

AIAA 2001-2538

COMPLEX “DIRTY” GEOMETRY HANDLING
WITH AN INTERIOR-TO-BOUNDARY GRID
GENERATION METHOD

Z.J. Wang
Michigan State University
East Lansing, MI

and

Kumar Srinivasan
DaimlerChrysler Corporation
Auburn Hills, MI

15th AIAA Computational Fluid Dynamics Conference
11–14 June 2001 Anaheim, California

AIAA-2001-2538

1

American Institute of Aeronautics and Astronautics

COMPLEX “DIRTY” GEOMETRY HANDLING
WITH AN INTERIOR-TO-BOUNDARY GRID GENERATION METHOD

Z.J. WangT

Department of Mechanical Engineering
Michigan State University, East Lansing, MI 48824

Kumar Srinivasan=

CIMS 481-41-01
DaimlerChrysler Corporation, Auburn Hills, MI 48326

T Associate Professor, Member AIAA, zjw@egr.msu.edu
= Project Engineer, ks40@daimlerchrysler.com
Copyright © by Z.J. Wang & K. Srinivasan. Published by AIAA Inc. with permission

Abstract

Traditional structured (algebraic or elliptic) and
unstructured grid generation methods (advancing front,
Delaunay, etc) need a “water-tight” boundary surface
grid to start. Therefore these methods are named B2I
(Boundary to Interior) approaches. Although these
methods have achieved great success in fluid flow
simulations, the grid generation process can still be very
time consuming if “non-water-tight” geometries are
given. Significant user time can be taken to repair or
clean a “dirty” geometry with cracks or overlaps before
grid generation can take place. In this paper, we
advocate a different approach in grid generation, namely
the I2B (Interior to Boundary) approach. With an I2B
approach, the computational grid is first generated
inside the computational domain. Then this grid is
intelligently “connected” to the boundary, and the
boundary grid is a result of this “connection”. A
significant advantage of the I2B approach is that “dirty”
geometries can be handled without cleaning or
repairing, dramatically reducing grid generation time.
The viscous Cartesian grid generation method is further
extended to be an I2B approach, and as a result,
arbitrary “dirty” geometries can be handled without
geometry repair. Comparing with a B2I approach, the
grid generation time with the I2B approach for a
complex automotive engine is reduced by three orders.

 Introduction

Impressive progresses in computational fluid dynamics
(CFD) have been made during the last two decades in
many aspects including algorithms for grid generation
and flow computation. As a result, CFD is increasingly

used in the design process in many industries such as
aerospace, automobile, and many others. Depending on
the type of computational grids used, CFD solution
algorithms can be classified as structured grid and
unstructured grid methods. The structured grid method
was popularized with the development of body-fitted-
coordinate (BFC) grid generation approaches, which
include the elliptic, hyperbolic, and algebraic grid
generation techniques1-6. Although the structured grid
method has been successful in handling complex
geometries, it is usually very time-consuming to
generate BFC grids for complex geometries. The
difficulty in generating structured grids and the desire to
automatically compute flows over complex geometries
spawned a surge of activities in the area of unstructured
grids during the last one and half decades7-19.
Unstructured grids provide considerable flexibility in
tackling complex geometries and for adapting the
computational grids according to flow features. Types
of unstructured grids include classical triangular or
tetrahedral grids, quadrilateral or hexahedral grids,
prismatic grids, or mixed grids, and more recently
adaptive Cartesian20-24, Cartesian/prism25-26 and viscous
Cartesian grids27-28.

With this impressive array of powerful grid generation
approaches, the difficulty in grid generation has shifted
from volume grid generation to surface grid generation
with "non water-tight" geometry definitions. In the
design process, design engineers use CAD packages to
perform detailed geometry designs. The design of a
typical system (for example an automobile engine)
involves thousands of parts. The exact transfer of
geometries from one CAD package to another, and from
a CAD package to a grid generator is still an unresolved
issue. Even if the CAD model is exactly transferred
from a CAD package to a grid generator, the CAD

2

American Institute of Aeronautics and Astronautics

model may still not be suitable for grid generation. To
generate a computational grid with almost any current
grid generators, a “water-tight” geometry has to be
defined first. If a geometry is "water-tight", then the
geometry is said to be a topologically closed surface. In
the case of a geometry composed of surface patches, the
geometry is "water-tight" if each boundary curve (of a
patch) is shared and shared only by two patches as
shown in Figure 1.

Figure 1 Two Patches Sharing a Common Boundary

Curve.

In the automobile industry, the STL (stereolithography)
format is often used to transfer the designed geometries
from one package to another for visualization, and grid
generation. The use of STL has many advantages. First
the basic parts are defined using polygons (mostly
triangles), which are the easiest to visualize on a
computer screen. Second many efficient computational
geometry algorithms have been developed for triangles
to perform operations such as intersections, projections,
etc. Third, most CAD packages can output geometries
in STL format, and lastly the transfer of STL files from
one system to another is exact.

The use of STL files also has its disadvantages. First,
STL-defined solids are usually NOT “water-tight”,
which means that the geometry may have cracks and
overlaps. Second, the number of triangles used to define
the solids is usually dictated by the solid surface
curvature. Small triangles are often used in high-
curvature regions, and large triangles are used in flat
regions. The size of these triangles differs considerably.
In order to perform a meaningful CFD simulation, the
surface often needs to be re-meshed. For a “water-tight”
STL geometry, the remeshing is a relatively easy
operation. The advancing front algorithm7-9 can be used
to remesh the surface. If the geometry is “dirty”,
however, the remeshing operation can be prohibitively
expensive. One such example is shown in Figure 2,
which displays a “dirty” automobile engine geometry.

The geometry has 32 STL patches with cracks and
overlaps. In addition, the geometry has topological
problems in that some edges are shared by more than
two triangles. Note that for a “water-tight” geometry,
each edge must be and only be shared by two triangles.
The yellow lines in Figure 2 shows the topological
cracks, and the red lines are edges with topological
problems. One can image the difficulty in repairing this
“dirty” geometry and remeshing the surface of the
geometry. It is estimated that it can take a highly-skillful
grid generation engineer two-three months to repair this
geometry for grid generation using the-state-of-the-art
tools.

We cannot help asking the following question: Is it
absolutely necessary to repair the geometry before grid
generation can take place? Unfortunately the answer is
yes for nearly all the traditional grid generation
approaches we have seen so far, be it the structured grid
approach, unstructured grid approaches. All these grid
generation approaches need a “water-tight” geometry as
the starting point.

Figure 2. A “Dirty” Non-Water-Tight Automobile
Engine Geometry

In this paper, we advocate a different grid generation
philosophy from the traditional grid generation
approaches in that the interior volume grid is generated
first before a surface grid is generated. Then the interior
volume grid is "intelligently" connected with the
boundary geometry. We argue that a unique advantage
of this new grid generation method is that "dirty"
geometries can be meshed without being repaired first.
We will call the traditional grid generation approaches
B2I (boundary to interior) approaches, and the new
method a I2B (interior to boundary) approach following

3

American Institute of Aeronautics and Astronautics

the popular internet-based naming convention of B2B
(business to business) and B2C (business to consumer).

The paper is thus organized as follows. In the next
section, we present the new philosophy behind the I2B
grid generation method. In order to handle “dirty”
geometries, a new definition for geometric entities is
defined. After that, a particular I2B grid generation
approach using adaptive Cartesian grid is presented,
followed with demonstration cases with complex
geometries. Finally conclusions and future work are
discussed in the last section to conclude the paper.

B2I Versus I2B

The first step in a CFD simulation involving non-trivial
geometries is to import a geometry, define a closed
computational domain, and generate an adequate
computational grid. For external flow problems, a user
must also define a truncated far field boundary such that
the computational domain is finite and closed. Because
the shape of the far field boundary usually does not
affect the solution, any elementary shapes such as a
sphere or a cube can be used. For internal flow
problems, the user may need to define an inlet or an exit
boundary to close the computational domain. Generally,
the grid generation process can be broken into the
following steps:

• Acquire the geometry;
• Define a water-tight (closed) computational

domain and repair the geometry if necessary;
• Define topology (for the structured grid approach);
• Generate the computational grid on the boundaries;
• Generate the computational grid (i.e. the volume

grid) in the interior of the computational domain.

As can be seen that the conventional grid generation
methods MUST start from a boundary grid, and then the
interior grid is generated based on the grid on the
boundary. The process is illustrated in Figure 3. Note
that all structured grid generation approaches also fall in
this category. If a "dirty" geometry is imported, the
geometry must be cleaned or repaired so that a "water-
tight" geometry can be defined. Geometry repair can be
an extremely time-consuming business if the geometry
is complex. It involves very tedious manual labor of an
experienced grid generation engineer.

It seems that the only possibility of eliminating
geometry repairing is to somehow reverse the grid
generation process. Instead of generating the boundary
grid first, the interior volume grid must be generated
first, and then the interior grid is "connected” with the
boundary. In this case, we do not need a “water-tight”
geometry to start the grid generation process, and the

approach has the potential of completely eliminating
geometry repair from grid generation. A schematic of
this grid generation approach is shown in Figure 4. In
Figure 4, the “interior” Cartesian grid is generated first.
Then the Cartesian grid is “connected” to the boundary
(which has two cracks and one overlap) through
projections, i.e., to connect the volume grid to the
boundary in the minimum distance direction. This is
only one means of "connecting" the volume grid to the
boundary. Other techniques are definitely possible.

Figure 3. The Schematic of a Traditional B2I Grid
Generation Approach

Figure 4. Schematic of the New I2B Grid Generation
Approach

In order to present the new I2B grid approach, we need
to precisely define what a geometric entity is. Generally
speaking, a geometry is usually represented by a group
of surface patches, or solids. A surface patch can be
defined with a variety of formats, such as a triangulated
surface, a Coons patch, a NURBS surface, or a
computational grid with a square topology. There are
also many different ways of defining a solid. One way is
the Constructive Solid Geometry. In order to support
any geometry in an arbitrary manner in the present I2B
grid generation method, the definition of a geometric

4

American Institute of Aeronautics and Astronautics

entity must be generalized. Besides solids and surface
patches in any format, discrete points and curves can
also serve as a geometric entity. In order to support
"dirty" geometries, the geometric entities defined here
do not have "inside" or "outside". Instead, a geometric
entity is defined to be any entity supporting the
following two operations:

1. Given a simple solid (e.g. a cube or a tetrahedron),

the entity is capable of returning a status
"intersected" or "non-intersected" based upon
whether the entity intersects the given solid. Let
the geometric entity be represented by G (which is
defined as a set of points), the given solid by S.
The intersection operation is I(G, S) is then defined
by:



 ≠

=
otherwise

SGif
SGI

0
01

),(
I

2. Given an arbitrary point (q) in space, the projection
(p) from the given point to the entity is well
defined. The line segment from the given point to
the projection is the shortest distant from the given
point to the entity, i.e.,

GrrqpqqGp ∈≤=:),(

Note that this definition of geometric entity is very
general, and any geometry defined with a solid or a
surface patch can be seen to be a valid geometric entity.
Note that any discrete points, lines, curves, and planes
are also valid geometric entities.

Before we present the general I2B grid generation
approach for a given set of geometric entities, two
meshing parameters, dmin and dmax are discussed, which
represent the minimum and maximum sizes of the grid
cells to be generated. The only requirement that the set
of geometric entities must satisfy is that the
computational domain formed with the entities is
"physically" closed if gaps or holes smaller than dmin
are ignored. This is to say that if a gap or a hole exists
in the geometry (which should not have been there), the
size of the gap or the hole must be smaller than dmin.
Note that this enclosure condition is much weaker than
the condition of "water-tightedness" required by B2I
approaches. Obviously, if all the gaps between the line
segments in Figure 4 are smaller than dmin, the set of
line segments actually defines a valid computational
domain. There is one other possible complication the
user must clarify. For the computational domain
defined with the line segments as shown in Figure 4,
the user needs to decide whether the "inside" or the
"outside" should be the computational domain. For the
grid shown in Figure 4, the "inside" represents the
computational domain.

With the above definition and clarifications, we are
ready to present our general I2B grid generation
approach:

1. Determine the size of the computational domain,

and fill the computational domain with a particular
type of simple solids or cells (cubes or tetrahedra)
whose sizes are between dmin and dmax;

2. Determine the cells which intersect the set of
geometric entities;

3. Recursively refine the cells intersected by the
geometric entities until all the cells are smaller
than a given threshold dint (which is usually chosen
to be 2dmin). Note that all cells must be bigger than
dmin;

4. Select one cell in the computational domain, and
use a neighbor-painting algorithm to identify all
cells in the computational domain.

5. Remove all the cells intersected by the geometric
entities, and all unpainted cells;

6. Remove cells too close to the geometry;
7. Connect the exposed Cartesian faces to the

geometric entities through projections.

A schematic showing the major steps of the method is
showing in Figure 5. The projection step is already
shown in Figure 4.

Next, we present an I2B grid generation approach
based on the adaptive Cartesian grid method. The
viscous Cartesian grid method developed by Wang et
al27-28 is further extended to be a truly I2B method
capable of handling complex dirty geometries.

I2B Cartesian Grid Method

Supported Geometric Entities
As mentioned earlier, any entities supporting the
operations defined in the last section can be considered
as geometric entities. In this paper, however, we have
limited ourselves to points, lines, line segments and
triangulated surfaces. This choice is really dictated by
the type of geometric inputs we usually get, and does
not imply that other choices are not possible. In
particular, in many cases, especially in the automotive
industry, the input geometry is in the STL format
because of its portability and popularity. The fact that
the surface is defined by triangles (or polygons in
general) makes the geometry easy to display, transport,
and manipulate. This format can be exported by nearly
all major CAD packages, and is independent of the
CAD systems where the surface is created. Each STL
file can be viewed as a separate "part", and a system of
parts can be produced by concatenate all the part files.
This feature is particularly useful in the early design

5

American Institute of Aeronautics and Astronautics

stage, in which many of the parts undergo constant
design modifications.

(a)

(b)

(c)

(d)

(e)

Figure 5. Schematic of I2B Grid Generation Approach

Surface grids in other formats such as PLOT3D and
FAST formats can be easily converted into triangulated
surfaces, and serve as geometric entities. For example,
given a PLOT3D structured surface grid, each
quadrilateral of the surface grid can be divided into two
or four triangles, thus producing a triangulated surface.

If one is interested in dealing with NURBS or IGES
patches, one approach is to generate a "structured grid"
for the patch using the local coordinates in the
parameter space. This structured grid is then subdivided
into a triangulated surface. This triangulated surface can
be viewed as a "finite resolution" representation of the
true NURBS or IGES patch.

Interior Grid Generation
Once the geometric entities are given, the next step is
to define the computational domain. Based on whether
the problem is an internal or external flow problem, the
size of the computational domain can be determined.
For an external flow problem, there is usually a
characteristic body length L (the chord length of an
airfoil, or the length of an aircraft). The far field
boundary should usually be at least 10 times the body
length away from the geometry so that the location of
the far field boundary does not influence the solution
quality significantly. For an internal flow problem,
there are usually an inlet and exit. If the inlet and exits
are not defined, the user must first define the inlet and
exit geometry based on experiences and common
sense. For example, inlet and exit surfaces can be
usually assumed to be planar. With properly defined
inlets and exits, the physical domain of interest should
be physically closed excluding gaps or holes smaller
than dmin. Then the computational domain should be big
enough to contain the physical domain of interest.

Once the size of the computational domain is
determined, we are ready to generate the interior grid.
“Interior” here means “inside” the computational
domain, and not necessarily inside a geometry (e.g. for
external flow problems). To generate a computational
grid inside a computational domain, the easiest
approach may be to use a uniform Cartesian grid.
However in this paper, 2n tree adaptive Cartesian grids
are used following the viscous Cartesian grid
approach27-28. With the 2n tree, the adaptive Cartesian
grid can be clustered or de-clustered in a truly arbitrary
fashion. In the 2n tree data structure, one tree node can
have 2, 4, or 8 children as shown in Figure 6. This tree
can be used to record the recursive subdivisions of a
single Cartesian cell in an arbitrary fashion as shown in
Figure 7. Note that a Cartesian cell using the 2n tree
data structure can be subdivided in one, two or all three

6

American Institute of Aeronautics and Astronautics

coordinate directions. The popular Octree data structure
can be viewed a special case of the 2n tree.

To start the adaptive Cartesian grid generation process,
a single root Cartesian cell covering the entire
computational domain is generated first. This cell is
called a root cell because it occupies the top level - root
- of the 2n tree. All the other Cartesian cells are
generated by recursively subdividing this root cell until
the geometry-intersecting Cartesian cells satisfy a
minimum grid resolution.

Note that since all geometry entities support the
“intersection” operation, it is easy to identify which
Cartesian cells are intersected by the geometric entities.

Figure 6. 2n Tree Data Structure

Figure 7. Arbitrary Cell Subdivision Supported by 2n

Tree

The next step is a significant departure from the
approaches presented in references 27-28. In order to
support “non-water-tight” geometries, the “inside” or
“outside” of geometries are deliberately not defined.
Because each geometry entity may have a different
orientation, it is not possible to use the normal of an
entity as an indication as to which is inside the
computational domain. Instead, the user needs to select
one single Cartesian cell inside the computational
domain. Note that we have identified cells which
intersect the geometric entities. These intersected cells
also serve to divide the “interior cells” and the “exterior
cells” (cells outside the computational domain). Then by
using a neighbor painting algorithm, all the Cartesian
cells inside the computational domain can be

determined. All the Cartesian cells NOT inside the
computational domain are considered outside the
computational domain. After that, all the exterior cells
and intersected cells are removed from the
computational domain. Cartesian cells too close to the
geometry are also removed so that the gap between the
Cartesian grid and the geometry is sufficiently large. A
gap of reasonable size allows high quality grid cells to
be generated between the Cartesian grid and the
geometry.

Connecting the Interior Grid to the Boundary
There are possibly many different ways in which one
can connect the interior grid to the boundary. The most
obvious and robust way is probably through projecting
the Cartesian nodes from the Cartesian front (the
“exposed” Cartesian faces collectively form the so-
called “Cartesian front”) to the geometric entities.
Before one does the projection, it is appropriate to
smooth the Cartesian front so that the “steps” in the
Cartesian grid is smoothed out. This can be
accomplished through the use of a Laplacian smoother.
The smoothed front is then projected to the geometry
according to the minimum distance rule. It can be
proved mathematically that the projection lines cannot
intersect each other. Note that per definition, the
geometric entities must support the projection operation,
which comes handy now. Because the Cartesian front is
composed of boundary faces of a "solid region", the
front is closed and "water-tight". After the front is
projected to the boundary geometric entities, a "water-
tight" surface grid is generated on the boundary. By
connecting each point on the Cartesian front and the
corresponding projected point on the boundary, we
obtain a valid computational grid as shown in Figure 4.
After the projection, a single layer of prism cells
(quadrilateral cells in two dimensions) with arbitrary
polygon footprints is generated in three dimensions.
This single layer can be sub-divided into multiple layers
with proper grid clustering near the geometry to resolve
the viscous boundary layer if necessary.

The efficiency of the projection operation in three
dimensions is critical to the success of the method. In a
typical application, assume we have a triangulated
surface with N triangles, and a Cartesian front with M
nodes. A brute-force exhaustive search based projection
algorithm would take O(MN) operations, which is too
expensive even for medium-sized applications. Instead
an ADT tree29 is used to store the bounding boxes of the
triangles. Given a node to project, only triangles close to
the node are identified from the tree-based search
operation, and are projected to. This new algorithm
reduces the number of operations from O(MN) to about
O(M logN). The speed-up for a medium sized problem

7

American Institute of Aeronautics and Astronautics

(N = 100,000, M = 100,000) is more than several orders
of magnitude.

A projection based on the minimum distance rule
usually misses geometrically important concave
features, such as the corner points in Figure 4. In order
to preserve these features, these features are detected or
specified first. Then a feature-preservation technique is
used to reconnect some of the front nodes to those
features. This technique is shown in Figure 8.

Figure 8. Schematic of Feature Preservation

In many applications, it may be too expensive or
unnecessary to preserve all the features in a geometric
entity. Then the projection algorithm can serve as an
automatic feature suppression operator. This capability
will be demonstrated in a test case later.

Handling of Cracks and Overlaps
Recall that B2I approaches cannot handle cracks and
overlaps because a "water-tight" surface grid is a
necessary starting point. In the current I2B approach,
cracks smaller than the minimum grid resolution dmin are
not “visible” to the Cartesian grid generator, which is
illustrated in Figure 9a. However, if the geometry has an
opening bigger than the minimum grid resolution, this
opening is considered “physical” by the Cartesian grid
generator, and is fully resolved as shown in Figure 9b.
Fortunately, most of the cracks appearing in CAD STL
files are due to slight mismatches between different
patches. Therefore, our current I2B viscous Cartesian
grid approach can handle these cracks without any
problems because the minimum grid resolution is
usually much larger than the size of the cracks.
However, if large cracks exist in a geometry model,
which are not physical, they have to be closed manually
by the user. Fortunately, these large cracks are rare, and
can be easily spotted by visual inspection of the
generated Cartesian grid.

It turns out that overlaps are no problems for the I2B
approach because overlaps do not alter the topology
(inside and outside) of the Cartesian grid. Through the
use of projections, the patch closest to the Cartesian
front is always used. It is guaranteed that the projections
would not intersect each other.

(a)

(b)

Figure 9. An Invisible Gap and A Fully Resolved Gap

It is easy to see that the I2B viscous Cartesian approach
is completely “topology” based, and cannot fail for
arbitrarily complex geometries. This property has been
confirmed with many cases involving complex “dirty”
geometries.

Demonstration Cases

Demonstration of Automatic Feature Suppression
The I2B viscous Cartesian grid method can be fully
automated. In most cases, the user needs only to input
one parameter, i.e., the geometry surface grid resolution
dint. The minimum and maximum grid resolution can be
determined based on the characteristic length scale of
the input geometry. Another unique advantage of the
method is automatic feature suppression. In many
simulations, it is not necessary to resolve very fine
geometric features, or it is too costly to resolve all the
features. In those cases, we would like to suppress the
fine geometric features. The viscous Cartesian grid can

8

American Institute of Aeronautics and Astronautics

automatically suppress all the features smaller than the
surface grid resolution, i.e., smaller features than the
grid resolution are “smooth” out automatically. To
demonstrate this capability, we again use an auto part as
an example. Figure 10a shows the geometry of the part,
and Figure 10b-10d shows the surface meshes with
varying surface grid resolutions. It is obvious that the
geometry is better resolved with finer grid resolution.

(a)

(b)

(c)

(d)

Figure 10. STL Geometry of Automotive Part and

Surface Grids with Various Resolutions

Figure 11. Adaptive Cartesian Grid for a Car Engine

9

American Institute of Aeronautics and Astronautics

Demonstration of More Complex Geometries
Several more complex geometries are shown here with
generated surface grids. Shown in Figure 11 is the
engine grid generated for the "dirty" geometry shown in
Figure 2. This grid has about 125,000 cells, and was
generated in about 1 hour. With a traditional grid
generator, it takes two to three man-months to repair the
geometry and generate a computational mesh for this
geometry. A speed-up factor of more than three orders
was achieved in this case.

Figures 12 displays a more complex engine geometry,
and the generated computational grid. Figure 13 shown
the geometry and grid for a passenger cabin with six
dummies. Note that all the geometries are not water-
tight, and the I2B viscous Cartesian grid method had no
difficulty in handling them without any “cleaning” or
“repairing”.

(a)

(b)

Figure 12. A More Complex Automobile Engine and its
Surface Grid

(a)

(b)

Figure 13. Passenger Cabin Mesh

Demonstration of Feature Recovery
In all the previous examples presented so far, no feature
preservation is necessary. In aerospace applications,
however, geometric feature preservation may be critical.
For example, geometric features in an aircraft must be
captured if one is to predict the lift and drag of the
aircraft. In this demonstration, a fighter aircraft is used
as an example to demonstrate feature preservation. The
input format of the aircraft is PLOT3D patches. The
patches, however, do not form a "water-tight" geometry
surface. There are mismatches, holes and overlaps along
the patch boundaries. As a matter of fact, there is a large
hole in the geometry, which must be filled before grid
generation can take place. The other cracks and holes
are very small, and do not need any special treatment. In
addition, geometrically important sharp edges are
detected automatically, or specified by the user, as
shown in Figure 14a. Furthermore, several surface
sources are used to cluster grid cells near sharp edges or
high-curvature regions. A viscous Cartesian grid was

10

American Institute of Aeronautics and Astronautics

(a)

 (b)

(c)

Figure 14. Geometry, Adaptive Cartesian Grid and
Computed Pressure Distribution with Mach = 0.3

then generated successfully with critical feature
preservation. The computational grid is shown in Figure
14b. Note that the critical features were captured
correctly. A sample flow computation was carried out,

and the computed pressure distribution at Mach = 0.3 is
shown in Figure 14c.

 Conclusions

In order to handle “dirty” geometries with cracks and
overlaps, a new grid generation approach, namely I2B
(interior to boundary), is advocated in this study. To
support non-water-tight geometries, a more generalized
definition of geometry is also given. Any geometry
supporting the operations of intersection and projection
can be used in grid generation. Therefore, the
requirement of “water-tightness” is completely avoided.
The viscous Cartesian grid approach is further extended
to be an I2B approach to handle arbitrary geometries.
Many very complex geometries are used to demonstrate
the ability of new grid generation approach. It is
confirmed that arbitrary “dirty” geometries can be
handled automatically.

Acknowledgments

The research was supported by the U.S. Navy under
contract N68335-98-C-0233 with Darren Grove being
the Technical Monitor. The first author would like to
thank Ashok Singhal of CFD Research Corporation for
giving him the permission to use CFD-Viscart for
research purposes.

 References

1. R.E. Smith (ed.), Numerical Grid Generation
Techniques, NASA CP-2166, 1980.

2. J.F. Thompson, Z.U.A. Warsi and C.W. Mastin,
“Boundary-Fitted Coordinate Systems for
Numerical Solution of Partial Differential
Equations - A Review,” Journal of Computational
Physics, Vol. 47, No. 1, 1982, pp. 1-108.

3. L.E. Eriksson, “Generation of Boundary
Conforming Grids around Wing-Body
Configurations Using Transfinite Interpolation,”
AIAA Journal, Vol. 20, pp. 1313-1320, 1982.

4. P. Eiseman, “Grid Generation for Fluid Mechanics
Computations,” Ann. Review of Fluid Mech.,Vol.
17, pp. 487-522, 1985.

5. W.M. Chan and J.L. Steger, “Enhancements of a
Three-Dimensional Hyperbolic Grid Generation
Scheme,” Appl. Math and Comp., Vol. 51, pp. 181-
205, 1992.

6. T. I.-P. Shih, R.T. Bailey, H.L. Nguyen and R.J.
Roelk, “Algebraic Grid Generation for Complex
Geometries,” International J. for Numerical
Methods in Fluids, Vol. 13, pp. 1-31, 1991.

7. S.H. Lo, “A New Mesh Generation Scheme for
Arbitrary Planar Domains,” International J.

11

American Institute of Aeronautics and Astronautics

Numerical Methods in Engineering, vol.21,
pp.1403-1426, 1985.

8. J. Peraire, Vahdati, M.K. Morgan and O.C.
Zienkiewicz, “Adaptive Remeshing for
Compressible Flow Computations,” J.
Computational Physics, vol. 72, pp. 449-466, 1987.

9. R. Lohner and P. Parikh, “Generation of Three-
Dimensional Unstructured Grids by the Advancing
Front Method,” International J. Numerical Methods
Fluids, vol. 8, pp. 1135-1149, 1988.

10. D.F. Watson, “Computing the N-Dimensional
Delaunay Tessellation with Application to Voronoi
Polytopes,” The Computer Journal, vol. 24, pp.
167-172, 1981.

11. A. Jameson, T.J. Baker and N.P. Weatherill,
“Calculation of Inviscid Transonic Flow over a
Complete Aircraft,” AIAA Paper 86-0103, 1986.

12. T.J. Barth, “Steiner Triangulation for Isotropic and
Stretched Elements,” AIAA Paper No. 95-0213,
1995.

13. V. Venkatakrishnan, “A Perspective on
Unstructured Grid Flow Solvers,” AIAA Paper 95-
0667, Jan. 1995.

14. W.K. Anderson, “A Grid Generation and Flow
Solution Method for the Euler Equations on
Unstructured Grids,” Journal of Computational
Physics, Vol. 110, No. 1, 1994, pp. 23-38.

15. R. Schneiders, “Automatic Generation of
Hexahedral Finite Element Meshes,” Proceedings
of 4th International Meshing Roundtable’95,
Albuquerque, NM, Oct. 1995, pp. 130-114.

16. K. Nakahashi, “Adaptive Prismatic Grid Method
for External Viscous Flow Computations,”
Proceedings of 11th AIAA Computational Fluid
Dynamics Conference, Orlando, FL, July 1993, pp.
195-203.

17. W.J. Coirier and P.C.E. Jorgenson, “A Mixed
Volume Grid Approach for the Euler and Navier-
Stokes Equations,” AIAA Paper 96-0762, Jan.
1996.

18. Y. Kallinderis, A. Khawaja and H. McMorris,
“Hybrid Prismatic/Tetrahedral Grid Generation for
Complex Geometries,” AIAA Journal, Vol. 34, No.
2, 1996, pp. 291-298.

19. H. Luo, D. Sharov, J.D. Baum, and R. Lohner, “On
the Computation of Compressible Turbulent Flows
on Unstructured Grids,” AIAA Paper 2000-0927,
Jan. 2000.

20. M.J. Berger and R.J. LeVeque, “An Adaptive
Cartesian Mesh Algorithm for the Euler Equations
in Arbitrary Geometries,” AIAA–89–1930–CP,
June 1989.

21. D. DeZeeuw and K. Powell, “An Adaptively
Refined Cartesian Mesh Solver for the Euler
Equations,” AIAA– 91–1542–CP, 1991.

22. W.J. Coirier and K.G. Powell, “Solution–Adaptive
Cartesian Cell Approach for Viscous and Inviscid
Flows,” AIAA J., vol. 34, no.5, pp. 938–945, 1996.

23. A.A. Bayyuk, K.G. Powell and B. van Leer, “A
Simulation Technique for 2D Unsteady Inviscid
Flows Around Arbitrarily Moving and Deforming
Bodies of Arbitrarily Geometry,” AIAA Paper 93–
3391–CP, 1993

24. M.J. Aftosmis, M.J. Berger and J.E. Melton,
“Robust and Efficient Cartesian Mesh Generation
for Component–Based Geometry,” AIAA Paper
No. 97–0196, 1997.

25. S.L. Karman, “SPLITFLOW: A 3D Unstructured
Cartesian/Prismatic Grid CFD Code for Complete
Geometries,” AIAA–95–0343, 1995.

26. Z.J. Wang, “A Quadtree-Based Adaptive
Cartesian/Quad Grid Flow Solver for Navier-Stokes
Equations,” Computers & Fluids, vol. 27, No. 4, pp.
529-549, 1998.

27. Z.J. Wang, R.F. Chen, N. Hariharan, A.J. Przekwas
and D. Grove, “A 2N Tree Based Automated
Viscous Cartesian Grid Methodology for Feature
Capturing,” Proceedings of 14th AIAA
Computational Fluid Dynamics Conference,
Norfolk, VA, 1999, pp. 447-457.

28. Z.J. Wang and R.F. Chen, “Anisotropic Cartesian
Grid Method for Viscous Turbulent Flow,” AIAA
Paper 2000-0395, Jan. 2000.

29. Bonet, J.A. and Peraire, “An Alternating Digital
Tree (ADT) Algorithm for 3D Geometric Searching
and Intersection Problems,” International J.
Numerical Methods in Engineering, vol. 31, pp. 1-
17, 1991.

