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ABSTRACT

A 2n tree based Cartesian grid generation method has
been developed recently for complex geometries to
simulate viscous flows. The “viscous” Cartesian grid is
capable of resolving boundary layers with high-aspect
ratio projected viscous layer grids. Compared with an

Octree data structure, the 2n tree data structure supports
anisotropic grid adaptations in any of the coordinate
directions in an arbitrary manner. This capability
enables flow features such as shocks, shear layers and
wakes to be resolved very efficiently. In this paper, the
high-resolution capability are demonstrated with several
well-documented viscous turbulent flow cases. 

INTRODUCTION

The unstructured grid-based CFD methodology has
undergone considerable development in the last decade
in term of both grid generation and solution algorithm
development. It is generally recognized that
unstructured grid–based CFD algorithms offer the best
promise for automated fluid flow simulations. There are
many types of unstructured grids currently in use by
CFD researchers and practitioners, which include

triangular and tetrahedral grids(1–5), quadrilateral or

hexahedral grids6, prismatic grids7 or mixed grids8–9.
The most appealing properties of unstructured grids
include the geometric flexibility and the ease in which
the grid can be adapted according to flow features.
Tetrahedral grids are the easiest to generate. Many well–
known grid generation algorithms, such as the

advancing front10 and the Delauney triangulation

method11 have been developed to generate tetrahedral
grids for complex geometries. However, experiences
have indicated that tetrahedral grids are not as efficient
and/or accurate as hexahedral or prismatic grids for
viscous boundary layers. On the other hand, prismatic
grids and  hexahedral grids  can resolve boundary layers 

more efficiently but they are more difficult to generate
than tetrahedral grids. Many CFD researchers have
come to the conclusion that mixed grids (or hybrid
grids) are the way to go. 

Recently, there has been a renewed interest in using

Cartesian grids for complex geometries12-17. Coupled
with a tree–based data structure and grid adaptation
these methods have been demonstrated to be very viable
tools for inviscid flows, with very complex geometry.
One of the most appealing properties of a Cartesian grid
is its efficiency in filling space with a minimum number
of cells and faces given a certain grid resolution. The
extension of the Cartesian grid approach to viscous
flows was achieved with either the adaptive Cartesian/

prism grids18-20 or with projected viscous layer grids

from the Cartesian grid21-23 (the so-called “viscous”
Cartesian grid method). Another development in the

adaptive Cartesian grid method is the use of 2N tree data

structure24 instead of the Octree. The 2N tree data
structure supports anisotropic grid adaptations of
Cartesian cells naturally. The use of anisotropic grid
adaptation (vs. isotropic grid adaptations) offers the
potential of dramatic reduction in the total number of
cells to achieve a given level of solution accuracy since
most high-gradient flow features as shock waves, slip
lines, vortex sheets, and wakes are anisotropic. 

In this paper, we attempt to demonstrate the benefits of
anisotropic grid adaptations with a variety of flow
problems, in particular turbulent flows with large
separation regions. In the following sections, we will
summarize the viscous Cartesian grid method and the
flow solver, describe the adaptation criteria, and present
several flow problems. Conclusions and future work
will then follow.

SUMMARY OF VISCOUS CARTESIAN GRID 
APPROACH

Given a geometric entity, the following steps are taken
to generate the computational grid.

1.  Cartesian Grid Generation
One of the popular data structures for adaptive Cartesian
grid is the Octree. The drawback of Octree is that only
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isotropic grid refinement is supported. In this study, a 2n

tree data structure has been used. The 2n tree supports
binary, Quadtree and Octree type of subdivisions, and
therefore allows the adaptive Cartesian grid to be

refined in a non-isotropic manner. 2n tree is a
hierarchical data structure in which each non-leaf tree
node can have either 2, 4 or 8 child nodes. All possible

Cartesian cell subdivisions supported by the 2n tree are
illustrated in Figure 1. Note that a Cartesian cell can be
sub-divided in an arbitrary manner. 

The adaptive Cartesian grid is generated by recursively
subdividing a coarse root grid.   Since the root grid must
cover the entire computational domain, the surface
geometry is contained in the root Cartesian cells. The
size of the Cartesian cells intersecting the geometry is
controlled by two parameters, disT and disN. Parameter
disN controls the Cartesian cell size in the geometry
normal direction, whereas disT specifies the Cartesian
cell size in the geometry tangential direction. The ratio
disT/disN determines the maximum aspect ratio in the
Cartesian grid. The recursive sub-division process stops
when all the Cartesian cells intersecting the geometries
satisfy the length scale requirements. For the sake of
solution accuracy, it is very important to ensure that the
Cartesian grid is smooth. In the present study, the sizes
of any two neighboring cells in any coordinate direction
cannot differ by a factor exceeding 2. The use of the

2ntree data structure makes high aspect ratio Cartesian
cells possible. This property can translate into
considerable efficiency gains when anisotropic grid
adaptations are used to resolve flow features. 

2.  Cartesian Grid Front Generation and Smoothing
In order to “insert” a viscous layer grid between the
Cartesian grid and the body surfaces, Cartesian cells
intersected by the geometry must be removed, leaving
an empty space between the Cartesian grid and the body

surface. Both the 2n tree (for the Cartesian grid) and the

Alternating Digital Tree25 data structures (for the
surface triangles) are extensively utilized for efficient
search operations. After this step, all the exposed
Cartesian faces are gathered together and form the so-
called Cartesian grid front. The exposed Cartesian faces
are then smoothed using a Laplacian smoother to form a
smoother front, which is to be projected to the body
surface. 

3.  Projection of the Cartesian Front to the Body Surface
After the smoothed front in the Cartesian grid is
obtained, each node in the front needs to be connected to
the body surface to form the viscous layer grids.  The

“foot prints” of the layer grids on the body surface have
the same topology (or connectivity) as the Cartesian
front.  With this assumption, the viscous layer grids are
naturally “blended” with the adaptive Cartesian grid,
eliminating the need of cell-cutting currently adopted by
many Cartesian grid generators.  Another major
advantage of the approach over cell cutting is that nearly
all computational cells  generated are convex, boosting
the stability and convergence properties of flow solvers.
The projection from the Cartesian grid front to the body
surface is performed according to the minimum distance
rule.  

4.  Geometric Feature Preservation
The front projection based on the minimum distance
criterion may smear critical geometric features,
especially near non-convex corners. This is shown in
Figure 2. The geometrically “critical” concave corner
never connects with a front node, and is therefore not
represented in the projected surface grid. In order to
eliminate this problem, a geometric feature recovery
algorithm was developed. The algorithm first detects all
the critical features in the geometry automatically. Then
all the critical features are preserved through a feature
recovery technique, in which front nodes are
reconnected to the critical features. 

5.  Surface Grid Smoothing and Layer Grid Generation
The projected surface grid from the Cartesian grid front
is usually not smooth because the projections are based
on the minimum distance to the triangulated surfaces.  A
Laplacian smoothing algorithm is therefore applied to
improve the grid quality. By connecting each point on
the Cartesian grid front to the corresponding projected
point on the surface, only a single layer of viscous grids
is produced.  To perform a meaningful viscous flow
simulation, many more layers of viscous grids are
necessary.  Therefore this single layer of viscous grids is
further divided into (user specified) arbitrary number of
layers with arbitrary grid point distributions. 

FLOW SOLVER AND SOLUTION BASED GRID 
ADAPTATION

A cell-centered finite volume flow solver supporting
arbitrary cell types has been used to perform the flow
simulations. The flow solver is second-order accurate in
space with a cell-wise least-squares linear
reconstruction technique. Roe’s approximate Riemann

solver26 was used to compute the inviscid flux. The
viscous flux is computed with an efficient technique
with very compact data support without a separate

reconstruction20. A very fast and memory efficient LU-
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SGS scheme (improvement LU-SGS27) was used for
time integration. The improved LU-SGS scheme can
rival the convergence rate of a fully implicit scheme
with a CGS or GMRES solver while requiring a fraction
of the memory. To simulate flow turbulence, the
classical two-equation k-ε turbulence model with wall

function was used28. Details of the flow solver can be
found in Reference 27.

To achieve automation in flow simulation, solution-
based grid adaptation is essential. To take full advantage
of the anisotropic grid adaptation capability offered by

the 2n tree, the three coordinate directions of each
Cartesian cell are examined independently for possible
grid adaptation. Since the viscous layer grid is generated
by projecting the Cartesian front to the geometry, it
cannot be independently adapted. However, the number
of viscous layers, and the grid clustering factor can be
changed based on local flow features. Both first and
second derivative based grid adaptation criteria have
been developed. The following cell-wise parameters are
used as the adaptation indicators in x-direction

where q can be any flow variable (pressure, total
velocity, or density), τix is a first-derivative based
indicator, while πix is a second-derivative based
indicator. The adaptation indicators in other directions
can be computed similarly. The standard deviation of
the parameter is computed as:
 

where N is the total number of Cartesian cells. The the
following conditions are used for grid adaptation:

1)  if τix > c*τ, cell i is to be refined in x direction;
2)  if τiy > c*τ, cell i is to be refined in y direction;

3)  if τiz > c*τ, cell i is to be refined in z direction;

where c is a control parameter determining the total
number of cells to be refined. In this study, c is chosen
to be 1.

TEST CASES

Octree versus 2N Tree for Transonic Flow over ONERA
M6 Wing

This first test case is transonic flow over an ONERA M6

wing configuration29. The M6 wing has a leading-edge
sweep angle of 30 degrees, an aspect ratio of 3.8, and a
taper ratio of 0.562. The airfoil section of the wing is the
ONERA “D” airfoil, which is a 10% maximum
thickness-to-chord ratio conventional section. The flow
was  first computed at a Mach number of 0.84, an angle
of attack of 3.06 degrees and with inviscid flow
assumption. This case was selected to demonstrate the

superiority of the 2N tree over Octree in efficiently
capturing flow features. The starting coarse
computational grid was generated  using the Octree data
structure, and is shown in Figure 3.  The mesh consists
of 14,141 cells and 47,904 faces and two layers of
projected layer grids. Three levels of solution based grid
adaptations were then performed. The adaptation
criteria are pressure and Mach number gradients. With
the Octree data structure, if a cell needs to be refined in
any of the coordinate direction, the cell is refined in all

directions. The level 3 Octree cartesian grid and 2N tree
Cartesian grid are shown in Figure 4. The Octree
Cartesian grid  is composed of 342,289 cells and

1,105,732 faces, while the 2N tree Cartesian grid has
only 88,296 cells and 300,573 faces. However the
solution on the adapted grids are essentially identical, as
shown in Figures 5 and 6. Figure 5 compares the
pressure contours on the level 3 grids using Octree and

2N tree, and Figure 6 presents the pressure coefficients
on the wing surface at 44% semispan station. Note that
the Cp profiles on the adapted grids of the same level

using Octree and 2N tree are essentially the same.  With

the 2N tree, a 75% saving in CPU can be achieved over
with the Octree. 

This case was also computed assuming fully turbulent

flow. The Reynolds number is 1.814x107. The k-e
model with a wall function was used to simulate flow
turbulence. Based on prior experiences, an average y+
value of 30-50 usually gives good results. Therefore
during the grid adaptation process, the average target y+
value is around 40. The initial and final computational
grids for the turbulent flow case is shown in Figure. The
initial grid has 40,480 cells, and the final level 3 grid has
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413,551 cells. The pressure contours on the initial grid
are compared with the contours on the final grid in
Figure 8. Note the dramatic difference in the resolution
of the overall flow features. The computed surface Cp
profiles are compared with experimental data at four
spanwise sections in Figure 9. It is observed that better
agreement was obtained with grid adaptations. The
surface Cp profile at 44% spanwise section is also
compared to the inviscid simulation, and the
experimental data in Figure 10. Note that the turbulent
flow simulation has slightly better agreement with the
experimental data. Both the inviscid and turbulent
calculations over-predicted the expansion region on top
of the wing.

High Angle of Attack Missile Aerodynamics

The second test case is performed for an ogive/cylinder

configuration30, for which extensive experimental data
is available for validation. The model configuration of
interest is a 3-caliber ogive with a 10-caliber cylindrical
afterbody. The geometry of the configuration, and the
initial viscous Cartesian grid is displayed in Figure 11.
The flow was computed at the following conditions:

Mach = 1.8, α = 14 degrees, Re = 6.56x106/m. The
diameter of the cylinder is 3.7 inches. The flow field is
characterized by large separation regions, and is a
considerable challenge for turbulence models. In this
study, the k-e model with wall function was used in the
simulation. Several levels of grid adaptations were
performed after the solutions were converged on the
coarse grids. Again the target average Y+ value is 25,
which was achieved on the level 2 grid. The adaptation
criterion used is total pressure gradient, which is
designed to capture the complex vortex pattern of the
flow.  The level 1 to 4 grids are displayed in Figure 12.
The final level 4 grid has 473,153 cells and 1,516,791
faces. Note that the development of the complex vortex
pattern is evident on the level 4 grid. It is seen that the
grid was also refined near the shock wave. A picture of
the flow field is shown in Figure 13, which displays
total pressure contours, and the computational grid. The
surface is colored with pressure distributions. Computed
pressure coefficient profiles are compared with
experimental data at several cross section stations in
Figure 14. Note that at least visibly the turbulent
solutions are approaching grid independence because
the difference in Cp computed with the level 3 and level
4 grids is very small. This is the first evidence that grid
independent turbulent solutions can be achieved with
anisotropic grid adaptations. Generally speaking the
agreement between the numerical simulation and the
experimental data is fairly good. It can be said that

improvement in turbulence models is needed to
accurately capture the large separation in this case.

CONCLUSIONS

The 2n tree adaptive viscous Cartesian grid method has
been tested with turbulent flows. It is confirmed that the

2n tree is much more efficient in capturing flow features
than the octree data structure. In the inviscid flow case
with the M6 wing geometry, a 75% saving in total
number of cells can be achieved. With anisotropic grid
adaptations for turbulent flow simulation, it is clearly
demonstrated that grid independent turbulent solutions
are achievable. Drastic improvements in solution
accuracy are demonstrated with solution-based grid
adaptations for both the M6 wing and  the high angle of
attack missile cases. 

The adaptation criteria are shown to be very effective in
capturing shock waves, wakes, and complex vortex
structures. The use of anisotropic grid adaptations
allows these features to be captured very efficiently. 

It is also found that improvements in turbulence models
are required to allow more accurate predictions of
highly separated flows. Future work includes
demonstrating the viscous Cartesian method for
complete aircraft configurations and improve the grid
quality in highly skewed regions of the computational
grid.
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Figure 1.   Cartesian Cell Subdivisions Supported by 2n tree Data Structure
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Figure 2.  Illustration of a Smeared Concave Corner in Front Projection

Figure 3.  Initial Viscous Cartesian Grid for the ONERA M6 Wing (14141 cells and 47904 faces)
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Figure 4. Level 3 Solution-Adaptive Cartesian Grids Using Octree and 2N Tree

Figure 5. Computed Pressure Contour on the Level 3 Solution-Adaptive Cartesian Grids Using Octree (a) and 2N 
Tree (b)

Figure 6.  Comparison between Computed and Experimental Surface Pressure Coefficient at 44% Semispan Station
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Figure 7. The Initial and Level 3 Adaptive Grids for Turbulent Flow Case

Figure 8. The Pressure Contours on the Initial and Level 3 Grids
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Figure 9. Comparison of Computed Cp Profiles with Experimental Data

Figure 10. Comparison of Cp Profiles between Inviscid, Turbulent Simulations and Experiment
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Figure 11.  The Initial Viscous Cartesian Grid for the Ogive/Cylinder Missile Configuration

Figure 12.  The Level 1-4 Solution Adaptive Grids for the Ogive/Cylinder Missile Configuration

Figure 13.  Computed Total Pressure Contours and Surface Pressure Distribution at Mach = 1.8, a = 14 Degrees
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Figure 14. Comparison Between Computed and Experimental Pressure Coefficient Profiles at Several Cross Section 
Stations
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