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Abstract

Kinetic Equations containing terms for spatial transport,gravity, fluid drag and particle-particle collisions can be
used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical
simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the
problem in terms of moments of the velocity distribution function. A quadrature method of moments (QMOM) was
derived by Desjardins et al. [1] for approximating solutions to the kinetic equation for arbitrary Knudsen number.
Fox [2, 13] derived a third-order QMOM for dilute particle flows, including the effect of the fluid drag on the particles.
Passalacqua et al. [4] and Garg et al. [3] coupled an incompressible finite-volume solver for the fluid-phase and a
third order QMOM solver for particle-phase on Cartesian grids. In the current work a compressible finite-volume
fluid solver is coupled with a particle-phase solver based onthird-order QMOM on unstructured grids. The fluid and
particle-phase are fully coupled by accounting for the volume displacement effects induced by the presence of the
particles and the momentum exchange between the phases. Thesuccess of QMOM is based on the moment inversion
algorithm that allows quadrature weights and abscissas to be computed from the moments of the distribution function.
The moment-inversion algorithm does not work if the momentsare non-realizable, which might lead to negative
weights. Desjardins et al. [1] showed that realizability isguaranteed only with the1st-order finite-volume scheme that
has excessive numerical diffusion. The authors [5, 6] have derived high-order finite-volume schemes that guarantee
realizability for QMOM. These high-order realizable schemes are used in this work for the particle-phase solver.
Results are presented for a dilute gas-particle flow in a lid-driven cavity with both Stokes and Knudsen numbers equal
to 1. For this choice of Knudsen and Stokes numbers, particletrajectory crossing occurs which is captured by QMOM
particle-phase solver.

Introduction

Gas-particle flows are relevant in many engineering ap-
plications. A detailed understanding of such flows is es-
sential to the improvement of these applications. Cur-
rently, there exist several different ways for numerical
simulation of gas-particle flows. All of them use the
same fluid solver. They differ in the way in which parti-
cle phase is treated:

1. Direct solver that discretizes velocity phase space
of particle number density function [7, 8].

2. Lagrangian solver that tracks all the particles indi-
vidually [9].

3. Hydrodynamic models with kinetic theory moment
closures [10].

4. Quadrature Method Of Moment (QMOM) solver
that solves for moments of particle number den-
sity function with quadraure-based closures [1, 2,
4, 11].

A direct solution of the kinetic equation is pro-
hibitively expensive due to the high dimensionality of
the space of independent variables, while Lagrangian
solvers are computationally very expensive for many en-
gineering and industrial applications, since the number
of particles to be tracked is very large. Hydrodynamic
models are developed assuming that the Knudsen num-
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ber of the flow is nearly zero, which is equivalent to as-
suming a Maxwellian (or nearly Maxwellian) equilib-
rium velocity distribution. This, however, is not correct
in relatively dilute gas-particle flows, where the Knud-
sen number is high, the collision frequency is small and
phenomena like particle trajectory crossing can happen.
In particular, Desjardins et al. [1] showed that the as-
sumption that a gas-particle flow can be described by
accounting for only the mean momentum of the parti-
cle phase leads to incorrect prediction of all the velocity
moments, including the particle number density, show-
ing the need of using a multi-velocity method, in order
to correctly capture the physics of the flow.

QMOM for gas particle flow [2, 12, 13] is based on
the idea of tracking a set of velocity moments of arbi-
trarily high order, providing closures to the source terms
and the moment spatial fluxes in the moment transport
equations by means of a quadrature approximation of
the number density function. Fox [2, 13] derived a third
order QMOM for dilute particle flows, including the ef-
fect of the fluid drag on the particles. Passalacqua et
al. [4] and Garg et al. [3] coupled a third order QMOM
solver with an incompressible finite volume solver for
the fluid-phase on Cartesian grids In the current work,
a compressible finite-volume fluid-phase solver is cou-
pled with a particle phase solver based on third-order
QMOM on unstructured grids. The fluid and particle
phases are fully coupled by accounting for the volume
displacement effects induced by the presence of the par-
ticles, and accounting for the momentum exchange be-
tween the phases.

The key to the success of QMOM is an inversion al-
gorithm which allows to uniquely determine a set of
weights and abscissas from the set of transported mo-
ments. Condition for the inversion algorithm to be ap-
plied is that the set of moments is realizable, meaning it
actually corresponds to a velocity distribution. This con-
dition is not generally ensured by the traditional finite-
volume methods used in computational fluid dynamics.
Desjardins et al. [1] showed that realizability is guaran-
teed only with the1st-order finite-volume scheme. But
the1st-order finite-volume scheme has excessive numer-
ical diffusion. The authors [5, 6] have recently derived
high-order finite-volume schemes that guarantee realiz-
ability for QMOM. These high-order realizable schemes
are used in this work for the particle phase solver.

The remainder of the paper is organized as follows.
First the governing equations for the fluid and particle
phases are described. Then the details of the two solvers
and the coupling algorithm are briefly explained. Fi-
nally, numerical results are presented for a dilute gas-
particle flow in a lid-driven cavity. For simplicity quan-
tities with subscript f will be associated with fluid-phase.
For the particle-phase subscript p may or may not appear

explicitly. Also, any repetition of variable indices will
denote summation as per Einstein notation.

Fluid-phase governing equations

The fluid-phase is described by Navier-Stokes equations
modified for multi-fluid models. The fluid-phase conti-
nuity, momentum and energy equations are given as:

∂Wf

∂t
+

∂Hfj(Wf)

∂xj

=
∂H

v
fj(Wf)

∂xj

+ Sf . (1)

In (1),Wf , Hfj(Wf), Hv
fj(Wf) andSf denote the set of

conserved variables, inviscid fluxes, viscous fluxes and
source terms respectively. These terms are given by

Wf =





αfρf

αfρfUfi

αfρfEf



 , (2)

Hfj(Wf) =





αfρfUfj

αf (ρfUfiUfj + pf)
αf (ρfEf + pf) Ufj



 , (3)

H
v
fj(Wf) =





0
σfij

σfijUfi



 , (4)

Sf =





0
Mfpi + αfgi

Qfp



 . (5)

In (2)-(5), αf , ρf , Ufi and pf are fluid-phase volume-
fraction, density, velocity components and pressure re-
spectively. The total energyEf can be written as:

Ef =
pf

(γ − 1)ρf
+

1

2
UfjUfj , (6)

whereγ is the ratio of specific heats. In (4), the compo-
nents of the viscous stress tensorσfij are given by

σfij = µf

(

∂Ufi

∂xj

+
∂Ufj

∂xi

)

− 2

3
µf

∂Ufk

∂xk

δij , (7)

whereµf is the fluid dynamic viscosity andδij denotes
Kronecker delta. The body force due to gravity is ac-
counted for byαfgi. For the current work, gravity is not
considered. The other two source terms,Mfpi andQfp

account for momentum and energy exchange between
the fluid and particle phases. Details about these two
source terms will be discussed in a later section.
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Particle-phase governing equations

Kinetic equation. Dilute gas-particle flows can be mod-
eled by a kinetic equation [14, 15, 16] of the form:

∂tf + v · ∂xf + ∂v · (fF) = C, (8)

wheref(v,x, t) is the velocity based number density
function, v is the particle velocity,F is the force act-
ing on individual particle, andC is the collision term
representing the rate of change in the number density
function due to collisions. The collision term can be de-
scribed using Bhatnagar-Gross-Krook (BGK) collision
operator [17]:

C =
1

τc
(feq− f), (9)

whereτc is the characteristic collision time, andfeq is the
Maxwellian equilibrium number density function given
by:

feq(v) =
M0

√

(2πσeq)3
exp

(

−|v − Up|2
2σeq

)

, (10)

in which Up is the mean particle velocity,σeq is the
equilibrium variance andM0 =

∫

fdv is the particle
number density. In fluid-particle flows, the force term is
given by the sum of the gravitational contribution and
the drag term exerted from the fluid on the particles.

Moment transport equations. In the quadrature-
based moment method of Fox, a set of moments of
number density functionf are transported and their
evolution in space and time is tracked. Each element
of the moment set is defined through integrals of the
velocity distribution function. For the first few moments
the defining integrals are:

M0 =

∫

fdv,

M1
i =

∫

vifdv,

M2
ij =

∫

vivjfdv,

M3
ijk =

∫

vivjvkfdv.

(11)

In these equations, the superscript ofM represents the
order of corresponding moment. The particle-phase vol-
ume fractionαp and mean particle velocityUp are re-
lated to these moments by:

αp = VpM
0 (12)

and
ρpαpUpi = mpM

1
i (13)

wheremp = ρpVp is the mass of a particle with density
ρp and volumeVp. For 2D cases,Vp = πd2

p/4 and for

3D cases,Vp = πd3
p/6. Likewise, the particle temper-

ature is defined in terms of the trace of the particle ve-
locity covariance matrix, which is found fromM2

ij and
lower-order moments. By definition,αp + αf = 1 and
this relation must be accounted for when solving a fully
coupled system for the fluid and particle phases.

Moment transport equations are obtained by applying
the definition of moments to (8). The transport equations
for moments in (11) can be written as:

∂Wp

∂t
+

∂Hpl(Wp)

∂xl

= Dp + Gp + Cp. (14)

In (14), Wp andHpl(Wp) are the conserved moments
and spatial fluxes respectively and are given as:

Wp =









M0

M1
i

M2
ij

M3
ijk









, (15)

Hpl(Wp) =









M1
l

M2
il

M3
ijl

M4
ijkl









. (16)

The source terms on right hand side of (14),Dp, Gp and
Cp respectvely denote drag, gravity and collision terms
and can be written as:

Dp =









0
D1

i

D2
ij

D3
ijk









, (17)

Gp =









0
giM

0

giM
1
j + gjM

1
i

giM
2
jk + gjM

2
ik + gkM2

ij









, (18)

Cp =









0
0

C2
ij

C3
ijk









. (19)

Gravity is not considered in the current work. Hence,
Gp = 0. The details of drag and collision terms will be
discussed later.

According to the third order QMOM derived by
Fox [2, 13], following set of moments are transported
in 2D and 3D respectively:

W
2D
p = [M0,M1

1 ,M1
2 ,M2

11,M
2
12,M

2
22,M

3
111,

M3
112,M

3
122,M

3
222]

T
(20)
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and

W
3D
p = [M0,M1

1 ,M1
2 ,M1

3 ,M2
11,M

2
12,M

2
13,

M2
22,M

2
23,M

2
33,M

3
111,M

3
112,M

3
113,

M3
122,M

3
123,M

3
133,M

3
222,M

3
223,

M3
233,M

3
333]

T.

(21)

For simplicity, hereinafter we will assume that all of the
moments have been multiplied byVp, so that the zero
order moment corresponds to the particle-phase volume
fraction i.e. M0 = αp. This simplification helps in
handling of coupling terms.

Quadrature-based closures. Using the BGK
model [17], the collision terms in (19) can be closed.
Details of closure of collision terms can be found
in [4]. However, the set of transport equations in (14)
is still unclosed because of the spatial flux and drag
terms. Each equation contains the spatial fluxes of the
moments of order immediately higher. In quadrature-
based moment methods, quadrature formula are used to
provide closures to these terms in the moment transport
equations, by introducing a set of weights and abscissas.
The number density functionf is written in terms of the
quadrature weights (n) and abscissas (Uα) using Dirac
delta representation:

f(v) =

β
∑

α=1

nαδ (v − Uα) . (22)

The method based on (22) is calledβ-node quadrature
method. The moments can be computed as a function
of quadrature weights and abscissas by using the above
definition off in (7):

M0 =

β
∑

α=1

nα,

M1
i =

β
∑

α=1

nαUαi,

M2
ij =

β
∑

α=1

nαUαiUαj ,

M3
ijk =

β
∑

α=1

nαUαiUαjUαk.

(23)

The source terms in (17) due to drag are computed as:

D1
i =

β
∑

α=1

nα

mp
Fiα,

D2
ij =

β
∑

α=1

nα

mp
(FiαUjα + FjαUiα) ,

D3
ijk =

β
∑

α=1

nα

mp
(FiαUjαUkα + FjαUkαUiα+

FkαUiαUjα),

(24)

where the drag force termFiα is given by

Fiα =
mp

τd
(Ufi − Uiα) . (25)

In (25), the drag timeτd is given by

τd =
4dpρp

3αfρfCd|Uf − Uα|
. (26)

The drag coefficientCd is given by Schiller and Nauman
correlation [18]:

Cd =
24

αfRepα

[

1 + 0.15(αf Repα)0.687
]

α−2.65
f , (27)

in which Repα = ρfdp|Uf − Uα|/µf . The coupling
source terms for the fluid-phase in (5) are given by:

Mfpi =

β
∑

α=1

(

nα

Vp
Fiα

)

, (28)

Qfp =

β
∑

α=1

(

nα

Vp
FiαUiα

)

. (29)

The next few sections discuss the details of the fluid
and particle phase solvers and the coupling between
them. Although, for the numerical simulations a two-
stage Runge-Kutta scheme is used, for simplicity, all the
discussion on solver details and coupling algorithm will
be based on a single-stage time-integration.

Fluid-phase solver

Let I and ∂I denote any cell in the domain and its
boundary respectively. Also lete ∈ ∂I be a face of cell
I, Ae be its area andInbe

be the neighbouring cell cor-
responding to this face. The finite-volume scheme using
single-stage explicit time-integration for (1) can be writ-
ten as:

W
n+1

fI = W
n
fI −

∆t

volI

∑

e∈∂I

{

Gf

(

W
n
feI

,Wn
feInbe

)

Ae

}

+
∆t

volI

∑

e∈∂I

{

G
v
f

(

W
n
feI

,Wn
feInbe

)

Ae

}

− ∆tSf ,
(30)
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where W
n
fI and W

n+1

fI are the cell averaged values
while W

n
feI

andW
n
feInbe

are the values reconstructed

on different sides of the facee. Also, volI denotes the
volume of cellI. In (30),Gf andG

v
f denote numerical

inviscid and viscous fluxes respectively. Roe flux [19]
is used to calculateGf . For calculation of viscous flux,
gradient of velocity field is required which is obtained
using a least-squares linear reconstruction [20, 21]. In
the current work, results are presented using1st-order
and2nd-order finite-volume schemes. For the1st-order
finite-volume scheme, a piecewise-constant reconstruc-
tion is used i.e.Wn

feI
= W

n
fI . For the2nd-order finite-

volume, a least-squares linear reconstruction is obtained
using cell averaged values of neighbouring cells. No slip
boundary conditions are applied at walls using a ghost-
cell approach.

Particle-phase solver

The particle-phase equations evolve the moments due
to three kinds of terms - spatial fluxes, collisions and
drag. These three terms are treated sequentially using
an operator-splitting technique. First the moments
are updated using spatial flux terms, then using drag
terms and finally using collision terms. A detailed
solution algorithm involving all the terms can be found
in [1, 4, 13].

Spatial flux terms. Consider a 3D domain. Again,
let I and ∂I denote any cell in the domain and its
boundary respectively. Also, lete ∈ ∂I be a face of
cell I, Ae be its area andInbe

be the neighbouring cell
corresponding to this face. The finite-volume scheme
using single-stage explicit time-integration for the
spatial flux terms in (14) can be written as:

W
∗
pI = W

n
pI−

∆t

volI

∑

e∈∂I

{

Gp

(

W
n
peI

,Wn
peInbe

)

Ae

}

,

(31)
whereWn

pI andW
∗
pI are the cell averaged values while

W
n
peI

andW
n
peInbe

are the values reconstructed on dif-

ferent sides of the facee. In (31),volI denotes the vol-
ume of cellI. Let n̂ = [neI

1 neI

2 neI

3 ] denote the outward
unit normal for cellI at facee. The numerical fluxGp

is computed as:

Gp

(

W
n
peI

,Wn
peInbe

)

=

β
∑

α=1























nα

nαUiα

nαUiαUjα

nαUiαUjαUkα









U+
n















eI

+

β
∑

α=1























nα

nαUiα

nαUiαUjα

nαUiαUjαUkα









U−
n















eInbe

(32)

whereU+
n = max(U1αneI

1 + U2αneI

2 + U3αneI

3 , 0) and
U−

n = min(U1αneI

1 + U2αneI

2 + U3αneI

3 , 0). In the
current work, results are presented using1st-order and
quasi-2nd-order [5, 6] finite-volume schemes. For the
1st-order finite-volume scheme, a piecewise-constant
reconstruction is used for both weights and abscissas.
For the quasi-2nd-order finite-volume, a least-squares
linear reconstruction [20, 21] is used for weights while
for abscissas, a piecewise-constant reconstruction is
used. Moreover, a limiter [20, 22] is applied to the
least-squares reconstruction of weights to avoid spuri-
ous oscillations. Wall boundary conditions as described
in [4] are applied using a ghost-cell approach.

Collision terms. Collisions only affect the second
and third order moments. These moments are updated
using BGK model as:

W
∗∗
pI = ∆

∗
pI + (W∗

pI − ∆
∗
pI)exp(−∆t/τc), (33)

whereτc is the collision time and∆pI denotes the set
of equilibrium moments. Details about the calculation
of τc and∆pI can be found in [4].

Drag terms. Drag terms do not affect the weights
because they do not change the number of particles.
The weights obtained after accounting for collisions in
(33) are updated using:

Un+1

iα = U∗∗
iα + ∆t

F ∗∗
iα

mp
. (34)

Coupling algorithm

The coupling between fluid and particle phase solvers is
obtained by following the underlying steps:

1. Initialize parameters and flow variables for both
fluid-phase and particle-phase solvers.

2. For the fluid-phase solver calculate∆tf using a pre-
specified value of CFL.
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3. Pass∆tf , ρf , µf , Uf from fluid-phase solver to
particle-phase solver.

4. For the particle-phase solver calculate∆tp. Details
of calculation of∆tp can be found in [6].

5. Calculate global time step,∆t = min(∆tf ,∆tp).

6. Advance particle-phase solver by∆t.

a) Advance moments by∆t due to spatial flux
terms using a finite-volume approach.

b) Advance moments by∆t due to collision
terms.

c) Advance weights by∆t due to drag force
terms and compute the coupling source terms
Mfpi andQfp for fluid-phase solver.

7. Pass∆t, Mfpi, Qfp andαf(= 1−αp) from particle-
phase solver to fluid-phase solver.

8. Advance fluid-phase solver by∆t.

9. Repeat steps 2 through 8 at each timestep.

Numerical Results

Numerical results are presented for a dilute gas-particle
flow in a lid-driven cavity. The lid has a lengthL and
moves with a constant velocityUlid, as schematized in
Figure 1. The cavity is filled with the gas phase and with
initially uniformly distributed particles. Both the phases
have zero initial velocity as initial condition. The evo-
lution of the flow fields are tracked for a time sufficient
to the lid to go through twenty lid lenghts. The param-
eters that characterize the system are the Knudsen num-
ber (Kn), the Reynolds number (Re), the Stokes number
(St) and the mass loading (λ). The Knudsen number is
defined as:

Kn =
dp

6αpL
√

2
. (35)

The Reynolds number is defined on the base of the lid
length and the lid velocity as:

Re =
ρf |Ulid|L

µf
. (36)

The mass loading is given by the ratio

λ =
αpρp

αfρf
, (37)

while Stokes number is defined as:

St =
1

18

ρp

ρf

(

dp

L

)2

Re . (38)

Results are presented for the case with Kn = 1, St = 1,
Re = 100,λ = 2.5. This case is of particular interest as

Figure 1: Schematic representation of lid-driven cavity.

it involves particle trajectory crossing which cannot be
captured by two-fluid models [3]. Particles are driven by
the fluid velocity field. At the top-right corner particles
hit the wall and are reflected back. Because of particles
with opposing velocities, trajectroy crossing occurs near
the top-right corner. Figure 2 shows the grid with rectan-
gular cells near the boundary and triangular cells in the
core region. Total number of cells is 6904. A two stage
Runge Kutta scheme is used for time-integration. Fig-
ure 3 and Figure 4 show particle volume-fraction fields
at the final time. Figure 3 shows results when1st-order
finite-volume scheme is used for both fluid and particle
phase solvers while Figure 4 shows results when2nd-
order finite-volume scheme is used for fluid-phase solver
andquasi-2nd-order [5, 6] finite-volume scheme is used
for particle-phase solver. Both Figure 3 and Figure 4,
show the trajectory crossing near the top-right corner.
The results are in agreement with the ones presented
in [3]. Second-order finite-volume solver for the fluid
phase gives better resolution of the fluid velocity field.
As the particles are driven by the fluid velocity field, a
second-order finite-volume solver for fluid-phase leads
to better prediction of particle volume-fraction. The use
of quasi-2nd-order finite-volume scheme for particle-
phase further improves the solution.

Conclusions

In the current work, a compressible finite-volume fluid
solver is coupled with a particle-phase solver based on
third-order QMOM on unstructured grids. The fluid and
particle-phase are fully coupled by accounting for the
volume displacement effects induced by the presence of
the particles and the momentum exchange between the
phases. High-order realizable finite volume schemes are
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Figure 2: Grid (6904 cells).

Figure 3: Particle-phase volume-fraction using1st-order
finite-volume solver for both fluid and particle phases.

used for particle-phase QMOM solver. Numerical re-
sults are presented for a dilute gas-particle flow in a lid-
driven cavity. Complex features like particle-trajectory
crossing are captured easily. The coupling can be ex-
tended to practical problems as it is relatively inexpen-
sive compared to Lagrangian and direct kinetic solvers.
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