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Abstract 

 
Traditional structured (algebraic or elliptic) and 
unstructured grid generation methods (advancing front, 
Delaunay, etc) need a “water-tight” boundary surface 
grid to start. Therefore these methods are named B2I 
(Boundary to Interior) approaches. Although these 
methods have achieved great success in fluid flow 
simulations, the grid generation process can still be very 
time consuming if “non-water-tight” geometries are 
given. Significant user time can be taken to repair or 
clean a “dirty” geometry with cracks or overlaps before 
grid generation can take place. In this paper, we 
advocate a different approach in grid generation, namely 
the I2B (Interior to Boundary) approach. With an I2B 
approach, the computational grid is first generated 
inside the computational domain. Then this grid is 
intelligently “connected” to the boundary, and the 
boundary grid is a result of this “connection”. A 
significant advantage of the I2B approach is that “dirty” 
geometries can be handled without cleaning or 
repairing, dramatically reducing grid generation time. 
The viscous Cartesian grid generation method is further  
extended to be an I2B approach, and as a result, 
arbitrary “dirty” geometries can be handled without 
geometry repair. Comparing with a B2I approach, the 
grid generation time with the I2B approach for a 
complex automotive engine is reduced by three orders. 

 Introduction 

Impressive progresses in computational fluid dynamics 
(CFD) have been made during the last two decades in 
many aspects including algorithms for grid generation 
and flow computation. As a result, CFD is increasingly 

used in the design process in many industries such as 
aerospace, automobile, and many others. Depending on 
the type of computational grids used, CFD solution 
algorithms can be classified as structured grid and 
unstructured grid methods. The structured grid method 
was popularized with the development of body-fitted-
coordinate (BFC) grid generation approaches, which 
include the elliptic, hyperbolic, and algebraic grid 
generation techniques1-6. Although the structured grid 
method has been successful in handling complex 
geometries, it is usually very time-consuming to 
generate BFC grids for complex geometries. The 
difficulty in generating structured grids and the desire to 
automatically compute flows over complex geometries 
spawned a surge of activities in the area of unstructured 
grids during the last one and half decades7-19. 
Unstructured grids provide considerable flexibility in 
tackling complex geometries and for adapting the 
computational grids according to flow features. Types 
of unstructured grids include classical triangular or 
tetrahedral grids, quadrilateral or hexahedral grids, 
prismatic grids, or mixed grids, and more recently 
adaptive Cartesian20-24, Cartesian/prism25-26 and viscous 
Cartesian grids27-28.  
 
With this impressive array of powerful grid generation 
approaches, the difficulty in grid generation has shifted 
from volume grid generation to surface grid generation 
with "non water-tight" geometry definitions. In the 
design process, design engineers use CAD packages to 
perform detailed geometry designs. The design of a 
typical system (for example an automobile engine) 
involves thousands of parts. The exact transfer of 
geometries from one CAD package to another, and from 
a CAD package to a grid generator is still an unresolved 
issue. Even if the CAD model is exactly transferred 
from a CAD package to a grid generator, the CAD 
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model may still not be suitable for grid generation. To 
generate a computational grid with almost any current 
grid generators, a “water-tight” geometry has to be 
defined first. If a geometry is "water-tight", then the 
geometry is said to be a topologically closed surface. In 
the case of a geometry composed of surface patches, the 
geometry is "water-tight" if each boundary curve (of a 
patch) is shared and shared only by two patches as 
shown in Figure 1.  
 
 

 
Figure 1 Two Patches Sharing a Common Boundary 

Curve. 
 
In the automobile industry, the STL (stereolithography) 
format is often used to transfer the designed geometries 
from one package to another for visualization, and grid 
generation. The use of STL has many advantages. First 
the basic parts are defined using polygons (mostly 
triangles), which are the easiest to visualize on a 
computer screen. Second many efficient computational 
geometry algorithms have been developed for triangles 
to perform operations such as intersections, projections, 
etc. Third, most CAD packages can output geometries 
in STL format, and lastly the transfer of STL files from 
one system to another is exact.  
 
The use of STL files also has its disadvantages. First, 
STL-defined solids are usually NOT “water-tight”, 
which means that the geometry may have cracks and 
overlaps. Second, the number of triangles used to define 
the solids is usually dictated by the solid surface 
curvature. Small triangles are often used in high-
curvature regions, and large triangles are used in flat 
regions. The size of these triangles differs considerably. 
In order to perform a meaningful CFD simulation, the 
surface often needs to be re-meshed. For a “water-tight” 
STL geometry, the remeshing is a relatively easy 
operation. The advancing front algorithm7-9 can be used 
to remesh the surface. If the geometry is “dirty”, 
however, the remeshing operation can be prohibitively 
expensive. One such example is shown in Figure 2, 
which displays a “dirty” automobile engine geometry. 

The geometry has 32 STL patches with cracks and 
overlaps. In addition, the geometry has topological 
problems in that some edges are shared by more than 
two triangles. Note that for a “water-tight” geometry, 
each edge must be and only be shared by two triangles. 
The yellow lines in Figure 2 shows the topological 
cracks, and the red lines are edges with topological 
problems. One can image the difficulty in repairing this 
“dirty” geometry and remeshing the surface of the 
geometry. It is estimated that it can take a highly-skillful 
grid generation engineer two-three months to repair this 
geometry for grid generation using the-state-of-the-art 
tools.  
 
We cannot help asking the following question: Is it 
absolutely necessary to repair the geometry before grid 
generation can take place? Unfortunately the answer is 
yes for nearly all the traditional grid generation 
approaches we have seen so far, be it the structured grid 
approach, unstructured grid approaches. All these grid 
generation approaches need a “water-tight” geometry as 
the starting point.  
 

 
 

Figure 2. A “Dirty” Non-Water-Tight Automobile 
Engine Geometry 

 
In this paper, we advocate a different grid generation 
philosophy from the traditional grid generation 
approaches in that the interior volume grid is generated 
first before a surface grid is generated. Then the interior 
volume grid is "intelligently" connected with the 
boundary geometry. We argue that a unique advantage 
of this new grid generation method is that "dirty" 
geometries can be meshed without being repaired first. 
We will call the traditional grid generation approaches 
B2I (boundary to interior) approaches, and the new 
method a I2B (interior to boundary) approach following 
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the popular internet-based naming convention of B2B 
(business to business) and B2C (business to consumer).  
 
The paper is thus organized as follows. In the next 
section, we present the new philosophy behind the I2B 
grid generation method. In order to handle “dirty” 
geometries, a new definition for geometric entities is 
defined. After that, a particular I2B grid generation 
approach using adaptive Cartesian grid is presented, 
followed with demonstration cases with complex 
geometries. Finally conclusions and future work are 
discussed in the last section to conclude the paper. 
 

B2I Versus I2B 
 
The first step in a CFD simulation involving non-trivial 
geometries is to import a geometry, define a closed 
computational domain, and generate an adequate 
computational grid. For external flow problems, a user 
must also define a truncated far field boundary such that 
the computational domain is finite and closed. Because 
the shape of the far field boundary usually does not 
affect the solution, any elementary shapes such as a 
sphere or a cube can be used. For internal flow 
problems, the user may need to define an inlet or an exit 
boundary to close the computational domain. Generally, 
the grid generation process can be broken into the 
following steps: 
 
• Acquire the geometry; 
• Define a water-tight (closed) computational 

domain and repair the geometry if necessary; 
• Define topology (for the structured grid approach); 
• Generate the computational grid on the boundaries; 
• Generate the computational grid (i.e. the volume 

grid) in the interior of the computational domain. 
 
As can be seen that the conventional grid generation 
methods MUST start from a boundary grid, and then the 
interior grid is generated based on the grid on the 
boundary. The process is illustrated in Figure 3. Note 
that all structured grid generation approaches also fall in 
this category. If a "dirty" geometry is imported, the 
geometry must be cleaned or repaired so that a "water-
tight" geometry can be defined. Geometry repair can be 
an extremely time-consuming business if the geometry 
is complex. It involves very tedious manual labor of an 
experienced grid generation engineer. 
 
It seems that the only possibility of eliminating 
geometry repairing is to somehow reverse the grid 
generation process. Instead of generating the boundary 
grid first, the interior volume grid must be generated 
first, and then the interior grid is "connected” with the 
boundary. In this case, we do not need a “water-tight” 
geometry to start the grid generation process, and the 

approach has the potential of completely eliminating 
geometry repair from grid generation. A schematic of 
this grid generation approach is shown in Figure 4. In 
Figure 4, the “interior” Cartesian grid is generated first. 
Then the Cartesian grid is “connected” to the boundary 
(which has two cracks and one overlap) through 
projections, i.e., to connect the volume grid to the 
boundary in the minimum distance direction. This is 
only one means of "connecting" the volume grid to the 
boundary. Other techniques are definitely possible. 

 
 

Figure 3. The Schematic of a Traditional B2I Grid 
Generation Approach 

 
Figure 4. Schematic of the New I2B Grid Generation 
Approach 
 
In order to present the new I2B grid approach, we need 
to precisely define what a geometric entity is. Generally 
speaking, a geometry is usually represented by a group 
of surface patches, or solids. A surface patch can be 
defined with a variety of formats, such as a triangulated 
surface, a Coons patch, a NURBS surface, or a 
computational grid with a square topology. There are 
also many different ways of defining a solid. One way is 
the Constructive Solid Geometry. In order to support 
any geometry in an arbitrary manner in the present I2B 
grid generation method, the definition of a geometric 
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entity must be generalized. Besides solids and surface 
patches in any format, discrete points and curves can 
also serve as a geometric entity. In order to support 
"dirty" geometries, the geometric entities defined here 
do not have "inside" or "outside". Instead, a geometric 
entity is defined to be any entity supporting the 
following two operations: 
 
1. Given a simple solid (e.g. a cube or a tetrahedron), 

the entity is capable of returning a status 
"intersected" or "non-intersected" based upon 
whether the entity intersects the given solid. Let 
the geometric entity be represented by G (which is 
defined as a set of points), the given solid by S. 
The intersection operation is I(G, S) is then defined 
by: 



 ≠

=
otherwise

SGif
SGI
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2. Given an arbitrary point (q) in space, the projection 
(p) from the given point to the entity is well 
defined. The line segment from the given point to 
the projection is the shortest distant from the given 
point to the entity, i.e., 

GrrqpqqGp ∈≤=:),(  

Note that this definition of geometric entity is very 
general, and any geometry defined with a solid or a 
surface patch can be seen to be a valid geometric entity. 
Note that any discrete points, lines, curves, and planes 
are also valid geometric entities.  
 
Before we present the general I2B grid generation 
approach for a given set of geometric entities, two 
meshing parameters, dmin and dmax are discussed, which 
represent the minimum and maximum sizes of the grid 
cells to be generated. The only requirement that the set 
of geometric entities must satisfy is that the 
computational domain formed with the entities is 
"physically" closed if gaps or holes smaller than dmin 
are ignored.  This is to say that if a gap or a hole exists 
in the geometry (which should not have been there), the 
size of the gap or the hole must be smaller than dmin. 
Note that this enclosure condition is much weaker than 
the condition of "water-tightedness" required by B2I 
approaches. Obviously, if all the gaps between the line 
segments in Figure 4 are smaller than dmin, the set of 
line segments actually defines a valid computational 
domain. There is one other possible complication the 
user must clarify. For the computational domain 
defined with the line segments as shown in Figure 4, 
the user needs to decide whether the "inside" or the 
"outside" should be the computational domain. For the 
grid shown in Figure 4, the "inside" represents the 
computational domain.  
 

With the above definition and clarifications, we are 
ready to present our general I2B grid generation 
approach: 
 
1. Determine the size of the computational domain, 

and fill the computational domain with a particular 
type of simple solids or cells (cubes or tetrahedra) 
whose sizes are between dmin and dmax;  

2. Determine the cells which intersect the set of 
geometric entities; 

3. Recursively refine the cells intersected by the 
geometric entities until all the cells are smaller 
than a given threshold dint (which is usually chosen 
to be 2dmin). Note that all cells must be bigger than 
dmin; 

4. Select one cell in the computational domain, and 
use a neighbor-painting algorithm to identify all 
cells in the computational domain. 

5. Remove all the cells intersected by the geometric 
entities, and all unpainted cells; 

6. Remove cells too close to the geometry; 
7. Connect the exposed Cartesian faces to the 

geometric entities through projections. 
 

A schematic showing the major steps of the method is 
showing in Figure 5. The projection step is already 
shown in Figure 4. 
 
Next, we present an I2B grid generation approach 
based on the adaptive Cartesian grid method. The 
viscous Cartesian grid method developed by Wang et 
al27-28 is further extended to be a truly I2B method 
capable of handling complex dirty geometries.  

 
I2B Cartesian Grid Method 

 
Supported Geometric Entities 
As mentioned earlier, any entities supporting the 
operations defined in the last section can be considered 
as geometric entities. In this paper, however, we have 
limited ourselves to points, lines, line segments and 
triangulated surfaces. This choice is really dictated by 
the type of geometric inputs we usually get, and does 
not imply that other choices are not possible. In 
particular, in many cases, especially in the automotive 
industry, the input geometry is in the STL format 
because of its portability and popularity. The fact that 
the surface is defined by triangles (or polygons in 
general) makes the geometry easy to display, transport, 
and manipulate. This format can be exported by nearly 
all major CAD packages, and is independent of the 
CAD systems where the surface is created. Each STL 
file can be viewed as a separate "part", and a system of 
parts can be produced by concatenate all the part files. 
This feature is particularly useful in the early design 
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stage, in which many of the parts undergo constant 
design modifications.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
Figure 5. Schematic of I2B Grid Generation Approach  

 
Surface grids in other formats such as PLOT3D and 
FAST formats can be easily converted into triangulated 
surfaces, and serve as geometric entities. For example, 
given a PLOT3D structured surface grid, each 
quadrilateral of the surface grid can be divided into two 
or four triangles, thus producing a triangulated surface.  
 
If one is interested in dealing with NURBS or IGES 
patches, one approach is to generate a "structured grid" 
for the patch using the local coordinates in the 
parameter space. This structured grid is then subdivided 
into a triangulated surface. This triangulated surface can 
be viewed as a "finite resolution" representation of the 
true NURBS or IGES patch.    

Interior Grid Generation 
Once the geometric entities are given, the next step is 
to define the computational domain. Based on whether 
the problem is an internal or external flow problem, the 
size of the computational domain can be determined. 
For an external flow problem, there is usually a 
characteristic body length L (the chord length of an 
airfoil, or the length of an aircraft). The far field 
boundary should usually be at least 10 times the body 
length away from the geometry so that the location of 
the far field boundary does not influence the solution 
quality significantly. For an internal flow problem, 
there are usually an inlet and exit. If the inlet and exits 
are not defined, the user must first define the inlet and 
exit geometry based on experiences and common 
sense. For example, inlet and exit surfaces can be 
usually assumed to be planar. With properly defined 
inlets and exits, the physical domain of interest should 
be physically closed excluding gaps or holes smaller 
than dmin. Then the computational domain should be big 
enough to contain the physical domain of interest.  
 
Once the size of the computational domain is 
determined, we are ready to generate the interior grid. 
“Interior” here means “inside” the computational 
domain, and not necessarily inside a geometry (e.g. for 
external flow problems). To generate a computational 
grid inside a computational domain, the easiest 
approach may be to use a uniform Cartesian grid. 
However in this paper, 2n tree adaptive Cartesian grids 
are used following the viscous Cartesian grid 
approach27-28. With the 2n tree, the adaptive Cartesian 
grid can be clustered or de-clustered in a truly arbitrary 
fashion. In the 2n tree data structure, one tree node can 
have 2, 4, or 8 children as shown in Figure 6. This tree 
can be used to record the recursive subdivisions of a 
single Cartesian cell in an arbitrary fashion as shown in 
Figure 7. Note that a Cartesian cell using the 2n tree 
data structure can be subdivided in one, two or all three 
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coordinate directions. The popular Octree data structure 
can be viewed a special case of the 2n tree.  
 
To start the adaptive Cartesian grid generation process, 
a single root Cartesian cell covering the entire 
computational domain is generated first. This cell is 
called a root cell because it occupies the top level - root 
- of the 2n tree. All the other Cartesian cells are 
generated by recursively subdividing this root cell until 
the geometry-intersecting Cartesian cells satisfy a 
minimum grid resolution. 
 
Note that since all geometry entities support the 
“intersection” operation, it is easy to identify which 
Cartesian cells are intersected by the geometric entities.  

 
Figure 6. 2n Tree Data Structure 

 

 
Figure 7. Arbitrary Cell Subdivision Supported by 2n 

Tree 
 
The next step is a significant departure from the 
approaches presented in references 27-28. In order to 
support “non-water-tight” geometries, the “inside” or 
“outside” of geometries are deliberately not defined. 
Because each geometry entity may have a different 
orientation, it is not possible to use the normal of an 
entity as an indication as to which is inside the 
computational domain. Instead, the user needs to select 
one single Cartesian cell inside the computational 
domain. Note that we have identified cells which 
intersect the geometric entities. These intersected cells 
also serve to divide the “interior cells” and the “exterior 
cells” (cells outside the computational domain). Then by 
using a neighbor painting algorithm, all the Cartesian 
cells inside the computational domain can be 

determined. All the Cartesian cells NOT inside the 
computational domain are considered outside the 
computational domain. After that, all the exterior cells 
and intersected cells are removed from the 
computational domain. Cartesian cells too close to the 
geometry are also removed so that the gap between the 
Cartesian grid and the geometry is sufficiently large. A 
gap of reasonable size allows high quality grid cells to 
be generated between the Cartesian grid and the 
geometry. 
 
Connecting the Interior Grid to the Boundary 
There are possibly many different ways in which one 
can connect the interior grid to the boundary. The most 
obvious and robust way is probably through projecting 
the Cartesian nodes from the Cartesian front (the 
“exposed” Cartesian faces collectively form the so-
called “Cartesian front”) to the geometric entities. 
Before one does the projection, it is appropriate to 
smooth the Cartesian front so that the “steps” in the 
Cartesian grid is smoothed out. This can be 
accomplished through the use of a Laplacian smoother.  
The smoothed front is then projected to the geometry 
according to the minimum distance rule. It can be 
proved mathematically that the projection lines cannot 
intersect each other. Note that per definition, the 
geometric entities must support the projection operation, 
which comes handy now. Because the Cartesian front is 
composed of boundary faces of a "solid region", the 
front is closed and "water-tight". After the front is 
projected to the boundary geometric entities, a "water-
tight" surface grid is generated on the boundary. By 
connecting each point on the Cartesian front and the 
corresponding projected point on the boundary, we 
obtain a valid computational grid as shown in Figure 4. 
After the projection, a single layer of prism cells 
(quadrilateral cells in two dimensions) with arbitrary 
polygon footprints is generated in three dimensions. 
This single layer can be sub-divided into multiple layers 
with proper grid clustering near the geometry to resolve 
the viscous boundary layer if necessary.  
 
The efficiency of the projection operation in three 
dimensions is critical to the success of the method. In a 
typical application, assume we have a triangulated 
surface with N triangles, and a Cartesian front with M 
nodes. A brute-force exhaustive search based projection 
algorithm would take O(MN) operations, which is too 
expensive even for medium-sized applications. Instead 
an ADT tree29 is used to store the bounding boxes of the 
triangles. Given a node to project, only triangles close to 
the node are identified from the tree-based search 
operation, and are projected to. This new algorithm 
reduces the number of operations from O(MN) to about 
O(M logN). The speed-up for a medium sized problem 
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(N = 100,000, M = 100,000) is more than several orders 
of magnitude.  
 
A projection based on the minimum distance rule 
usually misses geometrically important concave 
features, such as the corner points in Figure 4. In order 
to preserve these features, these features are detected or 
specified first. Then a feature-preservation technique is 
used to reconnect some of the front nodes to those 
features. This technique is shown in Figure 8. 

 

 
Figure 8. Schematic of Feature Preservation 

  
In many applications, it may be too expensive or 
unnecessary to preserve all the features in a geometric 
entity. Then the projection algorithm can serve as an 
automatic feature suppression operator. This capability 
will be demonstrated in a test case later. 
 
Handling of Cracks and Overlaps 
Recall that B2I approaches cannot handle cracks and 
overlaps because a "water-tight" surface grid is a 
necessary starting point. In the current I2B approach, 
cracks smaller than the minimum grid resolution dmin are 
not “visible” to the Cartesian grid generator, which is 
illustrated in Figure 9a. However, if the geometry has an 
opening bigger than the minimum grid resolution, this 
opening is considered “physical” by the Cartesian grid 
generator, and is fully resolved as shown in Figure 9b. 
Fortunately, most of the cracks appearing in CAD STL 
files are due to slight mismatches between different 
patches. Therefore, our current I2B viscous Cartesian 
grid approach can handle these cracks without any 
problems because the minimum grid resolution is 
usually much larger than the size of the cracks. 
However, if large cracks exist in a geometry model, 
which are not physical, they have to be closed manually 
by the user. Fortunately, these large cracks are rare, and 
can be easily spotted by visual inspection of the 
generated Cartesian grid. 
 

It turns out that overlaps are no problems for the I2B 
approach because overlaps do not alter the topology 
(inside and outside) of the Cartesian grid. Through the 
use of projections, the patch closest to the Cartesian 
front is always used. It is guaranteed that the projections 
would not intersect each other. 

 
(a) 

 
(b) 

 
Figure 9. An Invisible Gap and A Fully Resolved Gap 
 
It is easy to see that the I2B viscous Cartesian approach 
is completely “topology” based, and cannot fail for 
arbitrarily complex geometries. This property has been 
confirmed with many cases involving complex “dirty” 
geometries. 
 

Demonstration Cases 
 
Demonstration of Automatic Feature Suppression 
The I2B viscous Cartesian grid method can be fully 
automated. In most cases, the user needs only to input 
one parameter, i.e., the geometry surface grid resolution 
dint. The minimum and maximum grid resolution can be 
determined based on the characteristic length scale of 
the input geometry. Another unique advantage of the 
method is automatic feature suppression. In many 
simulations, it is not necessary to resolve very fine 
geometric features, or it is too costly to resolve all the 
features. In those cases, we would like to suppress the 
fine geometric features. The viscous Cartesian grid can 
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automatically suppress all the features smaller than the 
surface grid resolution, i.e., smaller features than the 
grid resolution are “smooth” out automatically. To 
demonstrate this capability, we again use an auto part as 
an example. Figure 10a shows the geometry of the part, 
and Figure 10b-10d shows the surface meshes with 
varying surface grid resolutions. It is obvious that the 
geometry is better resolved with finer grid resolution. 

 

 
(a) 

 
(b) 

 
 

 
(c) 

 
(d) 

 
Figure 10.  STL Geometry of Automotive Part and 

Surface Grids with Various Resolutions 
 

 
 
Figure 11.  Adaptive Cartesian Grid for a Car Engine 
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Demonstration of More Complex Geometries 
Several more complex geometries are shown here with 
generated surface grids. Shown in Figure 11 is the 
engine grid generated for the "dirty" geometry shown in 
Figure 2. This grid has about 125,000 cells, and was 
generated in about 1 hour. With a traditional grid 
generator, it takes two to three man-months to repair the 
geometry and generate a computational mesh for this 
geometry. A speed-up factor of more than three orders 
was achieved in this case.  
 
Figures 12 displays a more complex engine geometry, 
and the generated computational grid. Figure 13 shown 
the geometry and grid for a passenger cabin with six 
dummies. Note that all the geometries are not water-
tight, and the I2B viscous Cartesian grid method had no 
difficulty in handling them without any “cleaning” or 
“repairing”. 

 
(a) 

 
(b) 

Figure 12.  A More Complex Automobile Engine and its 
Surface Grid 

 

 
(a) 

 

 
(b) 

Figure 13. Passenger Cabin Mesh 

Demonstration of Feature Recovery 
In all the previous examples presented so far, no feature 
preservation is necessary. In aerospace applications, 
however, geometric feature preservation may be critical. 
For example, geometric features in an aircraft must be 
captured if one is to predict the lift and drag of the 
aircraft. In this demonstration, a fighter aircraft is used 
as an example to demonstrate feature preservation. The 
input format of the aircraft is PLOT3D patches. The 
patches, however, do not form a "water-tight" geometry 
surface. There are mismatches, holes and overlaps along 
the patch boundaries. As a matter of fact, there is a large 
hole in the geometry, which must be filled before grid 
generation can take place. The other cracks and holes 
are very small, and do not need any special treatment. In 
addition, geometrically important sharp edges are 
detected automatically, or specified by the user, as 
shown in Figure 14a. Furthermore, several surface 
sources are used to cluster grid cells near sharp edges or 
high-curvature regions. A viscous Cartesian grid was  
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(a) 

 

 
 (b) 

 

 
(c) 

Figure 14. Geometry, Adaptive Cartesian Grid and 
Computed Pressure Distribution with Mach = 0.3 

 
then generated successfully with critical feature 
preservation. The computational grid is shown in Figure 
14b. Note that the critical features were captured 
correctly. A sample flow computation was carried out, 

and the computed pressure distribution at Mach = 0.3 is 
shown in Figure 14c.  

 Conclusions 

In order to handle “dirty” geometries with cracks and 
overlaps, a new grid generation approach, namely I2B 
(interior to boundary), is advocated in this study. To 
support non-water-tight geometries, a more generalized 
definition of geometry is also given. Any geometry 
supporting the operations of intersection and projection 
can be used in grid generation. Therefore, the 
requirement of “water-tightness” is completely avoided. 
The viscous Cartesian grid approach is further extended 
to be an I2B approach to handle arbitrary geometries. 
Many very complex geometries are used to demonstrate 
the ability of new grid generation approach. It is 
confirmed that arbitrary “dirty” geometries can be 
handled automatically.  
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