
OPTIMIZED WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES 
FOR COMPUTATIONAL AEROACOUSTICS

Z.J. Wang*

Department of Mechanical Engineering
 Michigan State University, East Lansing, MI 48804

and
R. F. Chen+ 

DaimlerChrysler Corporation, Auburn Hills, MI 48083

Abstract

ENO (Essentially Non-Oscillatory) and weighted ENO
(WENO) schemes were designed for high-resolution of
discontinuities such as shock waves. They are uniformly high-
order accurate, and essentially oscillation free. Optimized
schemes such as the DRP (Dispersion-Relation-Preserving)
schemes are optimized for short waves (with respect to the grid
spacing ∆x, e.g., waves that are 6-8∆x in wave length) in the
wave number space. Although they may have formally lower
order accuracy than non-optimized maximum-order schemes,
they are capable of resolving short waves with higher
accuracy. Therefore, they are better suited for broadband
acoustic wave problems. In this paper, we seek to unite the
advantages of ENO, WENO schemes and optimized schemes
through the development of Optimized Weighted ENO
(OWENO) schemes to tackle shock/broadband acoustic wave
interactions and small scale flow turbulences relative to the
grid spacing. A third-order OWENO and a seventh order
WENO scheme are compared against each other for
performance on the scalar model equation. It has been shown
that the OWENO scheme indeed gives much better results in
resolving short waves than the WENO scheme while yielding
non-oscillatory solutions for discontinuities. The OWENO
scheme is then extended to the linearized Euler equations to
solve  two computational aeroacoustics (CAA) benchmark
problems for which analytical solutions are available.  For
both cases, excellent agreement with analytical solutions has
been achieved.

Introduction

The last one and half decade has seen many impressive
development in computational aeroacoustics (CAA). As
pointed out by Tam [20], aeroacoustic problems differ
significantly from the aerodynamic problems in nature,
characteristics, and objectives. They are intrinsically unsteady,
and the dominant frequencies are usually high. Therefore the
development of CAA algorithms needs independent thinking.
As a result of this independent thinking, many powerful
numerical algorithms have been developed to address the
particular problems in CAA, e.g., the Dispersion-Relation-
Preserving (DRP) finite difference schemes [21] and other

high-order algorithms [6, 9, 11, 14, 17]. The basic idea in DRP
schemes is to optimize the scheme coefficients for the high-
resolution of short waves with respect to the computational grid
i.e., waves with wavelength of 6-8∆x (defined here as 6-8
points-per-wave or PPW). Therefore, DRP schemes are also
called optimized schemes. The idea of optimizing the scheme
coefficients to minimize a particular type of error instead of the
truncation error has been used very successfully over the years
by many researchers in designing a variety of optimized
schemes [3, 10, 13, 24]. The rationale for optimizing numerical
schemes for short waves is that in a broadband acoustic wave,
there are both short and long wave components (relative to the
grid spacing). For long waves, even lower-order schemes can
do a decent job in resolving them. It is the short waves,
however, which require high resolution if one is to resolve the
broadband wave with as high accuracy as possible.  Other
optimized schemes have also been developed successfully for
CAA applications [25-27]. In the DRP schemes, central
differences are employed to approximate the first derivative.
They are, therefore, non-dissipative in nature. Although non-
dissipative schemes are ideal for aeroacoustic problems,
numerical dissipations are required to damp any non-physical
waves generated by boundary and/or initial conditions. In
practice, high-order dissipation terms are added to the DRP
schemes to suppress spurious oscillations. The amount of
artificial dissipations required is, however, problem dependent.
One may need to fine tune the artificial damping to obtain the
best results for a particular problem at hand. To remedy this
problem, optimized upwind DRP schemes have been
developed more recently by Zhuang and Chen [25,26]. Instead
of using the central difference stencil, an upwind-biased stencil
was selected based on the local wave propagating direction.
Then the upwind schemes are optimized in the wave-number
space following the same idea of DRP schemes. The upwind
DRP schemes are by design dissipative. Therefore they are
capable of suppressing spurious oscillations without the
addition of extra artificial damping, relieving the user from fine
tuning the amount of numerical dissipations. Another
advantage of the upwind DRP schemes is that acceptable
results can be obtained even if the mean flow contains
discontinuities. With both the DRP and upwind DRP schemes,
it is very difficult to obtain oscillation-free numerical solutions
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if the mean flow is discontinuous because the schemes are
linear. For non-linear shock-acoustic wave interaction
problems, numerical oscillations may contaminate the resultant
solutions and even diverge the simulations.

ENO (Essentially Non-Oscillatory) schemes started with the
classic paper of Harten, Engquist, Osher and Chakravarthy in
1987 [5]. It is well-known that traditional finite difference
schemes use fixed stencils to construct a high-order data
interpolation or approximate the first derivative. The resultant
schemes are linear for linear partial differential equations.
These schemes can usually achieve their formal order of
accuracy if the solution is globally smooth. For problems with
discontinuities such as shock waves or contact discontinuities,
fixed stencil high-order (second-order or higher) schemes are
necessarily oscillatory near a discontinuity. Furthermore, such
oscillations do not decay in magnitude when the mesh is
refined. These oscillations can often break down a simulation
for non-linear problems containing discontinuities. To suppress
numerical oscillations, several approaches are possible. One
approach is to add artificial dissipations [7]. The dissipations
can be tuned to be large enough near discontinuities to suppress
oscillations, but small elsewhere to maintain high-order
accuracy. A disadvantage of the approach is that the dissipation
terms are problem dependent. Another approach is to use
limiters to eliminate oscillations [23]. The popular TVD
schemes [4, 15] are just such examples. One drawback of this
approach is that the accuracy near extrema (even near smooth
extrema) must degrade to first order, resulting in clipping of
smooth extrema. The ENO idea seems to be the first successful
attempt to obtain a self similar (i.e. no mesh size dependent
parameter), uniformly high-order accurate, yet essentially non-
oscillatory interpolation (i.e the magnitude of the oscillations

decays as O(∆xk) where k is the order of accuracy) for
piecewise smooth functions. More recently, weighted ENO
(WENO) schemes [8, 12, 19] were developed to further
increase the order of accuracy, while resolving discontinuities
with essentially no numerical oscillations. Many studies [1, 2]
confirmed that ENO and WENO schemes are indeed uniformly
high-order accurate, and resolve shocks with high resolution.
They have been successfully applied to problems with shocks
and complex smooth flow structures, such as those occurring in
shock interactions with a turbulent flow, and shock/vortices
interactions. Although ENO schemes are not designed for
CAA, they have been applied to CAA problems because of
their high-order of accuracy. The direct applications of ENO
and WENO to CAA problems are, however, not optimum
because ENO and WENO schemes are designed for high-
resolution of discontinuities and to achieve a high formal order
of accuracy, and NOT optimized for broadband acoustic
waves. For short waves, ENO and WENO schemes suffer the
same drawback of conventional maximum-order finite
difference schemes in that they quickly lose resolution

compared to optimized schemes. 

In this study, we seek to unite the advantages of both the
optimized DRP schemes and WENO schemes in the
development of Optimized WENO (OWENO) schemes. The
idea is to optimize the WENO schemes in the wave number
space following the practice of the DRP schemes to achieve
high-resolution for short waves with about 6 PPW. At the same
time, OWENO schemes will retain the advantages of WENO
schemes in that discontinuities are captured with essentially no
oscillations, and without any extra numerical damping.
Therefore, OWENO schemes will perform as well as WENO
schemes near discontinuities while having the advantage of the
optimized schemes of resolving broadband noise elsewhere. At
least one group of researchers [24] attempted to optimize
WENO schemes for short waves. In the approach presented in
[24] only the weights in the WENO schemes are optimized.
Although it was also found in [24] that the smoothness
indicators added significant numerical dampings for short
waves, no solutions were given there. In this study,
optimizations are done in two levels. In the first level,
optimized schemes for all candidate stencils are constructed. In
the second level, optimizations are also performed to find the
best weights to combine all the stencils. In addition, new
smoothness indicators are presented for short waves. In the
following section, we first review the concept behind
optimized schemes, ENO and WENO schemes. Then OWENO
schemes are derived for the linear wave equation, and their
dissipative and dispersive behaviors analyzed. After that, the
extension of OWENO to the linear Euler equations is described
followed by a brief discussion on the time marching method.
Next, sample demonstration cases with 1D scalar wave
equation, and the linearized Euler equations are carried out to
evaluate the performance of OWENO schemes. Finally
conclusions from the study are summarized, and possible
future work is outlined.   

Overview of Optimized, ENO and WENO Schemes

Given the number of grid points used to construct a finite
difference scheme, the usual practice is to maximize the order
of accuracy of the numerical scheme. For example, if seven
points are used to build a finite difference scheme, the
maximum order of accuracy one can achieve is a sixth-order
scheme. However, maximum-order schemes may not be the
best for high-frequency short waves. In order to resolve high-
frequency short waves, one can optimize the coefficients of the
finite difference scheme for a particular range of wave number.
This is exactly the idea developed in the DRP schemes [21].
Consider the scalar wave equation with a constant positive
wave speed :

(1)
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where u is a state variable, t > 0 is time, and x is the Cartesian
coordinate. We assume proper initial and boundary conditions
are available when necessary. Given a uniform grid 

x0 < x1 < ... < xN (2)

with a constant grid spacing ∆x, we seek to develop a semi-
discrete conservative numerical scheme approximating (1) in
the following form:

(3)

where ui is a numerical approximation to u(x, t) at grid point xi,

 and  are numerical fluxes (more precisely

 is the flux) depending on k continuous grid points

including xi itself, i.e.,

. (4)

Here ,  , and r + s +1 = k, k is the size of the stencil
used to compute the numerical flux, and crj are constants

independent of the solution. Note that the numerical scheme (3)
also has a stencil size, which is k+1. In this paper, when we
refer to the size of the stencil, we always refer to the stencil
used to compute the numerical flux. In (4), the superscript r
emphasizes the fact that there are r points to the left side of xi in
the stencil when we compute the numerical flux. The
coefficients crj can be determined through a Taylor expansion

to achieve a maximum kth order accuracy, i.e., by satisfying

(5)

where  is a shorthand for . The Taylor expansion

would yield the following equation:

(6)

To satisfy (6), the following k equations must hold

 ,  for j = 2, ..., k (7)

These equations will give a unique solution for the coefficients
crj in (4). For example, if r = 2, s = 3, a sixth order scheme is
obtained with the following coefficients:
c20 = 1/60, c21 = -2/15, c22 = 37/60, c23 = 37/60, c24 = -2/15, 

c25 = 1/60 (8)

The philosophy of optimized schemes is to sacrifice the formal
order of accuracy for achieving better resolution for a wider
range of wavenumbers, and for short waves in particular.
Instead of always achieving the maximum order of accuracy of
k, we set to design a scheme with formal order of accuracy of

p1 with p1 < k, i.e.,

(9)

Similarly using a Taylor expansion, we can derive p1 equations
about the coefficients crj. We need an extra k - p1 equations to

determine all the coefficients. 
 
It is well-known that (1) has the following analytical solution

  (10)

if the initial condition is given by

(11)

where α is the spatial wavenumber. Assuming a solution in the
form

(12)
and substituting it into (3), we obtain the following ordinary
differential equation

(13)

where  is called the numerical wavenumber for the numerical
scheme, which is dependent on the spatial difference operator.
The numerical wavenumber for (3) with the given stencil can
be found to be

(14)

It is argued [21] that if the numerical wave number is close to
the exact wave number for a range of wave numbers, the
numerical scheme would have high resolution for waves in the
wave number range. Therefore, the optimization problem is to
minimize the L2 norm of the difference between the numerical

wavenumber and the actual wave number for a particular wave
number range . To be more specific, we seek 

so that they satisfy equation (9) and minimize the following
integral 

(15)

where Er is the error to be minimized, parameter  is chosen to
be between 0 and 1 to balance the errors in the real and the
imaginary parts. The imaginary part is a measure of the
amplitude error, while the real part indicates the phase error. If
the imaginary part is positive, the wave is a growing one in
amplitude, indicating instability. For a non-dissipative central
difference scheme, the imaginary part of the numerical
wavenumber diminishes, and the minimization problem is
simplified. Interested readers should refer to [21] for more
information on the central DRP schemes. For upwind
optimized schemes, refer to [25, 26] for details.
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ũi 1 2⁄+
r
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The design philosophy for ENO schemes [5] is very much
different from that for the optimized schemes. ENO schemes
were developed primary for high-accuracy capturing of
discontinuities or steep gradients. This was achieved through
“adaptive stencil”, namely to change the left shift r with the
location xi depending on the smoothness of the local solution.
Given the current grid point xi and a fixed order of accuracy k,

it is seen that there are k possible candidate stencils {xi-r,...,

xi+s} for r = 0, 1,..., k-1. The “smoothest” stencil among all the
possible stencils is then chosen to be the ENO stencil. After

that the coefficients  in this stencil are solely determined

by maximizing the order of accuracy. The most widely used
approach in selecting the smoothest stencil is to use the Newton
divided or undivided differences as the smoothness indicators.
Given any function V(x), the 0-th degree divided difference of
the function V(x) is defined by

V[xi] = V(xi) (16)

and in general the j-th degree divided differences, for j > 1 are
defined inductively by

(17)

The process of picking the ENO stencil starts with the current
point xi, i.e.,

S(i) = {xi} (18)

Then the next point is picked from the point to the left and to
the right of the current stencil. Therefore, we have two new
candidate stencils to pick from, i.e., {xi-1, xi} and {xi, xi+1}. The

divided differences are used as the selection criterion. If
 (19)

the stencil {xi-1, xi} is selected. Otherwise, the stencil {xi, xi+1}

is chosen. This process is carried out recursively until the
stencil size reaches k. Once the stencil is decided, the
coefficients crj are used to construct a maximum order scheme
on the selected stencil.

Note that in selecting the ENO stencil of k points, the field data
at 2k-1 points is scanned. If one uses all the data scanned in the
selection process, one can achieve a maximum (2k-1)-th order
of accuracy if the solution on the 2k-1 points is smooth. This is
exactly the idea used in the WENO schemes. Instead of using
only one of the candidate stencils to form the numerical flux,
one uses a convex combination of all of them. To be more
specific, suppose the k candidate stencils

Sr(i) = {xi-r, ..., xi+s},  r = 0, ..., k-1 (20)

produce k different reconstructions , r = 0, ..., k-1. The

WENO reconstruction would take a convex combination of all

 as a new approximate to the flux formula, i.e.,

(21)

where dr are the weights. Apparently the key to the success

WENO schemes would be the choice of the weights dr. The
following conditions must be satisfied for consistency a
stability:

 ,  and   (22)

If the solution is smooth in all the candidate stencils, there e
unique constants dr such that

(23)

These weights, however, cannot be used if there is
discontinuity in one of the stencils. Therefore, we wish to tu
off the contributions made by the stencils with at least o
discontinuity. Following [8], the following weights can be use

(24)

where  is the constructed polynomial of (k-1)th order over

the interval [xi-1/2, xi+1/2] determined by the given solutions on

stencil {xi-r,..., xi+s} assuming they represent cell-averaged

quantities, ε is a small number preventing the denominator 
be zero, and βr is the smoothness indicator. The smoothne

indicators for k = 2, 3 are given in [8, 19], and the indicators fo
k = 4 - 6 are given in [1]. Note that common factors are omitt
in the indicators given in [1] for computational efficiency. 

Optimized WENO Schemes

With the descriptions on optimized schemes, ENO and WEN
schemes, it is then straightforward to present the OWEN
schemes. The OWENO schemes are developed in 
following two major steps.

Step 1. Given the stencil size k, develop optimized schemes
achieving p1-th order of accuracy ( ) for all the k

candidate stencils
{xi-r, ..., xi+k-r-1},   r = 0, 1, ..., k-1. (25)

By satisfying (9), p1 linear equations of the following form can

be obtained about crj

,   for l = 1, ..., p1 (26)

where blj and zl are constants. The rest of the k - p1 free
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parameters are determined by minimizing the difference
between the numerical wavenumber and the actual wave
number over a specified range of wavenumber, i.e., by
minimizing Er in (15). Er is a function of the coefficients crj,

(27)

Equations (26) can be used to eliminate p1 coefficients.
Without loss of generality, we assume that the first p1

coefficients crj, j = 0, p1 -1 are eliminated, and they can be

expressed as functions of the last k - p1 parameters. Substitute
these expressions into (27), we obtain:

(28)

To minimize Er, the following conditions must be satisfied

,   for  j= p1, ..., k-1 (29)

Equations (29) would give the desired solution for the
remaining coefficients. 

Step 2.These optimized schemes for all the k candidate stencils
are then convexly combined to obtain the OWENO schemes.
The weights used in OWENO schemes, however, are not only
constructed to achieve higher order of accuracy in smooth
regions as in the WENO schemes but also to minimize the
numerical error in the wave number space. Following WENO
schemes, smoothness indicators are also built in the weights so
that the stencils containing at least a discontinuity essentially
do not contribute to the OWENO scheme, emulating the
successful ENO idea. More specifically, we first seek constants

hr in the combination  so that if the

solution is smooth over all candidate stencils, we have

(30)

with ,  and . Equation (30) can

be used to determine p2 weights, leaving k -1 - p2 weights as

free parameters. These free parameters can then again be
determined by minimizing an integral in the form of equation

(15), but with  replaced by . The approach

in determining parameters hr is very similar to the procedure in

determining crj in Step 1. Since hr is determined assuming the
solution is smooth, it is not suitable when the solution has a
discontinuity in one or more of the candidate stencils. In this
case we must turn off the weights for the stencils containing the
discontinuities. We therefore use nonlinear weights wr to

replace hr with a built in smoothness indicator so that

 in the smooth region, and it is

automatically set to a small value close to 0 for stencils
containing a discontinuity. Following the approach in [8], we

choose the following weights

(31)

where  is the polynomial of kth order over the interval [xi-

1/2, xi+1/2] determined by the given solutions on stencil {xi-r,...,

xi+s}. The smoothness indicators are given in [1, 8, 19].

Performance tests with these smoothness indicators will be
presented later. It will be shown that these weights are not
suitable for short waves because they cannot distinguish short
waves with 6 PPW from discontinuities. A new set of weights
will be presented in a later section.

In this paper we constructed a variety of schemes with different
stencil sizes, and order of accuracy. In our optimization, we
have selected  to minimize both the dissipation and

dispersion errors and . The selection of

 optimizes the schemes for waves with about 6

PPW. Figures 1-3 show the comparison of the relative
wavenumber errors between the OWENO schemes of different
order of accuracy and the 7th order accurate WENO scheme
with the same stencil (without the smoothness indicators). Lele
defines the resolving efficiency as the fraction of range of wave
number such that the error is below some tolerance τ [10]. If
the tolerance is set to be 0.01, then the resolving efficiency of
the first-order OWENO scheme is 1.45/π = 0.46
(corresponding to 4.3 PPW), the resolving efficiency of the
third-order OWENO scheme is 1.46/π = 0.46 (4.3 PPW),  the
resolving efficiency of the fifth-order OWENO scheme is 1.22/
π = 0.39 (5.2 PPW), and the resolving efficiency of the
seventh-order WENO scheme is 1.25/π = 0.40 (5.0 PPW).
However if higher accuracy is required, e.g., τ = 0.001, then the
resolving efficiency of the first-order OWENO scheme is 1.15/
π = 0.37 (corresponding to 5.5 PPW), the resolving efficiency
of the third-order OWENO scheme is 1.16/π = 0.37 (5.5 PPW),
the resolving efficiency of the fifth-order OWENO scheme is
0.82/π = 0.26 (7.7 PPW), and the resolving efficiency of the
seventh-order WENO scheme is 0.86/π = 0.27 (7.3 PPW). It is
interesting to see that the fifth-order OWENO scheme has a
lower resolving efficiency that the maximum-order, non-
optimized seventh-order WENO scheme. We could not
understand why this is the case. On the other hand, the first-
order and third-order OWENO schemes do have better
resolving efficiency than the WENO scheme for k = 4. Since
the third-order OWENO scheme has a higher formal order of
accuracy, and a slightly better resolving efficiency, it is
selected in all the numerical computations to be shown later. 
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Extension to the Linearized Euler Equations

The unsteady Euler equations in conservation form in quasi-1D
can be written as:

(32)

where Q is the vector of conserved variables, F is inviscid flux
vectors in the x-direction, and H is the vector for the source
terms given below

(33)

Here ρ is density, u is the velocity, p is the pressure, E is the
total energy, A is the area of the cross section. Pressure is
related to the total energy by

 . (34)

with γ = 1.4 for air. The linearized Euler equations can be
derived by letting

 ,  ,  (35)

where the quantities with subscript 0 are the mean flow values,
while those with ’ are perturbations. Substituting (35) into (32),
and eliminating high-order terms with respect to the perturba-
tions, we obtain the linearized Euler equations. The linearized
Euler equations can be written in two forms, one in conserva-
tion form, and the other in non-conservation form. The non-
conservative linearized Euler equations in curvilinear coordi-
nate   can be written as:

(36)

where , J is the Jacobian matrix, and 
contains the vector of sources, which are functions of the mean
flow variables, their first derivatives, and nozzle area
derivatives. The OWENO scheme for equation (36) takes the
following form:

(37)

Here each component of  is computed using the

procedure presented in the last section, which assumes that the
wave travels in the positive x direction. Each component of

 is computed in a symmetric fashion assuming the wave

travels in the negative x direction. The Jacobian matrix J can be

decomposed into two parts, , with  containing

only non-negative eigenvalues and  only non-positi

eigenvalues. The following equation is used to decompose J:

where RJ is composed of the eigenvectors of J and  is a

diagonal matrix including the eigenvalues of J.
Note that the non-conservative linearized Euler equations h
the first derivatives of the mean flow in the source terms, wh
become singular if the mean flow has a discontinuity. T
handle discontinuous mean flow, one must use t
conservation form:

(38)

where  is the conserved perturbation variables, G is the flux,

and  is the source vector. Let the Jacobian matrix be B, then

. Now the source term does not contain the derivativ

of mean flow variables. We seek a conservative finit
difference scheme in the form:

(39)

Here  is a vector numerical flux function. Here we employ
component-wise, flux-splitting approach [19] to compute th
numerical flux vector. The Lax-Friedrichs splitting is selecte
for its simplicity and smoothness. The left and rig
propagating flux vectors are defined by

(40)

where , l=1,2,3 are the three eigenvalues of matrix B. Then
the numerical flux vector is computed with

(41)

Each component of  and  are compute

based on  and   all the candidate stencil {xi-r, ..., xi+s}

using either the maximum order or optimized schemes. T

convex combination of  or  for all candidate

stencils can also be obtained by the procedure given in the 
vious section. 

For the inlet and exit boundary conditions, we following th
approach developed in [21]. Interested readers should con
[21] for details. One-sided optimized schemes are used
maintain the solution accuracy near boundaries.
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Time-Integration

Up to now, we have only considered spatial discretizations,
leaving the time derivative continuous. After proper spatial dis-
cretizations, the conservation laws reduce to either a scalar or a
system of ordinary differential equations in time, which can be
written in the form:

(42)

In this study which time-discretization is not a major concern,
the high-order TVD Range-Kutta methods developed in [18]
are employed. A general m-stage Runge-Kutta method for
equation (42) can be written in the following form

(43)

with  and . Where  is the time

step and n is the time level,  and  are constant coeffi-

cients. The optimal third order TVD given in [19] will be used
in this study. The optimal third-order TVD Range-Kutta
scheme is given by:

(44)

 Test with Linear Wave Equation and New Smoothness 
Indicators

To verify the designed advantages of OWENO schemes, we
first tested WENO and OWENO schemes for the linear  wave
equation (1) with a = 1. In all of our computations, we used the
third order accurate TVD Runge-Kutta method for time
integration [18,19]. In the first case a sine wave

 was specified in the computational domain

and propagated with periodic boundary conditions. We initially
turned off the “smoothness indicators” in both WENO and
OWENO schemes since the solution was smooth. The
computational domain for this case was set to be [-18, 18] with
grid size , i.e., 6 PPW. The time step was set at

 to minimize the effects (if any) of the time-
integration scheme. The simulation was then carried out until t
= 60. By then, the sine wave traveled for 10 wave lengths.
Figure 4a shows the comparison of the solutions with the
WENO and OWENO schemes to the exact solution. The
solution errors are compared in Figure 4b. Note that the

solution error obtained with OWENO is significantly lower (b
more than an order of magnitude) than that with WENO. Ne
we turned on the smoothness indicators with everything e
remaining exactly the same. The solutions with both WEN
and OWENO schemes are compared to the exact solutio
Figure 5a, and the solution errors are shown in Figure 
Again, the solution error with OWENO is significantly lowe
than that with WENO. However, the errors with both schem
are significantly higher than those without smoothne
indicators. This case clearly indicates that the smoothn
indicators “thought” that the sine wave at 6 grid-spacings p
wave was actually discontinuous, and therefore were turned
Therefore, significant numerical dampings were added in 
solution, as is evident in Figure 5. If we are to develop prop
OWENO schemes for short waves, it is critical that th
smoothness indicators should not be turned on for short wa
We tested a variety of new smoothness indicators, and fo
the following one works the best for short waves

(45)

For k = 4, the new smoothness indicators take the follow
form:

With the new smoothness indicators, the solutions with WEN
and OWENO and their errors are shown in Figure 6. It
obvious that the solution errors with the new smoothne
indicators are reduced significantly comparing to those with 
original smoothness indicators. The solution errors with a
without the smoothness indicators are presented in Figure
Note that the new smoothness indicators do not significan
affect the short waves for both WENO and OWENO schem
The performance of the new smoothness indicators 
discontinuities will be shown later.Next, the OWENO schem
was tested for an artificial “broadband” wave which 
composed of the following three sine waves as given by

 

The wave lengths of the three waves are 6, 12 and 
respectively, and they are therefore called short, medium 
long waves. The initial wave form is displayed in Figure 
Because WENO and OWENO schemes are strongly n
linear, the solution for this “broadband” wave with WENO an
OWENO schemes does not equal to the summation of 
solutions for each separate wave. The computational dom
was chosen to be [-12, 12] with grid size  and 
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The wave then traveled for 5 short wave lengths until t = 30.
The solutions with WENO and OWENO schemes are
compared with the exact solution in Figure 9a. The solution
errors are shown in Figure 9b. Again OWENO performed
better than WENO as expected for this artificial “broadband”
wave.After that, we wanted to see how OWENO schemes
perform for discontinuities.  In this test, a square wave was
propagated in the computational domain with periodic
boundary conditions. The computational domain was chosen to
be [-30, 30] with . The initial wave was specified as 

The time step  was set to 0.1, which is small enough so that
the error due to time integration is negligible. The simulation
was carried out until t = 120. Therefore, the wave was allowed
to travel across the computational domain twice. Figure 10
shows the numerical results with WENO and OWENO using
the new smoothness indicators and the exact solution. Note that
both WENO and OWENO gave monotonic solutions for the
square wave (at least to the naked eyes) although OWENO
smeared the solution slightly more than WENO. This case also
demonstrates that the new smoothness indicators work well for
discontinuities. Just to show the comparison between the new
and original smoothness indicators for discontinuities, we used
both smoothness indicators with the WENO scheme to perform
the same simulation. Figure 11 displays the solutions with the
original and new smoothness indicators. The solutions are
indistinguishable from each other.Finally to demonstrate the

 potential of OWENO schemes for shock/acoustic wave
interaction problems, the linear combination of a square wave
and a sine wave was simulated. The period of the combined
wave was 24. The initial wave form was set to be

which is displayed in Figure 12. The computational domain for
the case was [0, 24] with  and . The simulation
was carried out until t = 48 so that the wave traveled across the
computational domain twice. The computed solutions with
WENO and OWENO schemes are shown in Figure 13.
Although both schemes smeared the discontinuity heavily at
this grid resolution, it is noted that the smearing of the
discontinuity does not affect the resolution of the sine wave
that much with the OWENO scheme. For the WENO scheme,
however, the resolution for the sine wave is much lower. In
practical CAA simulations involving discontinuities, it may not
always be possible to resolve the discontinuities with high-
resolutions. With OWENO schemes, it seems hopeful that the

acoustic waves may still be resolved with high resolutions.

Application to CAA Benchmark Problems

After the advantages of OWENO schemes were verified on 
linear wave equation, they were then extended to solve 
linearized Euler equations, in both the conservation and n
conservation forms. Two benchmark problems from the Th
Computational Aeroacoustics (CAA) Workshop o
Benchmark Problems [22] were then solved with the OWEN
schemes. For both problems the third order TVD Runge-Ku
method was employed for time integration.

Problem 1: Propagation of Sound Waves through a Transo
Nozzle

This benchmark problem is designed to model acoustic w
propagation through a nozzle where the local Mach num
near the throat may be close to 1. The area variation of 
nozzle is given by

(46)

The governing equations are the linearized quasi-1D Eu
equations. The Mach number in the uniform regio
downstream of the throat is 0.4. Small amplitude acous
waves, with angular frequency , is generated w
downstream and propagate upstream through the nar
passage of the nozzle throat. The upstream-propagating w
in the uniform region downstream of the nozzle throat 
represented by

(47)

where . The computational domain is [-10, 10]. Sin
the mean flow was smooth, the non-conservation fo
linearized Euler equations were used in the simulation. A n
uniform grid with 301 points was employed with a hyperbol
sine transformation. The grid was clustered near the throat,
the ratio between the largest grid spacing to the smallest 
about 30. The mean flow was computed analytically. N
smoothness indicators were used in the weights because o
smooth mean flow. The time step was set to be 0.005. T
simulation started with zero perturbations everywhere unti
reached a periodic state-state. Figure 14 displays the e
maximum pressure envelope and the computed press
distributions at four different times in a period. It is obviou
that the pressure distributions are nicely bounded by, and to
the exact envelope. The computed pressure envelope is 
compared with the exact pressure envelope in Figure 
Enlarged views of the same Figure near the throat and exit
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shown in Figure 16. Note that the agreement between the
computational and exact solutions is excellent. 

Problem 2: Shock-Sound Interaction

This problem is designed to simulate shock-sound interactions.
The geometry is exactly the same as in Problem 1, but now
there is a supersonic shock downstream of the throat. The inlet
Mach number is M = 0.2006533, and the exit pressure is set at
0.6071752 to generate a normal shock downstream of the
throat. At the inflow boundary, the conditions are:

(48)

where , . Since there was a shock wave in
the mean flow, we employed the conservation-form linearized
Euler equations. The mean flow was again obtained
analytically, and is shown in Figure 17. A uniform grid with
201 points in the computational domain [-10, 10] was used. A
time step of 0.01 was employed in the simulation. We again
started the simulation from zero perturbation fields everywhere
until the computation reached a periodic steady state. Figure 18
shows the comparison of the computed pressure field using
OWENO and the exact pressure solution at the beginning of a
period. Note that the agreement between the computational and
exact pressure fields is excellent before and after the shock
wave. There is, however, a slight oscillation near the shock
wave in the computed field. This could be due to several
factors. One possible factor is that the extension of the scalar
scheme to the linearized Euler equations is done using a split
flux approach. An extension based on the characteristic
variables may give better predictions near the shock.
Furthermore the smoothness indicators may still not be the
most suitable for the optimized schemes for the linearized
Euler equations. Future work is necessary to investigate the
cause of the oscillations around the shock wave. Just for
comparison purposes, we also used the non-conservative
linearized Euler equations to simulate this case assuming that
the shock wave is smeared over one mesh spacing so that finite
first derivatives of the mean flow can be calculated. The
computed pressure field using the non-conservative linearized
Euler equations is compared to the exact solution in Figure 19.
Note that the acoustic wave was heavily damped when it
passed the shock. Ahead of the shock, the agreement between
the computational and exact solutions is very good. Finally the
computed pressures at the exit over a period using both the
conservative and non-conservative linearized Euler equations
are compared with the exact solution in Figure 20. The
conservative form gave an excellent prediction while the non-
conservative produced a heavily damped solution. This
simulation demonstrates  the importance of conservation in the
computational simulations with discontinuities.

Conclusions

Optimized weighted ENO schemes have been developed in this
study to unite the advantages of both the optimized and WENO
schemes in the simulation of shock/broadband acoustic waves.
By design, OWENO schemes are capable of resolving waves at
6 PPW, while giving essentially non-oscillatory solutions for
discontinuities. Two levels of optimizations can be performed
in OWENO schemes. First optimized schemes for all candidate
stencils (given a stencil size) are constructed to minimized the
solution error in the wave number space. Then these optimized
schemes are convexly combined with weights optimized to
achieve both higher-order of accuracy and better resolution for
short waves. Smoothness indicators are built in the weights to
essentially turn off the contributions made by stencils
containing discontinuities. It was found that the original
smoothness indicators [8] added significant numerical
dampings into the schemes for waves at 6 PPW. New
smoothness indicators are developed, and shown to perform
much better for waves at 6 PPW. These smoothness indicators
also were tested with discontinuities, and were found to
perform as well as the original indicators. Numerical tests with
the scalar model wave equation verified the designed
advantages of OWENO schemes. The OWENO schemes are
then extended to the linearized Euler equations, in both the
conservation and non-conservation forms. Two problems in the
Third Computational Aeroacoustics (CAA) Workshop on
Benchmark Problems were solved with the third order
OWENO scheme. The scheme was found to perform very
satisfactorily for both problems. It is shown, however, the
conservation form linearized Euler equations must be used if
the mean flow is discontinuous to capture the proper behavior
of the acoustic waves across the shock wave. The OWENO
schemes are ideally suited to solve the non-linear Euler
equations for shock-acoustic wave interaction, shock-vortex
interaction and shock/turbulence interaction problems. The
implementation of the OWENO schemes for the non-linear
Euler equations is now under way, and will be reported in a
future publication.
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Figure 1. Comparison of Relative Wavenumber Errors betwe
the Seventh-Order WENO Scheme and the First-Order 
OWENO Scheme with p1 = 1, and p2 = 0.
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Figure 2. Comparison of Relative Wavenumber Errors between 
the Seventh-Order WENO Scheme and the Third-Order 
OWENO Scheme with p1 = 2, and p2 = 1.

Figure 3. Comparison of Relative Wavenumber Errors between 
the Seventh-Order WENO Scheme and the Fifth-Order 
OWENO Scheme with p1 = 3, and p2 = 2.

Figure 4. Comparison of WENO and OWENO Schemes for the 
Propagation of a Sine Wave without the Smoothness Indicators
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Figure 5.  Comparison of WENO and OWENO Schemes for the 
Propagation of a Sine Wave with the Original  Smoothness 
Indicators in [8]

Figure 6. Comparison of WENO and OWENO Schemes for the 
Propagation of a Sine Wave with the New  Smoothness 
Indicators

Figure 7.  Comparison of WENO and OWENO Schemes for the 
Propagation of a Sine Wave with the New  Smoothness 
Indicators and without Smoothness Indicators
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Figure 8. The Formation of a “Broadband” Wave 

Figure 9.  Comparison of WENO and OWENO Schemes for the 
Propagation of a “Broadband” Wave with the New Smoothness 
Indicators

Figure 10.  Comparison of WENO and OWENO Schemes fo
the Propagation of a Square Wave with the New Smoothne
Indicators

Figure 11.  Comparison of WENO Schemes for the Propagat
of a Square Wave with the Original and New Smoothness 
Indicators
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Figure 12.  The Formation of a Discontinuous Sine Wave

Figure 13. Comparison of WENO and OWENO Schemes for
the Propagation of a Discontinuous Sine Wave  with the New
Smoothness Indicators

Figure 14. Comparison between the Exact Pressure Envelope 
and Computed Pressure Distributions at Four Different Times 

Figure 15. Comparison between the Exact Pressure Envelope 
and the Computed Pressure Envelope
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Figure 16 Comparison of the Computed Pressure Envelope and 
the Exact Pressure Envelope near the Throat and the Exit

 

Figure 17. Mean Flow Distributions for Shock-Sound 
Interaction

Figure 18. Comparison of Computed Pressure Distribution and 
Exact Solution at the Beginning of a Period Using the 
Conservation-Form Linearized Euler Equations
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Figure 19. Comparison of Computed Pressure Distribution and 
Exact Solution at the Beginning of a Period Using the Non-
Conservation-Form Linearized Euler Equations

Figure 20. Comparison of the Computed Pressures and Exact 
Solution at the Exit for One Period
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