
 
 
 
 
 
 
 
 
 
 
   

 
AIAA-2003-0880 
High-Order Spectral Volume Method for 
Benchmark Aeroacoustic Problems 
 
Z.J. Wang 
Michigan State University 
East Lansing, MI 

 
 

              
 

41st Aerospace Sciences Meeting and Exhibit 
6-9 January, 2003 

Reno, Nevada 
 
 
 

−5 −3 −1 1 3 5
X

0

1e−05

2e−05

3e−05

4e−05

P
m

ax

Exact
3rd Order
4th Order
6th Order



AIAA-2003-0880 

1 
American Institute of Aeronautics and Astronautics 

HIGH-ORDER SPECTRAL VOLUME METHOD  
FOR BENCHMARK AEROACOUSTIC PROBLEMS 

 
Z.J. Wang† 

Department of Mechanical Engineering 
Michigan State University, East Lansing, MI 48824 

 
ABSTRACT 

 
A time accurate, high-order finite volume method named spectral volume (SV) method has been developed recently 
for conservation laws on unstructured grids. Each spectral volume is partitioned into control volumes (CVs), and 
cell-averaged state variable from these control volumes is used to reconstruct a high-order polynomial 
approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume 
boundaries. Then cell-averaged state variables in the control volumes are updated independently. A very desirable 
feature of the SV method is that the reconstruction is identical for cells of the same type with similar partitions. In 
this study, the SV method is tested for several benchmark problems in computational aeroacoustics (CAA) to 
demonstrate its potential for CAA applications.  
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1. INTRODUCTION 
 
A new finite volume method named the spectral volume 
(SV) method has been developed recently for 
hyperbolic conservations laws [1-2], and successfully 
demonstrated for both scalar and system conservation 
laws [3,4]. The goal set for developing the SV method 
has been to pursue a numerical method for conservation 
laws which has all of the following properties: a) 
conservative, b) high-order accuracy, i.e., the order of 
accuracy is greater than second order, c) geometrically 
flexible, i.e., applicable for unstructured grids, and d) 
computationally efficient. The SV method is developed 
to hopefully satisfy these four requirements, in a 
relative sense with respect to the current state-of-the-art 
numerical methods such as the high-order k-exact finite 
volume (FV) method [5], weighted essentially non-
oscillatory (WENO) methods [6], the discontinuous 
Galerkin (DG) method [7,8], and the unstructured 
spectral method [9,10], amongst many others.   
 
Ultimately, the SV method is a Godunov-type finite 
volume method [11], which has been under 
development for several decades, and has become the-
state-of-the-art for the numerical solution of hyperbolic 
conservation laws. For a more detailed review of the 
literature on the Godunov-type method, refer to [1], and 
the references therein. Similar to the Godunov method, 
the SV method has two key components. One is data 
reconstruction, and the other is the (approximate) 
Riemann solver. What distinguishes the SV method 
from the k-exact finite volume (FV) method is the data 
reconstruction. Instead of using a (large) stencil of 

neighboring cells to perform a high-order polynomial 
reconstruction, the unstructured grid cell - called a 
spectral volume - is partitioned into a "structured" set of 
sub-cells called control volumes (CVs), and cell-
averages on these sub-cells are then the degrees-of-
freedom (DOFs). These DOFs are used to perform a 
high-order polynomial reconstruction inside the SV. All 
the spectral volumes are partitioned in a geometrically 
similar manner, and thus a single reconstruction is 
obtained. Next, the DOFs are updated to high-order 
accuracy using the usual Godunov method. Numerical 
tests with scalar conservation laws in both 1D and 2D 
have verified that the SV method is indeed highly 
accurate, conservative, and geometrically flexible [1-4].  
 
In this paper, we test the SV method for several 
benchmark problems in computational aeroacoustics 
(CAA). As pointed out by Tam in [12], acoustic waves 
have their own characteristics which make their 
computation unique and challenging. Acoustic waves 
are inherently unsteady. Their amplitudes are several 
orders smaller than the magnitudes of the mean flow 
and their frequencies are generally very high and broad 
ranging. Computational methods with high order 
accuracy are required to capture the acoustic portion of 
the solution [13-17]. The requirement of geometric 
flexibility comes from the desire to compute noise over 
“real world” configurations, such as aircraft, or car 
geometries. Over the last decade, many high-order 
algorithms such as compact schemes [14], DRP 
(Dispersion-Relation Preserving) schemes [13] have 
been developed, and applied successfully in many CAA 
applications. These schemes were developed for 
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Cartesian grid or smooth structured grids, and therefore 
the applications using these methods have limited to 
relatively simple geometries. For problems with 
complex geometries, it is a considerable challenge to 
generate any structured grid, let alone a smooth 
structured grid, which can preserve the high-order 
accuracy of the numerical algorithms. We, therefore, 
advocate an unstructured grid approach for complex 
configurations. 
 
The paper is organized as follows. In the next section, 
we first present the SV method for the two dimensional 
Euler equations. Then multi-dimensional limiters 
necessary for non-linear Euler equations with 
discontinuities are described. After that, we discuss 
several issues for the quasi-one-dimensional Euler 
equations.  In Section 5, three CAA benchmark cases, 
two 1D and one 2D, are presented. Finally, conclusions 
and recommendations for further investigations are 
summarized in Section 6. 
 

2. SPECTRAL (FINITE) VOLUME METHOD 
FOR 2D EULER EQUATIONS 

 
The unsteady 2D Euler equation in conservative form 
can be written as 
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where Q is the vector of conserved variables, E and F 
are the inviscid flux vectors given below: 
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Here ρ is the density, u and v are the velocity 
components in x and y directions, p is the pressure, and 
E is the total energy. The pressure is related to the total 
energy by 
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with ratio of specific heats γ = 1.4 for air. The Jacobian 
matrix for the flux vector in an arbitrary direction n = 
(nx, ny) can be written as 
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 B has 4 real eigenvalues nv=2,1λ , cvn +=3λ , 
cvn −=4λ , and a complete set of (right column) 

eigenvectors {r1, r2, r3, r4}, where yxn vnunv +=  and c 
is the speed of sound. Let R be the matrix composed of 
these right eigenvectors, then the Jacobian matrix B can 
be diagonalized as 
 

 Λ=− BRR 1 ,                         (4) 
 
where Λ  is the diagonal matrix containing the 
eigenvalues, i.e., 
 

),,,( cvcvvvdiag nnnn −+=Λ .               (5) 
 

Assume that we solve (1) in computational domain Ω 
subject to proper initial and boundary conditions. 
Domain Ω is discretized into N non-overlapping 
triangular elements called spectral volumes (SVs) 
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Given a desired order of accuracy k for (1), each 
spectral volume Si is then partitioned into m = k(k+1)/2 
control volumes (CVs), and the j-th CV of Si is denoted 
by jiC , . Several convergent partitions of various 
degrees are shown in Figure 1. Let q denote any of the 
conservative variables in Q. The cell-averaged 
conservative variable q at time t for control volume Ci,j 
is defined as 
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where jiV ,  

is the volume of jiC , . Given the cell-
averaged conservative variables for all the CVs in Si, a 
polynomial 1),( −∈ k

i Pyxp  (the space of polynomials 
of degree at most k – 1) can be reconstructed such that 
it is a k-th order accurate approximation to the function 
q(x,y) inside Si: 
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This reconstruction can be solved analytically by 
satisfying the following conditions: 
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This polynomial pi(x,y) is the k-th order approximation 
we are looking for as long as the function q(x,y) is 
smooth in the region covered by Si. The reconstruction 
can be more conveniently expressed as  
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where 1),( −∈ k

j PyxL  are the "shape" functions which 
satisfy 
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The high-order reconstruction is then used to generate 
high-order updates for the cell-averaged state variable 
on the CVs. Integrating (1) in Ci,j, we obtain the 
following integral equation for the CV-averaged mean 
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where jiQ ,  is the vector of the CV-averaged 
conservative variables in Ci,j, f = (E, F), K is the 
number of faces in Ci,j, and Ar represents the r-th face of 
Ci,j. The surface integral on each face can be performed 
with a k-th order accurate Gauss quadrature formula, 
i.e. 
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where J = integer[(k+1)/2] is the number of quadrature 
points on the r-th face and, wrq are the Gauss quadrature 
weights, (xrq, yrq) are the Gauss quadrature points, h is 
the maximum edge length of all the CVs. If f = 
constant, the following identity exists:  
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Therefore, we will gain an extra order of accuracy if we 
sum up the surface integrals for the faces of Ci,j, i.e., 
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Since )()( hAOVO ri = , we therefore have 
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With the polynomial distribution on each SV, the state 
variable is most likely discontinuous across the SV 
boundaries. Therefore, the flux integration involves two 
discontinuous state variables just to the left and right of 
a face of the SV boundary. This flux integration is 
carried out using an exact Riemann solver or one of the 
Lipschitz continuous approximate Riemann solvers or 
flux splitting procedures, i.e., 
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where LQ  and  RQ  are the vector of conserved 
variables just to the left and right of a face. Substituting 
(17) into (13), we obtain 
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(18) 
�It is the Riemann solver which introduces the 
“upwinding", and dissipation into the SV method such 
that the SV method is not only high-order accurate, but 
also stable. In this paper, we employ the Roe Riemann 
solver [18] 
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where B  is the dissipation matrix computed from 
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Here Λ  is the diagonal matrix composed of the 
absolute values of the eigenvalues of the Jacobian 
matrix evaluated at the so-called Roe-averages, i.e.,  
 

)( AQBB = ,                      (21) 
 
and R  is also evaluated at the Roe averages [18].  
 
Finally we obtain the following semi-discrete SV 
scheme 
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For time integration, we use the third-order TVD 
Runge-Kutta scheme from [19]. We first rewrite (22) in 
a concise ODE form 
 

),(QRdt
Qd

h=                            (23) 

 
Then the third-order TVD Runge-Kutta scheme can be 
expressed as: 
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3. MULTI-DIMENSIONAL  
TVD AND TVB LIMITERS 

 
For the non-linear Euler equations, it is necessary to 
perform data limiting to maintain stability if the 
solution contains discontinuities. TVD limiters enforce 
strict monotonicity by sacrificing solution accuracy at 
local extrema, while TVB limiters relax the 
monotonicity requirement to achieve uniform accuracy 
away from discontinuities. In this paper, both limiters 
are presented in a uniform TVB limiter form, with TVD 
being a special case. There are two different ways of 
applying limiters in the system setting. One way is to 
apply a limiter to each characteristic variable. The other 
is to apply a limiter to each component of the vector of 
the conservative variables. The former has the nice 
property of naturally degenerating to the scalar case if 
the hyperbolic system is linear, but the latter is much 
more efficient. In this paper, we choose the component-
wise approach because of its efficiency. To this end, we 

first establish the following numerical monotonicity 
criterion for each control volume 
 

max
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where min

, jiq  and max
, jiq  are the minimum and maximum 

cell-averaged solutions among all its neighboring CVs 
sharing a face with Ci,j, i.e., 
 

)max,max( ,,1,
max
, rjiKrjiji qqq

≤≤
=  

),min,min( ,,1,
min
, rjiKrjiji qqq

≤≤
=                 (26) 

 
and ),(, yqrqji yxq  is the reconstructed solution at any of 
the quadrature points. It was proven by Liu [20] in the 
scalar case that if (25) is satisfied by the reconstruction, 
the numerical solution satisfies a maximum principle, 
i.e., the solution is monotonic. If (25) is strictly 
enforced, the resultant numerical scheme for the scalar 
case is TVD. However, it is well known that TVD 
schemes are locally first-order at extrema, and may 
degrade the global accuracy of the solution. In order to 
maintain the order of accuracy away from 
discontinuities, the TVB idea [7] is followed here, i.e., 
small oscillations are allowed in the solution. If we 
express the reconstruction for the quadrature points in 
the following form 
 

,),( , jirqrqirq qyxpq −=∆  
 
then no data limiting is necessary if  
 

,4 2
rqqrq hMq ≤∆                         (27) 

 
where rqjirqh rr −= ,  is the distance from the CV 
centroid to the quadrature point. In other words, no data 
limiting is necessary if (27) is satisfied, even if (25) is 
not. Usually the constant Mq is chosen to be the 
maximum second derivative of the solution. However 
Mq is a user chosen parameter if there is a discontinuity 
in the solution. Note that a different Mq should be used 
for a different conservative variable. In this paper, Mq is 
scaled according to the minimum and maximum of the 
component, i.e., 
 

 )( minmax qqMM q −= .                      (28) 
 

where M is a constant independent of the component, 
and qmax and qmin are the maximum and minimum of the 
solution q over the computational domain. If (25) is 
violated for any quadrature point, then it is assumed 
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that the CV is close to a discontinuity, and the solution 
in the CV is locally linear, i.e., 
 

.,),( ,,,, jiji,jijiji C)(qqyxq ∈∀•∇+= rr-r

     

(29) 
 
The magnitude of the solution gradient is maximized 
subject to the monotonicity condition given in (25). The 
original high-order reconstruction in the CV is used to 
compute an initial guess of the gradient, i.e., 

 

.,
,

,

ji
y

p
x

pq mm
ji

r








∂
∂

∂
∂

=∇

 
 
This gradient may not satisfy (25). Therefore it is 
limited by multiplying a scalar ]1,0[∈ϕ  so that the 
following solution satisfies (25) 
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The scalar can be computed from 
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In the case of M = 0, the limiter becomes TVD. The 
availability of cell-averaged data on the CVs inside a 
SV makes this CV-based data limiting possible, 
whereas in the DG method, one can only do an element 
based data limiting. Due to the increased local 
resolution, the SV method was shown to have better 
resolutions for discontinuities than the DG method [3]. 
This advantage should also carry over to the multi-
dimensional systems case. 
 
Note that at the interior CV boundaries inside a SV, the 
reconstructed conservative variables are continuous if 
no limiter is imposed. Then the flux is just the 
analytical flux, which is cheaper to compute than the 
Riemann flux. 
 

4. QUASI-ONE DIMENSIONAL EULER 
EQUATIONS 

 
The degeneration from the 2D Euler equations to the 
quasi-1D equations is obvious. The 1D equations have 

a source term in the momentum equation due to the 
variation in the cross-section area, as evident in the 
following form 
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(32b) 

where A is the cross section area. The computational 
domain is first subdivided into N SVs.  Each SV is 
further partitioned into k CVs, according to the Gauss-
Lobatto mapping. The j-th CV in the i-th SV is then Ci,j 
= (xi,j-1/2, xi,j+1/2). The integration of (32) in  Ci,j gives 
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where 2/1,2/1,, −+ −= jijiji xxh . The integration of the 
source term is again performed with a Gauss quadrature 
formula of suitable order of accuracy with an analytical 
area derivative. 
 

5. NUMERICAL TESTS 
 
5.1 Sound Waves through a Transonic Nozzle 
This case is selected from the Third Computational 
Aeroacoustics (CAA) Workshop on Benchmark 
Problems [21]. A one-dimensional nozzle with the 
following area distribution is considered 
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The computational domain is [-10,10]. The mean flow 
is completely subsonic with an exit Mach number of 
0.4. Small amplitude acoustics waves, with angular 
frequency ω = 0.6π, is generated way downstream and 
propagate upstream through the narrow passage of the 
nozzle throat. The acoustic wave in the uniform region 
downstream of the nozzle can be represented by 
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where ε = 1.e-5. The non-linear Euler equations were 
employed in the simulation. Therefore we need to first 
compute the mean flow solution.  
 
In the initial test, only uniform grids were employed in 
order to remove the effects of the grid from the 
consideration. Three SV schemes with 3rd, 4th and 6th 
order of accuracy were investigated with the same 
degrees of freedom (DOFs). Therefore, 200, 150, and 
100 SVs were used for the 3rd, 4th and 6th order schemes 
respectively, resulting in a total of 600 DOFs. 
Characteristic boundary conditions were used in both 
the inlet and exits based on the propagating directions 
of the waves. The mean flow solutions from all three 
schemes are plotted in Figure 2. Note that the solutions 
agree very well with each other, indicating that the 
mean flow solution is scheme and grid-independent. 
The mean flow solution was then used as the initial 
condition for the unsteady simulation. The unsteady 
upstream-propagating acoustic waves are imposed 
directly on the right side of the downstream boundary 
face, with the left side state variables reconstructed 
from the interior domain. The Riemann solver 
automatically takes care of the wave propagation. The 
unsteady solution reached periodic after t = 40. The 
maximum acoustic pressure is then determined over 
several periods. The maximum acoustic pressures 
computed with the SV schemes are compared with the 
analytical solution in Figure 3. As expected, the 6th 
order scheme performs much better than the 3rd and 4th 
order schemes with the same DOFs. The computed 
instantaneous acoustic pressure distributions are 
compared with the analytical solution in Figure 4. 
Again, the 6th order SV scheme performs the best. 
 
Since the acoustic waves have much higher frequencies 
near the throat than those in the constant area 
downstream region, a better computational mesh can be 
produced by clustering the grid points near the throat. 
Such a mesh with 30 SVs was generated, and the 
maximum SV is about 20 times larger than the 
minimum SV. The 6th order SV scheme was then 
employed on this non-uniform mesh to carry out the 
same simulation with 180 DOFs. The computed 
maximum acoustic pressure is compared with the 
analytical solution in Figure 5, which also displays the 
computational mesh. For comparison purposes, the 
computed maximum acoustic pressures on both the 
uniform and non-uniform grids are compared with the 
analytical solution in Figure 6. With only 180 DOFs, 
the computed acoustic pressure on the non-uniform grid 

agrees better than that on the uniform grid with 600 
DOFs. Finally the computed instantaneous pressure is 
plotted with the analytical solution in Figure 7. They 
are right on top of each other.  
 
5.2 Shock-Sound Interaction 
This case is again selected from the Third 
Computational Aeroacoustics (CAA) Workshop on 
Benchmark Problems. The nozzle geometry is the same 
as in the previous case. The mean flow is supersonic at 
the inlet, and the exit pressure is so designed that a 
shock wave is generated downstream of the throat. At 
the inflow boundary, the conditions are: 
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where e = 1.e-5, ω = 0.6π, Minlet = 0.2006533. The exit 
pressure is set to be 0.6071752 to create a shock. A 
uniform grid with 100 SVs and the 2nd order SV scheme 
were used in the simulation. Although higher-order SV 
schemes were tried, it appeared that the limiters had a 
detrimental effect on the acoustic waves. Designing 
acoustic-wave preserving limiters will be a future 
research topic. The computed mean pressure is 
compared with the analytical solution in Figure 8. The 
agreement is good, though the numerical solution is 
slightly oscillatory. It would be interesting to see 
whether this small oscillation affects the acoustic 
waves. The computed instantaneous acoustic pressure is 
displayed with the analytical solution in Figure 9. It 
seems the small oscillation does not seriously affect the 
acoustic waves, and the acoustic waves are free to 
propagate across the shock wave. The pressure history 
at the exit is plotted in Figure 10 with the analytical 
solution. Generally speaking, the agreement is very 
good. 
 
5.3 Vortex Evolution Problem 
This is an idealized problem for the Euler equations in 
2D used by Shu [15]. The mean flow is {ρ, u, v, p} = 
{1, 1, 1, 1}. An isotropic vortex is then added to the 
mean flow, i.e., with perturbations in u, v, and 
temperature T = p/ρ, and no perturbation in entropy S = 
p/ργ: 
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where 222),5,5(),( yxryxyx +=−−= , and the 
vortex strength ε = 5. The computational domain is 
[0,10]x[0,10]. In the numerical simulation, we wish to 
test the SV schemes for handling the long time 
evolution of the vortex. For this purpose, periodic 
boundary conditions were employed at all the 
boundaries. The simulation was performed on a regular 
grid with 20x20x2 SVs, which is displayed in Figure 
11. Figure 12 shows the density profiles along x = 5 at t 
= 0, t = 10, 50 and 100 for the second, third and fourth 
order SV schemes. Note that the second-order SV 
scheme displays significant dispersion and dissipation 
error, especially for the long term simulations. In 
contrast, both the third-order and fourth-order schemes 
give excellent results. The computed pressure contours 
at t = 100 are compared with the exact solution in 
Figure 13, which again reinforces the conclusion that 
high order schemes produced significantly better 
results. 
 

CONCLUSIONS 
 
The SV method has been tested on several benchmark 
CAA problems in this paper. It is clearly demonstrated 
that high-order schemes are required to deliver the 
expected solution accuracy in CAA problems, and they 
do perform much better than lower order ones. It is also 
found that limiters have a detrimental effect on the 
acoustic waves. Acoustic wave preserving limiters are 
necessary for the high-order schemes to handle shock-
sound wave interactions efficiently, and this will be a 
future research topic.  
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(b) Quadratic SV 
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Figure 1. SVs of various degrees 
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Figure 2. Computed and analytical mean pressures for 

the subsonic flow through a converging-diverging 
nozzle 
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Figure 3. Comparison of computed and exact maximum 

acoustic pressures 
 

−5 −3 −1 1 3 5
−2e−05

−1e−05

0

1e−05

2e−05

Exact
3rd Order
4th Order
6th Order

 
 

Figure 4. Comparison of computed and exact 
instantaneous acoustic pressures  



 

9 
American Institute of Aeronautics and Astronautics 

−5 −3 −1 1 3 5
X

0e+00

1e−05

2e−05

3e−05

4e−05
P

m
ax

Exact
6th Order (Non−Uniform, 180 DOFs)

 
Figure 5. Computed maximum acoustic pressure on the 
non-uniform grid, with comparison to the exact solution 
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Figure 6. Computed maximum acoustic pressures on 

both the uniform and non-uniform grids  
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Figure 7. Comparison of computed and exact 

instantaneous acoustic pressures  
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Figure 8. Computed and analytical mean pressures for 

the supersonic flow through a laval nozzle 
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Figure 9. Comparison of computed and exact 

instantaneous acoustic pressures  
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Figure 10. Comparison of pressure histories at the 

nozzle exit 
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Figure 11. Regular "20x20x2" Computational Grids  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 2nd Order 

 

 
(b) 3rd Order 

 

 
(c) 4th Order 

 
Figure 12. Density profiles along x=5 at t=0, 10, 50 and 
100 for the second, third and fourth order SV schemes 
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(a) 2nd Order 

 
(b) 3rd Order 

 
(c) 4th Order 

 
(d) Exact 

 
Figure 13. Pressure Contours at t = 100 

 


