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ABSTRACT 
 
The discontinuous Galerkin (DG) method and spectral volume (SV) method are two classes of robust and high-order 
accurate methods for hyperbolic conservation laws, capable of handling unstructured grids. In this paper, we 
evaluate their performance for the two-dimensional Euler equations in terms of accuracy, efficiency and memory 
requirement. We first review the basic features of the two methods, and compare their similarities and differences. 
Then we estimate the number of operations and storage requirement for each method. Finally both methods are 
used to solve a vortex propagation problem with an analytical solution to assess their accuracy and efficiency. They 
are also used to solve a double Mach reflection problem with both smooth features and discontinuities. Both the DG 
and SV methods are capable of achieving their formal order of accuracy while the DG method is slightly more 
accurate in terms of the error magnitude and takes more memory. The SV method appears to have a higher 
resolution for discontinuities because the data limiting can be done at the sub-element level. 
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1. INTRODUCTION 
 

Problems of practical interest in which convection plays 
an important role arise in applications as diverse as 
meteorology, weather forecasting, oceanography, gas 
dynamics, aeroacoustics, turbo machinery, turbulent 
flows, transport of contaminant in porous media, 
semiconductor device simulation, and electro-
magnetism, among many others. This is why devising 
robust, accurate, and efficient methods for numerically 
solving these problems is of considerable importance 
and, as expected, has attracted the interest of many 
researchers and practitioners. Many endeavors have 
been made to construct robust, accurate and efficient 
methods for convection-dominant problems. There have 
been significant progresses made in the last three 
decades.  
 
Real world applications often are associated with 
complex geometries. Unstructured-grid based methods 
have shown tremendous promise in handling these 
geometries with relative ease. We therefore focus our 
attention on methods that can be applied on 
unstructured grids. During the last two decades, many 
successful high-order methods have been developed for 
unstructured grids, e.g., the spectral element method 
[13] or multi-domain spectral method [12], k-exact 
finite volume (FV) method [3,7], ENO/WENO method 
[1,9,11,15], the discontinuous Galerkin (DG) method 
[4-6], unstructured spectral method [10], fluctuation-
splitting (FS) method [2], and recently the spectral 
volume (SV) method [17-19]. Among the higher-order 

accurate methods that are conservative, the DG and SV 
methods may be the most efficient.  
 
The DG method is a finite element method using 
discontinuous solution and test spaces (usually 
piecewise polynomials of suitable degree), which 
means that the state variables usually are not continuous 
across element boundaries. The fluxes through the 
element boundaries are then computed using an 
approximate Riemann solver, mimicking the successful 
Godunov finite volume method [8]. Due to the use of 
Riemann fluxes across element boundaries, the DG 
method is fully conservative at the element level. The 
SV method [17-19] is ultimately a finite volume 
method. Each element (called a spectral volume) is 
partitioned into structured sub elements named control 
volumes (CVs). Mean state-variables at the CVs inside 
a SV are employed to construct a high-order 
polynomial, which is then utilized to update the means 
at the CVs. The reconstruction problem can be solved 
analytically, and is identical for all simplexes. 
Therefore a high-order SV method is much more 
efficient than a high-order k-exact FV, in which a 
reconstruction problem must be solved for each control 
volume. The SV method is fully conservative at the 
sub-cell control volume level.  
 
A comparison of these two methods in terms of 
accuracy and CPU time has been made for scalar 
conservation laws in [16]. In this study, we further 
compare these two methods for the 2D Euler equations 
with both smooth and non-smooth problems. In the next 
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two sections, we review the major features of these two 
methods for the 2D Euler equations. In Section 4, we 
estimate the number of operations and memory 
requirement for both methods. In Section 5, two 
numerical tests are presented. The numerical order of 
accuracy and CPU times are shown to verify the 
estimates. Both methods are also compared for their 
shock capturing abilities using a problem with both 
smooth features and discontinuities. Finally, several 
concluding remarks based on the current study are 
summarized in Section 6. 
 

2. DISCONTINOUS GALERKIN METHOD 
 
Consider the 2D Euler equations 
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equipped with proper initial and boundary conditions. 
In (1), Q is the vector of conserved variables, F = (f, g), 
and f and g are the flux vectors in the x and y directions 
respectively  
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where ρ  is the density, u and v are the velocity 
components in x and y directions, p is the pressure, and 
E is the total energy. The pressure is related to the total 
energy by  
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with the ratio of specific heats γ being a constant. 
 
By multiplying (1) by a scalar test function ϕ , 
integrating over the domain Ω, and performing an 
integration by parts we obtain the following weak 
statement for (1) 

 ϕϕϕϕ ∀=•∇−•+ ∫∫∫
ΩΩ∂Ω

,0dVFdSFdVQt n .     (4) 

The integrals in (4) are understood to be performed in a 
component-wise manner. 
 
Space-Discretization 
A discrete analogue of (4) can be obtained by 
subdividing Ω into N non-overlapping triangular 
elements {Ti}, and by applying (4) on each element. 
Assume the solution and test function be piece-wise 
polynomials in each element. Let the polynomial basis 
function be )(xjξ (x is taken to represent the position 
vector from here on if there is no confusion). If the 
polynomial is of order k, then the dimension of the 
polynomial space in 2D is n = (k+1)(k+2)/2. The 
solution and the test function can be expressed as  
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The expansion coefficients j
iQ  denote the degrees of 

freedom (DOFs) of the numerical solution for element 
Ti. Note that there is no global continuity requirement 
for iQ , which is generally discontinuous across the 
element boundaries. By splitting the integral over Ω in 
(4) into the sum of integrals over the elements and by 
replacing Q and ϕ  with functions iQ and hϕ , we obtain 
the following semi-discrete equation for element Ti  
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Equation (6) must be satisfied for any test function hϕ . 
Since jξ  is the basis for hϕ , (6) is equivalent to the 
following system of n equations  
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Because the approximate solution is discontinuous at 
the element boundaries, the interface flux is not 
uniquely defined. It is at this stage the Riemann fluxes 
used in the Godunov finite volume method are 
borrowed. The interface flux function n•F  is replaced 
by a Riemann flux ),,(ˆ nRL QQF , where LQ and RQ  
are the conserved variables at the left and right side of 
the element boundary. In order to guarantee consistency 
and conservation, the Riemann flux must satisfy 

),,(ˆ),,(ˆ)(),,(ˆ nn n,n −−=•= QRFRQFQFQQF . (8) 
The surface and volume integrals in (7) are computed 
with Gauss quadrature formulas of suitable orders of 
accuracy. For example, the surface integral must be 
exact for polynomials of degree 2k, while the volume 
integral must be exact for polynomials of degree 2k-1, 
i.e., 
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where K is the number of planar facets of Ti,  ns is the 
number of quadrature points on a planar face for the 
surface integral, nv is the number of quadrature points 
in the element for the volume integral, rsw and sw

 
are 

the Gauss quadrature weights, rsx and sx
 
are the Gauss 

quadrature points. By assembling together all the 
elemental contributions, a system of ordinary 
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differential equations that govern the evolution in terms 
of the discrete solution can be written as 

)(UR
dt

dU
= .                          (10) 

where U is the global vector of the degrees of freedom, 
and R(U) is the residual vector. 
 
Time Integration 
An explicit multi-stage third-order TVD (total variation 
diminishing) Runge-Kutta scheme is employed for time 
integration [14]. The Runge-Kutta scheme can be 
expressed in the following form: 
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Monotonicity Limiter 
For the non-linear Euler equations, it is necessary to 
perform data limiting to maintain stability if the 
solution contains discontinuities. There are two 
different ways of applying limiters in the system 
setting. One way is to apply a limiter to each 
characteristic variable. The other is to apply a limiter to 
each component of the vector of the conservative 
variables. The former has the nice property of naturally 
degenerating to the scalar case if the hyperbolic system 
is linear, but the latter is much more efficient. In this 
paper, we choose the component-wise approach 
because of its efficiency. To this end, we first establish 
the following numerical monotonicity criterion for each 
element 

maxmin )( isii QxQQ ≤≤ ,                   (12) 

where min
iQ  and max

iQ  are the minimum and maximum 
cell-averaged solutions among all its neighboring 
elements  sharing a face with Ti, and )( si xQ  is the 
solution at any of the quadrature points. If (12) is 
strictly enforced, the resultant numerical scheme for the 
scalar case is TVD. If (12) is violated for any 
quadrature point, then it is assumed that the element is 
close to a discontinuity, and the solution in the element 
is locally linear, i.e., 
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(13) 
where ix

 

is the position vector of the centroid of Ti. 
The magnitude of the solution gradient is maximized 
subject to the monotonicity condition given in (12). The 
original high-order polynomial is used to compute an 
initial guess of the gradient, i.e., 
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This gradient may not satisfy (12). Therefore it is 
limited by multiplying a scalar limiter ]1,0[∈ϕ  so that 
the following solution satisfies (12) 
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(14) 
  

3. SPECTRAL VOLUME METHOD 
 
In the SV method, the element Ti is named a spectral 
volume, which is further partitioned into subcells named 
control volumes (CVs), indicated by Ci,j, as shown in 
Figure 1. To represent the solution as a polynomial of 
degree k in two dimensions (2D), we need to partition 
the SV into n = (k+1)(k+2)/2 sub-cells.  The degrees of 
freedom (DOFs) in a SV are the volume-averaged mean 
variables jiQ ,  at the n CVs. There are numerous ways 
of partitioning a SV, and not every partition is 
admissible in the sense that the partition may not be 
capable of producing a degree k polynomial. Once n 
mean solutions in the CVs of an admissible SV are 
given, a unique polynomial reconstruction can be 
obtained from 
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where )(xLj  are also degree k polynomials satisfying 

  jmji
C

m VdVxL
ji

δ,

,

)( =∫ ,                    (16) 

and Vi,j is the volume of Ci,j. This high-order polynomial 
reconstruction facilitates a high-order update for the 
mean solution of each CV. Integrating (1) in each CV, 
we obtain 
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where K is the total number of faces in Ci,j. The flux 
integral in (17) is then replaced by a Gauss-quadrature 
formula that is exact for polynomials of degree k 
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where ne  is the number of quadrature points on the r-th 
face, rsw are the Gauss quadrature weights, rsx are the 
Gauss quadrature points. Since the reconstructed 
polynomials are piece-wise continuous, the solution is 
usually discontinuous across the boundaries of a SV, 
although it is continuous across interior CV faces. The 
fluxes at the interior faces can be computed directly 
based on the reconstructed solutions at the quadrature 
points. The fluxes at the boundary faces of a SV are 
computed using approximate Riemann solvers given the 
left and right reconstructed solutions. We also use 
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Runge-kutta scheme expressed as (11) for time 
integration. 
 
The TVD limiter in the SV method is applied for the 
sub-cells, rather than for the macro SVs. This is 
possible because of the availability of the sub-cell 
averages of the state variables. In order to make an 
objective comparison with the DG method, the limiters 
are implemented in a similar fashion. 
 
4. NUMBER OF OPERATIONS AND MEMORY 
REQUIREMENT FOR DG AND SV 
 
In order to provide a reasonable estimate of the number 
of operations for both methods on the two-dimensional 
Euler equations, we need to specify the approximate 
Riemann solver, which is the local Lax-Friedrichs 
solver, i.e.  

)}()]()({[),,(ˆ
2
1 LRRLRL QQQFQFQQF −−•+= αnn  

where cvn +=α , nv  is the average normal velocity, 
and c the average speed of sound at the face. Since 
modern computers can execute multiplications as fast 
as additions, 1 operation is assumed to be one 
multiplication or one addition. Internal functions such 
as sqrt is assumed to cost 10 operations. Given the 
vector of conserved variables, it is estimated that an 
analytical flux evaluation costs Ma = 24 operations, and 
a Riemann computation takes MR = 85 operations. 
 
4.1 DG Method 
We consider linear, quadratic and cubic elements, 
which yield second, third and fourth-order order spatial 
accuracy respectively. The DOFs for these elements are 
given in Figure 2.  Over each element iT , the numerical 
residual vector can be written as 
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where W is the mass matrix. The total number of 
operations can be roughly divided into three main parts, 
corresponding to the cost for computing the conserved 
variables at all the Gauss quadrature points (N1), the 
number of operations to compute the fluxes (N2), and 
the cost to multiply the mass matrix (N3). 
 
There are a total of (nv+3*ns) quadrature points that are 
used for surface and volume integrals assuming that the 
element is a triangle. We need n multiplications and n-1 
additions to compute one conserved variable given the 
DOFs. Since we have four conserved variables in total, 
therefore the total number of operations to compute the 
solutions at all the quadrature points is then  

)3(*)12(*41 nsnvnN +−= . 
To evaluate the volume integral, we need to compute 
the (analytical) fluxes at nv quadrature points relating to 
n shape functions, while 3*ns Riemann fluxes are 
necessary to evaluate the surface integral. However 
Riemann fluxes are shared between two neighboring 
elements. Therefore we need to halve the number of 
operations for the Riemann fluxes when evaluating the 
number of operations per element. We also include the 
number of operations to carry out the Gauss quadrature 
formula. Thus we obtain 

)1*3(**4)1*2(**4
2/**3**2

−+−+
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N3 is simply the cost of a square matrix multiplying a 
vector, which is n*n for one component. Since we have 
4 components, N3 is therefore 4*n*n. The total cost to 
compute the residual vector for a single element is then 

321 NNNNT ++=  
The numbers of operations for the DG schemes of 
second to fourth orders are listed in Table 1. 
 

Table 1. Number of Operations for the DG Method 
 

k 
 

n nv ns NT 

1 3 3 2 807 
2 6 6 3 2507 
3 10 12 4 6974 

 
The memory requirement for the DG method is 
estimated as followed:  

• Two solutions; one at current time step, and 
other at the last time step. 

• Residual, transformation from a cell to a 
standard cell. 

• Volume, centorid coordinates, face area, and 
face unit normal. 

• Coordinates of quadrature points (face, cell) 
• Gradient of shape function on quadrature 

points (face, cell). 
• Value, and gradient of shape functions at the 

centorid of a cell. 
The storage requirement is roughly 94 words per 
element for a second-order DG scheme, 226 words per 
element for a third-order DG scheme, and 519 words 
per element for a fourth-order DG scheme. 
 
4.2 SV Method 
The degrees of freedom in the SV method are the mean 
state variables at the sub-cell control volumes. Over 
each spectral volume iT , the numerical residual can be 
expressed as  
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There are two kinds of faces in a spectral volume. The 
faces that lie on the SV boundaries are called Riemann 
faces, because the state variables are discontinuous 
across these faces. The other faces that lie inside a SV 
are named continuous faces because the state variables 
are continuous across these faces. Denote the total 
number of faces in a SV with nf, and the number of 
Riemann faces nr. Then the number of continuous faces 
is then (nf - nr). Let the number of quadrature points on 
each face (edge) be ne. Then the number of operations 
to compute the state variables at all the quadrature 
points is 4*nf*ne*(2n-1). In addition, a total of (nf - 
nr)*ne analytical fluxes need to be computed while 
nr*ne Riemann fluxes must be computed. Since the 
Riemann faces are shared between two neighboring 
SVs, the number of operations is again halved. We also 
include the number of operations to carry out the Gauss 
quadrature formula (2*ne-1)*nf*4. Since the mass 
matrix in the SV method is always the identity matrix, 
the total number of operations in the SV method to 
evaluate the residual can be written as 

321 NNNNT ++=  
where 
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The numbers of operations for the SV schemes of 
second to fourth orders are listed in Table 2. 
 

Table 2. Number of Operations for the SV Method 
 

k n ne nf nr NT 
1 3 1 9 6 543 
2 6 2 15 9 2553 
3 10 2 27 12 6168 

 
In the implementation of the SV method, the top 
priority has been to achieve the best efficiency. We 
therefore choose to store many geometric properties. 
The permanent memory requirement is estimated as 
follows: 
• Two solutions, one at the latest time step, and the 

other at the last time step; 
• The residuals, volumes and centroid coordinates 

for the CVs, the face unit normals and areas for the 
sub-cell grid; 

• Face to cell and face to node connectivities for the 
sub-cell grid;  

• Coordinates of the sub-cell grid; 
• A connectivity linking each quadrature point on a 

face to a point of the local standard SV to 
reconstruct the solution at the quadrature point. 

 
The storage requirement is roughly 99 words per 
element for a second-order SV scheme, 194 words per 
element for a third-order SV scheme, and 361 words 
per element for a fourth-order SV scheme. Note that the 
SV schemes take less memory than the DG schemes at 
3rd and 4th orders of accuracy. 
 

5. NUMERICAL TESTS 
 
All of the computations were performed on a Pentium 
IV 2.0 GHz PC running the Redhat Linux 7.2 operating 
system. The code was written in C++, optimized and 
compiled with the default gcc compiler. 

5.1 Vortex Propagation Problem  
This is an idealized problem for the Euler equations in 
2D, which was used by Shu [15]. The mean flow is {ρ, 
u, v, p} = {1, 1, 1, 1}. An isotropic vortex is then added 
to the mean flow, i.e., with perturbations in u, v, and 
temperature T = p/ρ, and no perturbation in entropy S = 
p/ργ: 
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where 222),5,5(),( yxryxyx +=−−= , and the 
vortex strength ε = 5. In the numerical simulation, the 
computational domain is taken to be [0,10] x [0,10], 
with characteristic inflow and outflow boundary 
conditions imposed on the boundaries.  
 
It can be readily verified that the Euler equations with 
the above initial conditions admit an exact solution that 
moves with the speed (1, 1) in the diagonal direction. 
Both the DG and SV methods were employed for this 
problem. The numerical simulation was carried out 
until t = 0.1 on two different grids, one regular and one 
irregular as shown in Figure 3.  
 
The errors are computed based on the volume-averaged 
state variable on the element or the SV. Table 1 and 
Table 2 present the errors and recorded CPU times of 
both methods on the regular mesh, while Table 3 and 
Table 4 display the errors and CPU times on the 
irregular mesh. Note that both methods achieved the 
expected numerical order of accuracy. The DG schemes 
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appear to have slightly smaller error magnitude than the 
corresponding SV schemes.   
 
Based on the CPU times for regular mesh, we note that 
the DG method takes 43.47, 104.14, and 212.35 sµ  for 
linear, quadratic, and cubic elements respectively, while 
SV method spends 27.42, 99.88, and 237.69 for 2nd, 
3rd, and 4th order schemes. The SV method is faster 
than the DG method at 2nd and 3rd order, but is slower at 
4th order. We will further investigate the slight 
discrepancy from the estimates.  
 
5.2 Double Mach Reflection 
This problem is also a standard test case [20] for high-
resolution schemes, and has been studied extensively by 
many researchers. The computational domain for this 
problem is chosen to be [0, 4] x [0, 1]. The reflecting 
wall lies at the bottom of the computational domain 
starting from x=1/6. Initially a right-moving Mach 10 
shock is positioned at x=1/6, y=0 and makes a 60° angle 
with the x-axis. For the bottom boundary, the exact 
post-shock condition is imposed for the region from 
x=0 to x=1/6 and a solid wall boundary condition is 
used for the rest. For the top boundary of the 
computational domain, the solution is set to describe 
the exact motion of the Mach 10 shock. The left 
boundary is set at the exact post-shock condition, while 
the right boundary is set as an outflow boundary. 
 
The numerical simulation was carried out until t = 0.2. 
A mesh refinement study was carried out on three 
different grids. The grids are generated from regular 
Cartesian meshes by subdividing each Cartesian cell 
into two triangles. The coarse grid has 25*100*2 
triangles, the medium grid 50*188*2 triangles, and the 
fine grid consists of 120*480*2 triangles. The density 
contours with 30 equally spaced contour lines from 

528.1=ρ  to 863.20=ρ  are shown in Fig. 4 and Fig. 5 
for the second order DG scheme and SV scheme. Note 
that the “blown–up” region was also shown in those 
figures.  
 
Note that the SV method has a higher resolution than 
the DG method for the shock, slip line and the other 
finer features near the triple point. The main reason is 
that the TVD limiter in the SV method is applied for the 
sub-cells, but the limiter in the DG method is applied 
for the elements (macro SVs). 

 
6. CONCLUDING REMARKS 

 
We have presented a comparison of the DG and SV 
methods for the 2D Euler equations. Similar to the 2D 
scalar conservation laws, the DG method has a lower 
error magnitude than the SV method at 3rd and 4th 

orders. The 2nd-order SV scheme is faster than the 2nd-
order DG scheme. However, 3rd and 4th order SV 
schemes are quite similar to the corresponding DG 
schemes in terms of efficiency (<12 % in difference). It 
is also clear that the SV method has a higher resolution 
for discontinuities than the DG method because of the 
sub-cell average based data limiting. We also confirm 
that the SV method takes less memory and allows 
larger time steps than the DG method for the 2D Euler 
equations. 
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Figure 1. SVs of various degrees 

 

 
(a) Linear element 

 

 
 

(b) Quadratic element 
 

 
 

(c) Cubic element 
 

Figure 2. The degrees of freedom in DG 
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(a) Regular (10x10x2)  (b) Irregular (10x10x2) 
 

Figure 3. Regular and irregular grids for the vortex case 
 
Table 1. Errors and CPU time on 2D Euler equations for vortex case at t = 0.1 using DG method (regular mesh) 

 
Table 2. Errors and CPU time on 2D Euler equations for vortex case at t = 0.1 using SV method (regular mesh) 

Order of 
accuracy 

Grid L1 error L1 order L∞ error L∞ order CPU 

10x10x2 2.62e-03 -- 2.63e-02 -- 1.71e-01 
20x20x2 9.33e-04 1.49 1.19e-02 1.14 1.34e+00 
40x40x2 2.52e-04 1.89 3.41e-03 1.80 1.09e+01 
80x80x2 6.30e-05 2.00 8.75e-04 1.96 8.30e+01 

 
 

2 
 

160x160x2 1.57e-05 2.00 2.20e-04 1.99 8.13e+02 
10x10x2 3.75e-04 -- 5.54e-03 -- 4.05e-01 
20x20x2 6.67e-05 2.49 9.03e-04 2.62 3.14e+00 
40x40x2 1.02e-05 2.71 1.47e-04 2.62 2.47e+01 
80x80x2 1.72e-06 2.57 3.04e-05 2.27 2.03e+02 

 
 

3 

160x160x2 2.78e-07 2.63 5.38e-06 2.50 2.06e+03 
10x10x2 8.25e-05 -- 6.51e-04 -- 8.37e-01 
20x20x2 6.58e-06 3.65 8.17e-05 2.99 6.77e+00 
40x40x2 4.22e-07 3.96 5.27e-06 3.95 5.43e+01 
80x80x2 2.73e-08 3.95 3.56e-07 3.89 4.27e+02 

 
 

4 

160x160x2 1.73e-09 3.98 1.93e-08 4.21 3.61e+03 

Order of 
accuracy 

Grid L1 error L1 order L∞ error L∞ order CPU 

10x10x2 1.72e-03 -- 1.52e-02 -- 1.16e-01 
20x20x2 6.09e-04 1.50 6.28e-03 1.28 8.87e-01 
40x40x2 1.63e-04 1.90 1.79e-03 1.81 7.15e+00 
80x80x2 4.09e-05 1.99 4.66e-04 1.94 5.23e+01 

 
 

2 
 

160x160x2 1.02e-05 2.00 1.19e-04 1.97 4.41e+02 
10x10x2 3.79e-04 -- 4.75e-03 -- 4.37e-01 
20x20x2 7.59e-05 2.32 9.53e-04 2.32 3.19e+00 
40x40x2 1.34e-05 2.50 1.50e-04 2.67 2.42e+01 
80x80x2 2.25e-06 2.57 3.52e-05 2.09 1.90e+02 

 
 

3 
 

160x160x2 3.73e-07 2.59 5.15e-06 2.77 1.69e+03 
10x10x2 7.28e-05 -- 6.09e-04 -- 9.63e-01 
20x20x2 6.97e-06 3.38 1.22e-04 2.32 7.45e+00 
40x40x2 6.10e-07 3.51 1.39e-05 3.13 6.22e+01 
80x80x2 5.43e-08 3.49 1.17e-06 3.57 4.64e+02 

 
 

4 
 

160x160x2 4.65e-09 3.55 8.05e-08 3.86 4.02e+03 
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Table 3. Errors and CPU time on 2D Euler equations for vortex case at t = 0.1 using DG method (irregular mesh) 
 

 
 

Table 4. Errors and CPU time on 2D Euler equations for vortex case at t = 0.1 using SV method (irregular mesh) 

Order of 
accuracy 

Grid L1 error L1 order L∞ error L∞ order CPU 

10x10 2.1938e-03 -- 2.4772e-02 -- 1.93e-01 
20x20 7.3981e-04 1.57 8.9395e-03 1.47 1.58e+00 
40x40 1.9561e-04 1.92 3.0051e-03 1.57 1.25e+01 
80x80 4.9088e-05 1.99 8.6666e-04 1.79 9.93e+01 

 
 

2 
 

160x160 1.2246e-05 2.00 2.2906e-04 1.92 9.46e+02 
10x10 2.7030e-04 -- 4.2133e-03 -- 4.56e-01 
20x20 4.5246e-05 2.58 7.2799e-04 2.53 3.76e+00 
40x40 7.3538e-06 2.62 1.1734e-04 2.63 2.91e+01 
80x80 1.2327e-06 2.58 2.5897e-05 2.18 2.41e+02 

 
 

3 

160x160 1.8792e-07 2.71 4.4533e-06 2.54 2.25e+03 
10x10 4.9035e-05 -- 5.2184e-04 -- 9.69e-01 
20x20 3.9102e-06 3.65 6.3063e-05 3.05 9.12e+00 
40x40 2.8644e-07 3.77 6.2253e-06 3.34 6.21e+01 
80x80 1.7762e-08 4.01 4.6664e-07 3.74 5.05e+02 

 
 

4 

160x160 1.0828e-09 4.04 3.3610e-08 3.80 4.10e+03 

Order of 
accuracy 

Grid L1 error L1 order L∞ error L∞ order CPU 

10x10 1.27e-03 -- 1.43e-02  1.34e-01 
20x20 4.65e-04 1.45 5.68e-03 1.33 1.02e+00 
40x40 1.25e-04 1.90 1.45e-03 1.97 9.04e+00 
80x80 3.18e-05 1.97 5.36e-04 1.44 6.35e+01 

 
 

2 
 

160x160 8.03e-06 1.99 1.68e-04 1.67 5.15e+02 
10x10 2.68e-04 -- 2.57e-03 -- 4.97e-01 
20x20 4.97e-05 2.43 5.86e-04 2.13 3.69e+00 
40x40 8.80e-06 2.50 1.99e-04 1.56 2.86e+01 
80x80 1.56e-06 2.50 3.61e-05 2.46 2.21e+02 

 
 

3 
 

160x160 2.67e-07 2.55 5.03e-06 2.84 2.03e+03 
10x10 4.23e-05 -- 5.07e-04 -- 1.13e+00 
20x20 4.37e-06 3.27 8.69e-05 2.54 8.52e+00 
40x40 3.53e-07 3.63 1.31e-05 2.73 6.68e+01 
80x80 2.59e-08 3.77 9.30e-07 3.82 5.37e+02 

 
 

4 
 

160x160 2.06e-09 3.65 9.63e-08 3.27 4.66e+03 
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(a) coarse grid 

 

 
 

(b) medium grid  
 

 
 

(c) fine grid  
 

Figure 4: Density contours computed with second order DG scheme using a TVD limiter (30 equally spaced 
contour lines from 528.1=ρ  to 863.20=ρ ). 
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(a) coarse grid 
 
 

 
 

(a) medium grid 
 

     

 
 

 
(c) fine grid 

 
 

Figure 5. Density contours computed with second order SV scheme using a TVD limiter (30 equally spaced 
contour lines from 528.1=ρ  to 863.20=ρ ). 
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