
difference between them can be interpreted as a solution perturbation δQ = Q − Qh. The output error
defined as δJ = J (Qh)− J (Q) can be estimated by the adjoint weighted residual method

δJ ≈ −
ˆ

Ω

ψ(N (Qh)−N (Q))dΩ = −
ˆ

Ω

ψN (Qh)dΩ. (13)

Since the CPR method is not in a variational form, the discrete adjoint formulation for the CPR method
utilizes an explicitly defined variational form to obtain the dual-consistent adjoint solution. Assume the
adjoint solution belongs to the same space of the primal solution, the adjoint variable ψi of cell i can be
approximated using the Lagrange basis Lj

ψi =
∑
j

Ljψi,j . (14)

The discrete adjoint equation for the CPR method reads

−
∑
i

∑
j

∂ri,j
∂Ql

ωj |Ji,j |ψi,j =
∂J
∂Ql

, (15)

where ri,j is a pointwise residual defined on each solution point j of cell i arising from a CPR scheme and ωj
and |Ji,j | are the quadrature weight and the element Jacobian at the solution point. More detailed discussion
about the dual-consistency of the CPR method can be found in Ref. [41].

Based on Eq. 13, the output error estimate can be expressed as

δJ ≈−
∑
i

∑
j

ri,j(Qh)ωj |Ji,j |ψi,j . (16)

Also, we can define a corrected output using the functional error estimate

Jcorr ≡ J (Qh) + δJ . (17)
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From the Eq. 13, the output error can be estimated by performing a quadrature rule as

δJh(Qh) ≈ −
∑
i

∑
j

ωj |Ji,j |ψi,jri,j(QHh ). (18)

The continuous adjoint solution ψ is approximated by solving ψh on the finner space through enriching the
degree of the solution polynomial. The finer solution Qh is obtained by performing several steps of GMRES
relaxation after prolongating from the coarse solution QH

QHh = IHh QH (19)

with an injection operator IHh . The adjoint-based local error indicator ηi used in this paper is defined by
taking an absolution value of the elemental output error contribution

ηi = |
∑
j

ωj |Ji,j |
(
ψh − IHh ψH

)
i,j
ri,j(Q

H
h )|. (20)

Here, to achieve a better estimates, the adjoint defect between the coarse level and fine level ψh − IHh ψH is
used. For systems of equation, the local error indicators are formed by summing together every component’s
contribution to the functional error estimate.

The error indicators defined above are used to drive a fixed-fraction anisotropic h-adaptation. In this
approach, a certain fraction f of the current elements with the largest local error indicators η are marked
for h-refinements. Figure 1 shows the procedure of the adjoint-based h-adaptation for the CPR method.
Non-conforming interfaces between cells with different h levels are created during the adaptations. In order
to ensure the solution smoothness, only one level difference of h-refinement between neighboring cells are
allowed. Special treatment is required when computing the common numerical flux on those non-conforming
interfaces with hanging nodes. The “mortar” element method developed by Kopriv[28] is used here. For a
non-conforming interface, a “mortar” face is introduced to link the unmatched elements, whose space are
always chosen as the higher h or p space of the two sides. First, the solution from the left and right sides
of the face are prolongated to the mortar surface by a simple interpolation process (see Figure 2a on the
following page). Then, the common flux are computed by solving the Riemann problem on the mortar
surface. The last step is to project the common flux on the mortar surface back to the original space. Here,
the standard L2 projection is utilized to preserve the average.

Figure 1: The procedure of the adjoint-based h-adaptation.
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Mortar 

 Face

QL

QR

QR

(a) Solution prolongation

Mortar 

 Face

Fcom

FL

FR

FR

(b) Common flux restriction

Figure 2: Mortar face operation for a non-conforming face (k = 1, 4: FPs, �: DOFs on the mortar face).

Mesh refinement is performed in the original element’s polynomial space using the reference coordinates.
So the refined elements inherit the same geometry approximation order. However, for elements on the
geometry boundaries, the newly generated vertex on the boundary edge may not be exactly on the real
geometry. An extra remapping process is employed to snap the boundary points to the truth geometry
during each adaptation level.

=⇒
Figure 3: Hanging nodes with the one level difference restriction.

V. Numerical Results

V.A. Turbulence Flow over a Flat Plate

We consider subsonic, turbulence flow over a flat plate. This test case is from the NASA’s Turbulence
Modeling Resource (TMR) website[29]. The problem is solved on a rectangular domain of size [−1/3, 2]×[0, 1].
The plate length is 2, which spanning from x = 0.0 to 2.0. The frees stream Mach number is M0 = 0.2, and
the Reynolds number based on the plate length of 1 is Re = 5 × 106. The adiabatic no-slip wall boundary
condition is enforced along the plate, and a symmetry boundary condition is specified on the first part of the
lower boundary. Thus, the leading edge of the plate is a singularity point between the symmetry boundary
condition and the no-slip boundary condition. The total pressure and static pressure are fixed respectively
on the left and right boundaries. Farfield characteristic boundary condition is enforced on the upper surface.
For the laminar viscosity, Sutherland’s law with Ts = 110K and Tref = 300K is used.

The 2nd and 3rd order CPR schemes (k = 1, 2) with the Gauss points as the SPs/FPs and the LP
approach are tested. The initial mesh, as shown in Figure 4a, consists of 34 × 24 quadrilateral elements,
which has an approximate average y+ ≈ 1.7 over the plate. In this case, isotropic h-adaptions driven by the
drag adjoint error indicator are tested. Figure 4 shows the adapted mesh and the eddy viscosity contours
from the finest adaptation stage with k = 2. The leading edge and the elements around the lower boundary
are refined repeatedly on each adaptation level.

Figure 6a shows the convergence history of the drag coefficient with CFL3D and FUN3D results using
the SA model. The results show that the adaptive values converge much faster than the uniform refinements,
and all try to converge to the same value. The converged results agree with CFL3D and FUN3D within 0.1
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count. The truth CD = 0.00285875 is chosen from the finest k = 2 adaptive result. Figure 5 compares the
extracted non-dimensional eddy viscosity at x = 0.97. The p = 1 result shows some oscillations, while the
p = 2 results shows excellent agreement with the CFL3D and FUN3D results. Figure 6b compares the CD
error for all the tested adaptation strategies. With h-adaptation, effective convergence rates of 1.2 and 5.2
were achieved for CD with k = 1 and k = 2 respectively, as shown in the Figure 6b. Again it is shown that
the ajoint based h-adaptation approach can reduce the number of DOFs by orders of magnitude.
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(a) Initial mesh and eddy viscosity contours
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(b) Adapted mesh and eddy viscosity contours

x

y

0.0002 0.0001 0 0.0001 0.0002
0

0.00015

(c) Zoom in, initial mesh
x

y

0.0002 0.0001 0 0.0001 0.0002
0

0.00015

(d) Zoom in, adapted mesh

Figure 4: The initial and adapted results for the turbulence flow ovar a flat plate problem atM0 = 0.2, Re =
5× 106(k = 2). Red circle indicates the leading edge.

V.B. Turbulence Flow over the NACA0012 Airfoil

The next test case is a turbulent flow over the NACA0012 airfoil at Mach number Ma=0.15, Reynolds
number Re = 6× 106, with angles of attack α = 0◦, 10◦. This case is used as a validation case of CFD codes
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Figure 5: The non-dimensional eddy viscosity of turbulent flow over a flat plate atMa = 0.2, Re = 5×106, x =
0.97 with 136× 96 elements

h

C
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0.01 0.02 0.03

2.78E03
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2.86E03
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2.94E03 p1uni

p2uni

p1adapt

p2adapt

CFL3D

FUN3D

(a) CD
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p1uni

p2uni

p1adapt

p2adapt
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0.78

1.21

1.86

2.1

5.2

(b) CD error

Figure 6: CD convergence for the turbulent flow over a flat plate problem at M0 = 0.2, Re = 5× 106.
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on the TMR webpage[29], by comparing all the CFD results with the experimental results.
The farfield boundary is located almost 500 chords away from the airfoil. The initial mesh is a C-type

grid with 54 × 23 fourth-order curved elements generated using gmsh. The first layer grid gives y+ ≈ 10.
H-adaptations with k = 1, 2, 3, 4 are driven by the output-based error indicator. The lift coefficient is
considered as the outputs of interest. Additionally, uniform h-refinement is performed to compare those
adaptation strategies. Figure 7 compares the Mach contours and presents the adapted meshes at angles of
attack α = 0◦ and 10◦. Note that regions near the stagnation streamlines and inside the boundary layer are
targeted for refinements. The trailing edge is also refined repeatedly to reduce the effect of the geometry
singularity.

Figure 9 displays the convergence history of the drag coefficients along with the CFL3D and FUN3D
results. The results show that the adaptive values converge much faster than the uniform refinements, and
the adaptation with k = 3 and 4 try to converge to the same value between the CFL3D and FUN3D results
with much finner grid. The truth outputs is chosen from the the final stage of the adaptive simulations with
k = 4. Figure 10 compares the CD errors of all tested adaptation strategies with results from the uniform
h-refinements.

VI. Conclusions

In this paper, we apply an output-based h-adaptation method with the high-order CPR formulation to
the Reynolds-averaged Navier-Stokes (RANS) Equations to minimize the functional error. A dual-consistent
high-order correction procedure via reconstruction method (CPR) is utilized to discretize the RANS equations
with the modified Spalart-Allmaras (SA) model. The wall distance of each solution point in the computing
domain, which is required in the SA model, is computed by solving the Eikonal equation using the CPR
framework. The mesh refinements are driven by the automated output-based adaptation. The adaptive
results of the turbulence flow over a flat plate problem and the turbulence flow over the NACA0012 airfoil
problem demonstrate the ability of the present method to efficiently reduce the functional errors in terms of
the number of degrees of freedom (DOFs).
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(a) The initial mesh (b) The adapted mesh

(c) Mach number contours on the initial mesh (d) Mach number contours on the adapted mesh

Figure 7: Adjoint-based h-adaptation for the NACA 0012 airfoil at M0 = 0.15, α = 0◦, Re = 6× 106

10 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 Z

hi
 W

an
g 

on
 J

an
ua

ry
 1

4,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
18

26
 



(a) The initial mesh (b) The adapted mesh

(c) Mach number (the initial mesh) (d) Mach number (the adapted mesh)

(e) Non-dimensional eddy viscosity (the initial mesh) (f) Non-dimensional eddy viscosity (the adapted mesh)

Figure 8: Adjoint-based h-adaptation for the NACA 0012 airfoil at M0 = 0.15, α = 10◦, Re = 6× 106
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(a) α = 0◦ (b) α = 10◦

Figure 9: CD convergence for turbulence flow over the NACA 0012 airfoil at M0 = 0.15, α =
1◦ and 10◦, Re = 6× 106

(a) α = 0◦ (b) α = 10◦

Figure 10: CD error for turbulence flow over the NACA 0012 airfoil at M0 = 0.15, α = 1◦ and 10◦, Re =
6× 106

12 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 Z

hi
 W

an
g 

on
 J

an
ua

ry
 1

4,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
18

26
 



7 Burgess, N., 2011. An adaptive discontinuous Galerkin solver for aerodynamic flows. Ph.D. thesis, Uni-
versity of Wyoming.

8 C. Zhou, Z. J. W., 2015. Cpr high-order discretization of the RANS equations with the SA model. AIAA
Paper 2015-1286.

9 Cagnone, J., Nadarajah, S., 2012. A stable interface element scheme for the p-adaptive lifting collocation
penalty formulation. Journal of Computational Physics 231 (4), 1615 – 1634.

10 Cagnone, J., Vermeire, B., Nadarajah, S., 2013. A p-adaptive LCP formulation for the compressible
Navier-Stokes equations. Journal of Computational Physics 233, 324 – 338.

11 Ceze, M., Fidkowski, K. J., 2012. Anisotropic hp-adaptation framework for functional prediction. AIAA
Journal 51 (2), 492–509.

12 Cockburn, B., Lin, S., Shu, C., 1989. TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws III: One-dimensional systems. Journal of Computational Physics
84 (1), 90–113.

13 Cockburn, B., Shu, C., 1998. The Runge-Kutta discontinuous Galerkin method for conservation laws V:
Multidimensional systems. Journal of Computational Physics 141 (2), 199–224.

14 D.Moro, N. N., Peraire, J., 2011. Navier-Stokes solution using hybridizable discontinuous Galerkin meth-
ods. AIAA Paper 2011-3407.

15 Fidkowski, K., 2011. Review of output-based error estimation and mesh adaptation in computational
fluid dynamics. AIAA Journal 49 (4), 673–694.

16 Fidkowski, K., Darmofal, D., 2007. A triangular cut-cell adaptive method for high-order discretizations
of the compressible Navier-Stokes equations. Journal of Computational Physics 225 (2), 1653–1672.

17 Gao, H., Wang, Z. J., Jan. 2013. A conservative correction procedure via reconstruction formulation with
the chain-rule divergence evaluation. Journal of Computational Physics 232, 7–13.

18 Gao, H., Wang, Z. J., 2013. Differential formulation of discontinuous Galerkin and related methods for
the Navier-Stokes equations. Commun. Comput. Phys. 13, 1013–1044.

19 Giles, M., Pierce, N., 1997. Adjoint equations in CFD: duality, boundary conditions and solution be-
haviour. AIAA paper 97-1850.

20 Giles, M., Pierce, N., 2003. Adjoint error correction for integral outputs. In: Barth, T., Deconinck, H.
(Eds.), Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Vol. 25
of Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg, pp. 47–95.

21 Hartmann, R., Houston, P., 2002. Adaptive discontinuous Galerkin finite element methods for the com-
pressible Euler equations. Journal of Computational Physics 183 (2), 508 – 532.

22 Huang, W., Russell, R. D., 2010. Adaptive Moving Mesh Methods. Vol. 174. Springer.

23 Huynh, H. T., 2007. A flux reconstruction approach to high-order schemes including discontinuous
Galerkin methods. AIAA Paper 2007-4079.

24 Huynh, H. T., 2011. High-order methods by correction procedures using reconstructions. Adaptive High-
Order Methods in Computational Fluid Dynamics 2, 391–422.

25 Huynh, H. T., Z. J. W., Vincent, P. E., 2014. High-order methods for computational fluid dynamics:
A brief review of compact differential formulations on unstructured grids. Computers & Fluids 98 (0),
209–220.

26 Jameson, A., Vincent, P. E., Castonguay, P., Feb. 2012. On the non-linear stability of flux reconstruction
schemes. J. Sci. Comput. 50 (2), 434–445.

13 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 Z

hi
 W

an
g 

on
 J

an
ua

ry
 1

4,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
18

26
 



27 Kopriva, D., Kolias, J., 1996. A conservative staggered-grid chebyshev multidomain method for compress-
ible flows. Journal of computational physics 125 (1), 244–261.

28 Kopriva, D. A., 1996. A conservative staggered-grid chebyshev multidomain method for compressible
flows. II. a semi-structured method. Journal of Computational Physics 128 (2), 475 – 488.

29 Lagnley Research Center, 2014. Turbulence modeling resource.
URL http://turbmodels.larc.nasa.gov/

30 Liang, C., Jameson, A., Wang, Z. J., May 2009. Spectral difference method for compressible flow on
unstructured grids with mixed elements. Journal of Computational Physics 228 (8), 2847–2858.

31 Liu, Y., Vinokur, M., Wang, Z. J., 2006. Discontinuous spectral difference method for conservation laws
on unstructured grids. Computational Fluid Dynamics 2004, 449–454.

32 Liu, Y., Vinokur, M., Wang, Z. J., 2006. Spectral finite volume method for conservation laws on un-
structured grids V: Extension to three-dimensional systems. Journal of Computational Physics 212 (2),
454–472.

33 May, G., Jameson, A., 2006. A spectral difference method for the Euler and Navier-Stokes equations on
unstructured meshes. AIAA paper 2006-304.

34 N. K. Burgess, D. J. M., 2012. Robust computation of turbulent flows using a discontinuous Galerkin
method. AIAA Paper 2012-0457.

35 Nicholas K. Burgess, C. R. N., Mavriplis, D. J., 2010. Efficient solution techniques for discontinuous
Galerkin discretizations of the Navier-Stokes equations on hybrid anisotropic meshes. AIAA Paper 2010-
1448.

36 Oliver, T. A., 2008. A high-order, adaptive, discontinuous Galerkin finite element method for the Reynolds
averaged Navier-Stokes equations. Ph.D. thesis, Massachusetts Institute of Technology.

37 Oliver, T. A., Darmofal, D. L., 2007. An unsteady adaptation algorithm for discontinuous Galerkin
discretizations of the RANS equations. AIAA Paper 2007-914.

38 Per-Olof Persson, N. C. N., Peraire, J., 2007. RANS solutions using high order discontinuous Galerkin
methods. AIAA Paper 2007-914.

39 Peraire, J., Persson, P., 2007. The compact discontinuous Galerkin CDG method for elliptic problems.
Arxiv preprint math/0702353.

40 Reed, W. H., Hill, T. R., 1973. Triangular Mesh Methods for the Neutron Transport Equation.

41 Shi, L., Wang, Z. J., 2015. Adjoint-based Error Estimation and Mesh Adaptation for the Correction
Procedure via Reconstruction Method. Journal of Computational Physics 295, 261–284.

42 Van den Abeele, K., Lacor, C., Wang, Z. J., 2008. On the stability and accuracy of the spectral difference
method. Journal of Scientific Computing 37 (2), 162–188.

43 Venditti, D., Darmofal, D., 2003. Anisotropic grid adaptation for functional outputs: application to
two-dimensional viscous flows. Journal of Computational Physics 187 (1), 22–46.

44 Venditti, D. A., Darmofal, D. L., Oct. 2000. Adjoint error estimation and grid adaptation for functional
outputs: application to quasi-one-dimensional flow. Journal of Computational Physics 164 (1), 204–227.

45 Wang, L., Mavriplis, D. J., Nov. 2009. Adjoint-based hp-adaptive discontinuous Galerkin methods for the
2D compressible Euler equations. Journal of Computational Physics 228 (20), 7643–7661.

46 Wang, Z. J., 2002. Spectral (finite) volume method for conservation laws on unstructured grids: basic
formulation. Journal of Computational Physics 178 (1), 210–251.

14 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 Z

hi
 W

an
g 

on
 J

an
ua

ry
 1

4,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
18

26
 

http://turbmodels.larc.nasa.gov/


47 Wang, Z. J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R.,
Hillewaert, K., Huynh, H. T., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M., Jul. 2013.
High-order CFD Methods: Current Status and Perspective. International Journal for Numerical Methods
in Fluids 72, 811–845.

48 Wang, Z. J., Gao, H., 2009. A unifying lifting collocation penalty formulation including the discontinuous
Galerkin, spectral volume/difference methods for conservation laws on mixed grids. Journal of Computa-
tional Physics 228, 8161–8186.

49 Wang, Z. J., Gao, H., Haga, T., 2011. A unifying discontinuous formulation for hybrid meshes. Adaptive
High-Order Methods in Computational Fluid Dynamics, 423–453.

50 Wang, Z. J., Liu, Y., 2002. Spectral (finite) volume method for conservation laws on unstructured grids
II. extension to two-dimensional scalar equation. Journal of Computational Physics 179 (2), 665–697.

51 Warburton, T., 2006. An explicit construction of interpolation nodes on the simplex. Journal of engineer-
ing mathematics 56 (3), 247–262.

52 Yang, X., Huang, W., Qiu, J., 2012. A moving mesh weno method for one-dimensional conservation laws.
SIAM Journal on Scientific Computing 34 (4), A2317–A2343.

53 Yano, M., Darmofal, D. L., Sep. 2012. An optimization-based framework for anisotropic simplex mesh
adaptation. Journal of Computational Physics 231 (22), 7626–7649.

54 Yu, M., Wang, Z. J., Liu, Y., 2014. On the accuracy and efficiency of discontinuous Galerkin, spectral
difference and correction procedure via reconstruction methods. Journal of Computational Physics 259,
70–95.

15 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 Z

hi
 W

an
g 

on
 J

an
ua

ry
 1

4,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
18

26
 


	Introduction
	The Modified Spalart-Allmaras Turbulence Model
	The CPR Discretization
	Adjoint-based Error Estimation and H-adaptation
	Numerical Results
	Turbulence Flow over a Flat Plate
	Turbulence Flow over the NACA0012 Airfoil

	Conclusions
	References

